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1. Introduction

In Section 2, we state the necessary preliminaries concerning affine hyper-
surfaces M" in the (n+1)-dimensional standard affine space A”+1, In Sec-
tion 3, we give examples of affine minimal surfaces in A3. In particular, we
completely classify all affine minimal translation surfaces. Also, by giving a
counterexample, we show that the affine Berstein problem (which is solved
affirmatively for convex surfaces by Calabi [2]) has a negative solution in the
nonconvex case. In Section 4 we obtain, also in the nonconvex case, that the
affine minimal hypersurfaces M " in A7+1are those which have an extremal
volume under variations in the direction of the affine normal. Furthermore,
we find that for nonconvex affine minimal surfaces, in contrast to the convex
case, the second variation of the affine area does not necessarily have a sign.

This article was written while the authors visited the University of Gra-
nada in March-April 1987. They would like to thank M. Barros and his col-
leagues at Granada for their generous hospitality. In particular, with respect
to the present paper, they would like to thank A. Ros for the general discus-
sions on variational problems.

2. Preliminaries

Let A7+1be the standard (n+1)-dimensional real affine space, that is, R#+1
endowed with the standard linear connection D and the volume element
given by the determinant. Then DQ =0, and so (D, ) defines an equi-affine
Structure on R7+1[4; 5].

Let M " be an oriented hypersurface in A#+1, Then the natural problem of
how to induce an equi-affine structure (V, 8) on M " starting from (D, ) on
An+l was solved by Nomizu in the following way [4]. Let ¢ be any frans-
versal vector field on M" such that, vxe M", T, Ar+1=T, M"®spanft,].
Consider the corresponding formulas of Gauss and Weingarten:

DyY=VyY+h(X,Y)§, Dyt =-SX+7(X)E,
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which decompose DyY and Dy ¢ into a tangential and a transversal com-
ponent, where X and Y are tangent vector fields on M. Then V is a forsion-
free affine connection, h a symmetric bilinear form, S a (1, 1)-tensor and 7
a 1-form on M. All these notions depend on the choice of transversal vector
field £. The natural way to define a volume element § on M, using £, is

0(X1, X2, .., Xp) =X, X2y oo, Xy ),

where X}, ..., X, are any tangent vector fields to M. Then one has Vy0 =
7(X)0. So in order that (V, #) should determine an equi-affine structure on
M we must demand that

2.1 7=0.

Then, one further condition is imposed to determine £, V, and € uniquely.
To obtain this condition, we first note that if one looks at all possible choices
of transversal vector fields £, one observes that the fact that 4 is nondegener-
ate is independent of the choice of affine transversal vector field. From now
on, we will always assume nondegeneracy. Hence we can consider v, the met-
ric volume element corresponding with the semi-Riemannian metric 4, with
respect to the given orientation. The second condition then states that this
metric volume element coincides with the induced affine volume element:

(2.2) v=20,
or equivalently
|H|=1, H=det[h(Yy, Y))],

({Yy, ..., Y,} being a tangent basis for M such that 6(Y, Y5, ..., Y,) =1.) The
corresponding £ is called the affine normal. One then has the following equa-
tions of Gauss, Codazzi, and Ricci:

2.3) R(X,Y)Z=h(Z,Y)SX—h(X, Z)SY,
(2.4) (VA)(X,Y, Z)=(Vh)(Y, X, Z),
(2.5) (VxS)(Y) =(Vy$)(X),

(2.6) h(X,SY)=h(SX,Y).

M s flat (R=0) if S=0. M is convex if h is positive or negative definite [2].
M is said to be an affine minimal hypersurface when Tr S =0.

3. Examples of Minimal Surfaces in A3

1. SURFACES OF REVOLUTION. Locally, every surface of revolution can
be written in the following way:

x(u,v)=(g(u), ucosv, usinv).

For this surface to be minimal, we obtain (after a straightforward compu-
tation) the following differential equation for g:
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where c is an arbitrary constant. For more details see [1].

2. SURFACES OF TRANSLATION. A surface of translation generated by
plane curves is a surface which can be written in the following form:

x(u,v)=(u,v, f(u)+eg(v)),

where f and g are arbitrary functions and e € {—1, 1]. The nondegeneracy of
the surface implies that f,,-g,, #0. Therefore, by choosing ¢, we may as-
sume that f,, >0 and g,, > 0. By demanding that this surface be affine mini-
mal, we obtain (after a straightforward computation) the following differ-
ential equations for f and g:

3
(3.9 S S = 3 P =Cof- v
(3.2) Evvvv 8oy — %ggvv = ecge‘:jffu,&
where C is an arbitrary constant. L
Let us then define a function F by
y —3dx

F _Scn x"MA[Sax-124D"

where C,, a and D are constants satisfying C,>0, y >0, %aCl‘l/ 21 D>0,
and %a y —1/24+ D > 0. Then the inverse function 4 of F satisfies the differen-
tial equation —hh” + %h’2= ah3. Therefore, by taking a =—C or a =—€C
and integrating two more times, we obtain the functions f and g. In the spe-
cial case where o =0, we have the following examples:

fl(u) =D1(u+C1)2/3+E1u +Fl’
g1(V) =Dy, (v+C,)2 R+ E,v+F,;

fz(u) =D1u2+E1u +F1,
gz(v) =D2(U +C2)2/3 +E2U+F2;

f3(u) =D1(u+C1)2/3+E1u+FI,
g3(v) =D202+E20+F2;

f4(u) =D1u2+E1u+Fl,
g4(U) =D2U2+E20+F2,

where due to regularity conditions f; and f; are defined on R\ {C,} and g;
and g, are defined on R\ {C,}. Furthermore, the nondegeneracy implies that
D, and D, are different from zero. Pictures of all these affine analogues of
Scherk’s surface in the Euclidean space E3 are given in Figures 1-6.

Again, due to regularity conditions, these are the only solutions to (3.1)
and (3.2))\ Furthermore, after a straightforward computation, we find that
the minimal translation surfaces given by
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xp(u,v) = (u, v, fH(u)+8,(v)),
X3(u, U) = (u’ U’f3(u)+g3(v)),
x4(u,v)=(u, v,f4(u)frg4(v))

are also flat.

3. RULED SURFACES. Finally, we give some examples of ruled, nonconvex,
affine minimal surfaces which will play a very important role in the next sec-
tion. See also [6] and [7].

a. The hyperbolic paraboloid. The hyperbolic paraboloid has a parame-
terization that is given by x(u, v) = (u, v, uv). The affine normal £ is given
by £(x(u, v)) =(0,0,1). Thus, we see that the hyperbolic paraboloid is a flat
surface. But the hyperbolic paraboloid is not the only nonconvex, flat sur-
face; the following deformation of the hyperbolic paraboloid also remains
nonconvex and flat:

x(u,v)=(u, f(u), g(u))+v(0,1,u),
where f and g are arbitrary functions of u.

b. The helicoid. The helicoid has a parameterization given by x(u, v) =
(u cos v, u sin v, v), where u, veR. The affine normal £ is given by £(x(u, v))=
(sinv, —cos v, 0). Furthermore,

Sx, =0, Sx,=—Xx,.
Hence, helicoids are affine minimal surfaces.

c. Another affine minimal surface is given by the following parameteriza-
tion: x(u, v) = (u, v, ve*); for a picture, see Figure 7. Then:
x,=(1,0,ve"),  x,=(0,1,e"),
£=(0, —Lle-2u lo/2uy,

Sx,=—e~Wux,  Sx, =0,

h(x,, x,) =ve®Du, h(x,,x,)=eWDu,  h(x,,x,)=0;
_1 1. _ —
Vi, Xu = 3UXy, Vi, Xv = 2X0=Vy Xy, Vi, Xp=0.

So we see that this surface is an affine minimal, nonconvex surface which is
globally the graph of a function. Furthermore this surface is complete, cor-
responding to the induced connection V as well as to the Levi-Civita con-
nection V of 4, since its geodesics with respect to V and V are (respectively)
given by
v1(t)=x(at+b, e~/2(c, cos(at/2) +c, sin(at/2))
and
v2(t) =x(at +b, e~1/2al (¢, +c5)),

where a, b, c;,c,€R.
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Figure 7 (u, v, ve¥)

REMARK. In the convex case, we have the following theorem of Calabi [2].
If ¢: M — A3 is an affine minimal immersion, M convex, ¢M the graph of a
function (geometrically complete), and M metrically complete (i.e., com-
plete corresponding to /), then M is a paraboloid. However, the examples
of ruled surfaces show that such a theorem cannot be true in the nonconvex
case. Not only is there an example of a flat manifold which satisfies all the
conditions except convexity, namely,

x(u,v)=(u,v,uv+g(u)),

but there is also an example of an affine minimal, nonflat, nonconvex sur-
face which is complete corresponding to both connections and which is glo-
bally the graph of a certain function, namely,

x(u,v)=(u,v,vev).

4. Variation Formulas

We start with an affine nondegenerate immersion ¢: M — A"+1; p—¢(p),
with affine normal vector field £&. Then ¢,: M — A"+, p—¢,(p)=¢(p)+
tf(p)é(p), where f: M — Ris a C*-function on M, with support in a com-
pact domain W of M, and 7 € R is also an affine, nondegenerate immersion
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for any ¢ sufficiently small. We call ¢, a variation in the affine normal direc-
tion of ¢. We then define

An=|{ o,

where 6, is the volume element on M induced by ¢,. In the following the-
orem, we generalize (by deleting the convexity condition) a theorem of Ca-
labi [2].

THEOREM 4.1. Let ¢: M — A+l be an affine, nondegenerate immersion.
Then the following two conditions are equivalent.:

(1) the immersion ¢ is a minimal immersion,
(ii) A’(0)=0 for every variation in the normal direction of ¢ (i.e., the
volume of ¢ is extremal).

In order to prove this theorem we need the following lemma.

LEMMA 4.1. Let ¢: M"— An+1 be an affine, nondegenerate immersion. Let
¢, be a variation in the normal direction of ¢. Then
n(n+1)
2+n

A(0) = SM £-Tr S-6.

Proof. Let pe M. By {ey,e,,..., e,} we will always denote a basis of 7, M
such that 8(e, e,, ..., e,) = 1. Then {¢,.(e;), ..., d/(e,), &} is a basis for
T,A"+1, where &, is the affine normal corresponding to ¢,. Denote the dual
basis by wy, ..., w,s, @, and w;g by w; and wy by w. Then
et(ely 62, veey en) = Q(d’t*(el)s seey d’t*(en)’ Et)
=Udu(e) +1(VS)(e)E—tfDu(Sey), ..., dxle,)
+ t(Vf)(en)E - tf¢#(Sen)’ Et)’

where (Vf)(e;) =e;(f). From now on, since there is no confusion possible,
we will denote ¢.(e;) also by e;. Then we find

—0/(e, e, ... €,)

=—f E Q(e1, .ees €5_1,5€, €111y -+ €p)
I

dt t=0
4.1) +Q(e e d ¢ )
. 15 °++3€n E ! o
=—NfTI'S+O)(£6),

where £q=(d/dt)&,|,~o and Tr S = (1/n) X; wi(Se;).

In order to compute &g, we will use (2.1). Therefore, we will first compute
(d/dt)h,(e;, e;) |,~o. To simplify the notations, we will also denote by ¢; lo-
cal extensions of the vectors e;. Then

d
h,(e;, e;)= wt(Dqs,,(e,.)(f’z*(ej)) = 0’:( $¢t*(ej)) >
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where we used a curve « such that « (¢, 0) = ¢,(p) and (d/ds)a(t,0) = ¢.,(e;).
Differentiating this and evaluating in # =0, we find

d
4.2) Eh,(e,—, e;) o =w (&) |r=0 h(e;, €))+(V2S)(e;, €;) — h(e;, Se;) f,
where (V2f) (e;, e;) =¢;((Vf)(e;))— (Vf) (Ve e;). Furthermore, we know that
w,;(&,) =1. By differentiating this and evaluating for # =0, we obtain

W' (§) =0t w(£0) =0,

and thus (4.2) becomes

d
(4.3) Ehz(e,-, e;) o —h(e; e)w(£0) +(VEf) (e, €)) —hle;, Se)) f.
Then, by combining (4.3) with (4.1) and (2.2), we can compute w(£p) as
N — n 1 “ i
(44) O)(Eo) = mf TrS+ m i§1 det(ajk),

where, if det(a(e;, e;)) >0,
aly=h(ej,e,) for k#i,
aji=(V2f)(e;, ;);
and where, if det(x(e;, e;)) <O,
aj=h(e;,e;) for ki,
aj=—(V%f) (e, ).
Substituting this into (4.1), we obtain for the first variation formula that
A(0) =SW {— ”(2"++n1) fH + 2_J1r_n él det(a jk)} 0.

Applying the Codazzi equation, Green’s theorem, and the fact that supp f C
W, we find after a somewhat long (but easy) computation that the second
term cancels. So we find that

s n(n+1)
A(O)_gw{— 2+n fH}o.

Since supp f C W, we can also write this as

e n(n+1)
A(O)—SM[— — fH}G.

This completes the proof of the lemma. O

The proof of Theorem (4.1) now becomes obvious.

From now on, we will always assume that ¢: M — A7+! is a nondegen-
erate, affine minimal immersion. In order to compute the formula for the
second variation in this case, we need some technical lemmas for which the
proofs are straightforward.
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LEMMA 4.2.
d? n .
Tpdlenen e =w(Eg)=2 X (V) (e)w'(§)
=0 i=1
+2 Y X fwi(se;)w/(Se;) —w/(Se;)w!(Se))].
i=1j>i

LEMMA 4.3.
(V3N (XY, Z)—(V3f)(Y,X,Z)=—(V )(R(X,Y)Z))

=—h(Y, Z)(V/)(SX)+h(X, Z)(VS)(SY).

LEMMA 4.4.
d2
Srrhene)|  =hie,e) (20 —o(ED)
=0
—2(V2f)(e;, ) (ED) + 2h(e;, Se))o(ED)
+2(Vf)(e;) kz: wk(Se,) (V1) (ex)
+2(Vf)(e,-)k§ wk(Se)) (VF)(ex)
=1
+2/ 3 ak(%, 9)e) (V) @0).
LEMMA 4.5.

wk(&4) =det(ck) +det(df),
where, if det(h(e;, e;)) =1,
c---—d--—h(e,-,ej) Sor j#k,
ch=—ei(w (),
df.=—(Vf)(Sey);
and where, if det(h(e;, e;)) =—1, we have
---d-~—h(e,-,ej) Sor j#k,
ck =ei(w(£))),
dfe=—(Vf)(Se).

Proof. First, we take a curve a(s, ¢) such that «(0, ) =¢(p) and «’(0,¢) =
¢+(€;). Then, we know from (2.1) that

d
w,(d—SE,) =0.

By differentiating this, we then obtain that

4.5) (D, £5) = w(Se) == 3 wl(Se)(V/) (@)
P
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On the other hand, by decomposing N§ we find that

n

Eo= X2 wkEpe+w(Ept,

k=1
and thus
n
w(Dg£p) = X w¥(£p)h(e;, er) +e;(w(&p)).
k=1
Combining this formula with (4.5) then completes the proof. O

By a long but straightforward computation, and by combining the previous
results, we have the following lemma.

LEMMA 4.6.
2 n . , . .
wE))=———= 2 X fHw!(Se)w/(Se;)—wi(Se;)wi(Se;)}
n+2 2y jsi
, 2 2
—(n+1)(w(£))*+ n+2H(f)+ ma(f)
2(n+1) 2 2
i B()+ mv(f)+ ma(f)—ZE(f),
where
a(f)= 21 det(a,{;{),
with "

aj,=hle,er) (J#k);

od = F(V2f)(e;, Se;) if det(h(e;,ep)) =1,
T =f(V2f)(e; Sej) if det(h(e;, ep))=—1;

BUN==3 (V) (e det(df;

Y(f) = él det(v£);

with
vi=hle,e) (#k);
k= { (V/)(Se) (V) (@) if det(hene) =1,
KT~ (V) (Ser) (V) (e)  if det(he;, ) =—1;
6(f) =k§nj=1 det(85);
with

sk=h(e,e) (j=k),

sk — { (VO S)e)-f  if det(h(e;,ep) =1,
L =NV, Se)-f If det(h(e;, ex)) =—1;

«(N==3 (V)(ey) det(c);
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and

H(f)=( S Y det(HY ) det((ems em)),

i=1j>i
with
Hi=h(ex,e) (i,j#1),
H = (V%f) (e, €),
U = (sz) (ek’ej)

Using Green’s theorem, the Codazzi equation, Lemma 4.3, and the fact that
supp(f) C W, we obtain the following formulas.

LEMMA 4.7.
|, «n+rn+sn =o.
LEMMA 4.8.
==
| H=50-0] 6.

Combining all these lemmas, we find the following formula for the second
variation:

yres , (n+1)
a0 ={ {-o+neer- o)
noo (n+1)
Xi’j2=1w-’(Sei)OJ (SeJ)+( +2) B(f)}

Using (4.4), we can write this in the following form:

o (n+1) 2 n+1
A(O)—SW{ (+2)2(2d (,k)) ek

. ; (n+1)
xiJE:lwf(Se,-)w (Sej)+( 12)

Next, we introduce the following notation: Since X7_,det(a};) has all the
nice properties of a Laplacian, we denote

B(f )}

n -
Y det(aj)=Af.
i=1
Now, we have proved the following theorem.

THEOREM 4.2. Let ¢: M — An+1 pe an affine minimal, nondegenerate im-
mersion. Let ¢, be a variation in the normal direction of ¢. Then the for-
mula of the second variation of the volume is given by

wen [ § (nED) _ (n+1)
4 (0)_SM{ 22 A Gy

x 3 wi(Se)wi(Se,)+ L+ D)

ij=1 (n+2) ﬁ(f)]
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In the special case of surfaces in A3, we obtain the two following corollaries.

COROLLARY 4.1. Let ¢: M — A3 be an affine minimal, nondegenerate, con-
vex (h is positive or negative definite) immersion. Then

ao={ - %(Af)2+ > Fdet )

+ %{h(ez, e3) (V) (e)(VS)(Se)) +h(ey, e;) (V) (e)) (V) (Sey)
—h(ey, e2) [(VS)(e) (V) (Ser) + (V) (e2) (V) (Sey)i}.
COROLLARY 4.2. Let ¢: M — A3 be an affine minimal, nondegenerate, non-

convex immersion. Then

ao=| - %(Af)2+ > Fdet $)

+ %{—h(ez, €2) (V) (e) (V) (Se;) +h(ey, e;) (VS) (e1) (VS)(Sey)
+h(ey, e2) (VS) (Se) (VS) (er) —h(ey, €)) (V) (e2) (VS)(Sey)].

Starting from a formula such as the one in Corollary 4.1, Calabi proved [2]
that in the convex case the second variation is always negative definite; Ca-
labi therefore proposes to call these surfaces maximal surfaces instead of
minimal surfaces. Now, we want to show that a theorem such as the one of
Calabi is not possible in the nonconvex case. Therefore, we will use the ex-
ample of the helicoid which can be parameterized in the following form:

x(u,v)=(ucosv, usinv, v),

where u, v e R. Then we have

x,=(cos v, sinv, 0), h(x,,x,)=0;

x,=(—usinv,ucosv, 1), h(x,,x,)=-—1;

¢ =(sinv, —cos v, 0), h(x,, x,)=0;

Sx,=0, Sx,=—x,, 0(x,,x,)=Qx,,x,,E)=1.
Therefore

e 3/ 02 \? 3/0f\?
A “”“Su Sv [—74—<8uav) +Z<E) }d"d”’

From [3], we know that we can construct a C = function g on R such that

(x) = 1 for xe[-1,1],
gWX)= 0 for xe]l—o,—2] and xe[2, +],

with 1=g=>=0and |g’(x)| =<3 for all x e R. For an arbitrary positive number
R, we then define A& by A(x)=g(1/R)x). We then have:

4.5) h(x)=1 for xe[—R,R],



Affine Variation Formulas and Affine Minimal Surfaces 91

4.6) h(x)=0 for xe]—o, —2R] and x € [2R, + =],
4.7) 1=h=0,
4.8 |h’'(x)|<3/R for all xeR.

Now we are in a position to show that, for the helicoid, the second varia-
tion of the volume has no fixed sign. First, we define f;(u, v) by

Si(u, v)=u-h(u)h(v).

This function is C* and has support in a compact domain. Then we have

ws _[R (R 3 R (2R( 3 3
A (0)_S_R S_deudv+§_R L { (i (v))2+4(h(v))2} du dv
R ¢-R 3 3
+§_R S—ZR {—Z(h )%+ z(h(v))’-} du dv

{7 jﬁ {_i(h(“”z(”"”))z— 3 w2 (h ()2 (k' (0))2

—~2R 4 4
+3 (PR R )2 0] du
L B O O P L O
+ 3 (P (R + 5120 WP (W) du .
By using (4.5), (4.6), (4.7), and (4.8), we obtain the following inequalities:
" 2.3 .9 yg2_ 089 4p2 64029 9 4p2.
A'(0) 23R~ 5+ 4RI = AR = LAR% = (4R2);

A”(0) =3R%2-2025.
So we see that A”(0) > 0 for R sufficiently great. On the other hand, if we
define a function f; by
So(u,v)=u-e**-h(u)-h(v),
where a € R, then we find, for the second variation of the helicoid, that

” — R R __%_ 2,2av i 2av
A(O)—S_Rj_R[ 4ae +4e du dv

+ Sl S;R {—%azez‘*”(h(v))z— %ew(h’(v))2+ -z—ei’-“”(h(v))z} du dv

+S: S::R {—%azezf"“(h(v))z— %e2°‘”(h’(v))2+ %eza"(h(v))z} du dv

+ S :; S i;}: {‘% atee?(h(u))*(h(v))?— %azuzem(h'(u»%h(u»z
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— 2 ez ()2 ()2 S uRe (@) (W' (0))?

+ %ezav(h(u))z(h(v))z-i- %uZez"‘”(h’(u))z(h(u))z] du dv

+ S;R 5:2211: {—-%azezo‘”(h(u))Z(h(v))Z_ %azuZeZav(h'(u))Z(h(v))z
=3 r ) — 2 e A )

+ %ez"‘”(h(u))z(h(v))2+ %uzem”(h’(u))z(h(v))z} du dv.

By using (4.5), (4.6), (4.7), and (4.8), we obtain the following inequality:

A/f(o) =< 51; {—-%a2+ %} 2R. {eZOtR_e—2aR}

+ _1_{3} .2R.{e4aR_e2aR]+ _1_{3} .2R.{e—-2aR_e——4aR]

2 (4 2 (4
L, _3_ . 4aR _ p, —4aR _1_ i . fpdaR _ p—4aR
+ o {2} R{e e }J+ 2o l2 36R-{e e }.

Now, if we choose oo =100 and R =1/200, we obtain

A"(0) =< —1—{—29997} -fe—e 1}

80000
30 3 o,
*+ 30000 ¢ 30000 ¢ * B0000 1€ )
From this we have
A"(0) <0.

So for the helicoid we see that the second variation of the volume has no sign.
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