SOME KREIN SPACES OF ANALYTIC FUNCTIONS
AND AN INVERSE SCATTERING PROBLEM

Daniel Alpay

1. Introduction. The present paper deals with certain reproducing kernel Krein
spaces (RKKS) of analytic functions, and we first recall the definition of a repro-
ducing kernel Hilbert space (RKHS). A Hilbert space JC of C,-valued functions
defined on some set S has reproducing kernel K,(\), where K,(\) is a C,,x ,-val-
ued function defined for A and w in S if

(1) for any w in S and c in C,, the function K,c: A~ K, (\)c belongs to 3C;

(2) for any fin 3C, w in S, and ¢ in C,,

(1.1) (f[iKyoy=c"f(w),

where {, ) denotes the inner product in JC.
The function K_,(\) is easily seen to be unique and symmetric:

(1.2) K,(N\) =KX(»).

It is moreover positive: for any r, any choice of r points in S, wy, ..., w,, and any
¢, ..., ¢ in C,;, the r X r matrix with ij entry

1.3) ci K, (wj)ci

is positive.

Conversely, by the matrix version of a result of Moore [5], to any C,, x ,-valued
function K, (\) defined on some set S and positive in the sense just explained one
can associate a unique reproducing kernel Hilbert space of C,-valued functions
defined on S with reproducing kernel X,()\).

In [19], Sorjonen relaxed the positivity condition and supposed that the func-
tion K,(\) has v negative squares. Under this weaker hypothesis, the result of
Moore may be extended. There exists a unique reproducing kernel Pontryagin
space of C,-valued functions defined on S with reproducing kernel K,(\).

The problem of associating to a given C,, « ,-valued function K,(\) subject to
(1.2) a reproducing kernel Krein space with reproducing kernel K, (\) seems
open, and the aim of the present paper is twofold: first, in Section 2, we construct
a reproducing kernel Krein space when K_,(\) is of the form

*
1.4) X(\)JX*(w) ’
Pu(N)
where X is a C, « ,-valued function of bounded type in A, (A, designates either
the open unit disk D or the open upper half plane C, ), where J is a signature ma-
trix, that is, a matrix subject to
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(1.5) J=J*=J",

and where

(1.6) Po(N) =1=-Aw* if A,=D (circle case),
(1.7) Po(N)=—=2mi(N\—w*) if A, =C, (line case).

Using the constructed RKKS we then associate to X an inverse scattering prob-
lem which, as will be explained, is a generalization of the lossless inverse scatter-
ing problem of network theory. Solutions to this inverse scattering problem will
be given in Section 3.

We remark that reproducing kernel Hilbert and Pontryagin spaces with a re-
producing kernel of the form (1.4) appear in a wide range of problems, from in-
terpolation theory to the study of close to stationary processes (see [13], [14],
[15], [16]) and that de Branges studied such reproducing kernel Hilbert spaces for
various choices of X and J (see [10], [11]).

To conclude this introduction, we recall the definition of a Krein space. A vec-
tor space V endowed with an Hermitian form [, ] will be called a Krein space if it
can be written as

V= V+ [+] V_ ’

where V, endowed with [, ] and V_ endowed with —[, ] are both Hilbert spaces
and where [+] denotes direct orthogonal sum: for any v, in V, and v_ in V_,
vy, v_1=0and V. NV_={0}. If V, or V_ is finite-dimensional, V is then called
a Pontryagin space.

A word on notation: C,,«; denotes the space of n-row X /-column matrices with
complex entries, and C, «; will be denoted by C,,. A, was already introduced
in the text and L2 (resp. H?) will denote the Lebesgue space (resp. the Hardy
space) of square summable C,-valued functions associated to the boundary of
A, (i.e., either the unit circle or the real line). H,;%,; stands for the space of n-
row X /-column matrices with entries in A, the Hardy space of functions ana-
lytic and bounded in A, . Finally, A* will designate the adjoint of the operator or
of the matrix A: in particular, «* will be the conjugate of the complex number o.

2. The main theorem. In this section we describe a reproducing kernel Krein
space with reproducing kernel (1.4); it is convenient to prove first some prelim-
inary lemmas. Let 3C be a Hilbert space with inner product {, ) and let I" be a
bounded self-adjoint operator on JC. Let A — E be the resolution of the identity
associated with I, so that

2.1 F=§kdEM

where A ié in some compact subset of the real line, and recall that |[I'| and sgn T,
the absolute value and the signum of I', are defined by

vl =[xl @k,
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A
sgnr= Xx;ﬁo m dE).
On the range of the operator I', RanI', we define two Hermitian forms (, )r
and [, ]r by: :
2.2) (Cu,Tvyr =T |u, v),
2.3) Tu, T'vlr ={T'u, v).

{,>r and [, ]r are easily seen to be well defined and, moreover, Ran I"' endowed
with {, dr is a pre-Hilbert space. We will need the following.

LEMMA 1. Let X be the completion of (RanT', {, )r) in the topology induced
by {,>r. Then [, Ir is continuously extendable to X and (X, [, Ir) is a Krein
space. Moreover, sgnT is a bijection from X onto X and, on X:

2.4 sgn'=(sgnT')~!=(sgnI')*,
where (sgn I')* denotes the adjoint of the operator sgnI' in the Hilbert space X.

LEMMA 2. Suppose that the Hilbert space 3C where T' is defined is a reproduc-
ing kernel Hilbert space of C,xx-valued functions defined on C. Then X is a re-
producing kernel Krein space and X is included in 3C.

Proof of Lemma 1. We first prove (2.4). Let F=T'u and G=Tv be two ele-
ments of Ran I': clearly sgn I'’FF and sgn I'G belong to Ran T, and

(F, Gyr ={|T|u,vy=(|T"| sgnT'u,sgn I'v) =(sgn I'F, sgn I'G)r.

Thus sgnI' is an isometry on X, and in particular is continuous. Moreover,
sgn I is self-adjoint, since

(sgnT'F, GY)r =<{u, I'v) ={(F,sgnI'G)r.

A self-adjoint isometry is unitary, and so sgn I' is invertible in X and (2.4) holds.
The other claims of the lemma follow from the identity

(2‘5) [Fs G]F=<F’ sgn PG)F;
which holds first for F, G in RanT" and by continuity for any F, G, since
|<FsSgnFG>I‘IZS<F’F)P'<Gs G)P' O

Proof of Lemma 2. Let k,(\) denote the reproducing kernel of 3C. Then, for ¢
inC,, winD, and F=Tu in RanT,

c*(Tu)(w)=<(Tu,k,c)={|T"|u,sgn 'k, c)
and so
(2.6) c*Tu)(w)=Tu,sgnI'T’k,c)Hr,

which shows that F — ¢*F(w) is continuous in the Hilbert space (¥, {, )r) and so
that (I, {, dr) is a reproducing kernel Hilbert space; thus (3, [, Ir) is a repro-
ducing kernel Krein space and
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c*Tu)(w)=[Tu, Tk, clr.

We now show that X C JC. Let (I'u,) be a converging sequence in ¥ with limit
G, and let F be its limit in JC, which exists since, as is easily shown,

(F, F)=<||T|"2|XF, Fr
for F in 3C (]|T"|"/2| denotes the operator |T'|¥2 in X). Then, with F,=Tu,,
c*F(w)=1lim c*F,(w)

= lim{Fp, k,c)

=lim{Tu,, k,c)

=lim{Tu,, sgnI'T'k,c)r

=c*G(w)
since, by (2.6), sgn I'T'k,, is the reproducing kernel at w in (X, {, >r). This con-
cludes the proof of Lemma 2. O

To describe the reproducing kernel Krein space with reproducing kernel (1.4) it
is convenient to suppose first that the function X belongs to H=,,. Let p denote
the orthogonal projection from L2, onto HZ. The operator I" defined by

2.7) (L) (M) =X(N)J(pX*u)(N)

is a bounded self-adjoint operator from H? into itself, to which the preceding
lemmas are applicable. This allows us to build the desired reproducing kernel
Krein space.

THEOREM 1. Let X be the closure of the range of the operator T' defined by
(2.7) in the norm {, )r; then X, endowed with the form [ , 1r defined in (2.3), is
a reproducing kernel Krein space of C,-valued functions analytic in A, with re-
producing kernel X(N\)JX*(w)/p,(N).

Proof. Lemmas 1 and 2 already ensure that J is a RKKS and that 3 C HZ2. It
remains to show that X(\) JX*(w)/p.(N) is the reproducing kernel of X. For any
cin C, and any w in A, N\ = ¢/p,(\) belongs to H? and

2.8) XN JXNw) | _ (I’ —‘-'—)()\).
Pu(N) Po

Thus the function A - (X(A\)JX*(w)/p,(N))c belongs to K for any w in A, and
any c in C,,.
Moreover, for F=Tu, ue H?, we have

[F,r—c—] =[Pu,1‘i] =<I‘u,—c—> .
Pu T Po T Pow [fHZ
Hence

2.9) [F, I‘—c—] = c*F(w).

w

By continuity, (2.9) will hold for any F in X, and (2.9) exhibits (1.4) as the repro-
ducing kernel of . The theorem is proved. J
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The case where X is of bounded type in A, is an easy consequence of the case
where X belongs to H % ,,,. Write

(2.10) X =Yy 'X,,

where X is in H%,, and Yy is in H% ,, and let X, denote the reproducing kernel
Krein space defined in Theorem 1, with reproducing kernel Xy(\) JXg(w)/0,(N).

THEOREM 2. The set of functions
X={G=Yy'F, Fe Xo)
endowed with the inner product
[G, Glx = [F, Flx,

is a reproducing kernel Krein space of C,-valued functions with reproducing ker-
nel (1.4). The elements of X are of bounded type in A, .

The proof of Theorem 2 will be omitted.

We will denote by 33(X) the spaces built in Theorems 1 and 2. To ease the nota-
tion, the matrix J is not referred to and will always be understood from the con-
text. For arbitrary functions X of bounded type in A, we do not know whether
@ (X) is the only RKKS with the reproducing kernel (1.4). When (1.4) has a finite
number of negative squares then (X)) is the only such space, by the analysis of
Sorjonen [19].

3. An inverse scattering problem. In this section, we define for a function of
the form (1.4) a problem which generalizes the lossless inverse scattering problem
of network theory, and which we will call inverse scattering problem (ISP).

We first recall that a passive time invariant causal network with p inputs and g
outputs can be characterized by a Schur function, that is, a C,x,-valued func-
tion, analytic and bounded by 1 in modulus in A ; ; this function is called the scat-
tering function of the network (A, =D if the network is a digital network while
A, = C, if we consider an electrical network). The problem of finding represen-
tations of the scattering function S of a network as

3.1) S=(AW+B)(CW+D)™ 1,

where
A B
0=
(¢ »
I

0
Jo=( 7 ,
° (0 "Iq>

and where W is a C, «4 scattering function, is called the lossless inverse scattering
problem associated to S and has an interpretation as the plugging of a network
with scattering function W into the lossless network with p+ ¢ inputs, p + g out-
puts, and chain scattering function © (see [2], [13]).

Now, as is well known (see e.g. [2]), (3.1) holds if and only if the map

(3.2 F—[I, —SIF

is Jg inner,
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is a contraction from the reproducing kernel Hilbert space with reproducing kernel
Jo—O(N)JyO*(w)

Pu(N)
into the reproducing kernel Hilbert space with reproducing kernel
I,—S(\)S*(w)

3.3)

(3.4) (N
(3.4) can be written as
X(N)JX*(w)
pu(N)

with J=Jy and X =[I, S].

The equivalence between (3.1) and the properties of the map (3.2) enables us
to define an ISP problem for any function of the form (1.4): let © be a C,,,xm-
valued function of bounded type in A, ; we denote by X (0) the space B(X) cor-

responding to X =[7,, O] and signature matrix (é _0 7).

DEFINITION. The inverse scattering problem associated to the function
X(N)JX*(w)/p,(N) (or by abuse of language, to X) consists in finding func-
tions © which are C,,«,,-valued, of bounded type in A, and such that the map
F— XJF is a contraction from X (©) into B(X): for any F in X(©), XJF be-
longs to B(X) and

[XJF, XJF](B(X) <[F, F]g{(e) .

The inverse scattering problem defined here is closely related to interpolation
theory; some of these links were discussed in [3] for X =[I, S], J=Jp, and X=

I, ¢I;

? (9 L
“\J, O

in the Hilbert space case.

From [7], we see that any interpolation problem satisfied by the Schur function
S (or the Caratheodory function ¢) will generate a solution to the present ISP
associated to [1, S] (or [I, ¢]), when a certain Pick matrix is invertible.

It may be worthwhile to mention the following special case of the ISP:

A 0O
0= , J=1I,,.
(0 Ip> 2

In the Hilbert space case, we thus look for decompositions of S as AW with the
condition that H(A4), the RKHS with reproducing kernel (£, —A(N) A*(w))/p.,(\),
is contractively included in H(S). Equivalence between this inclusion and the
decomposition of S is a consequence of a theorem of Rosenblum [17]. It is also
equivalent to the requirement that the function

SN SMw)— AN AN (w)
Pu(N)

is positive for A and w in A .
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This point is exploited in [1], where the case X={A B], J=J,, was consider-
ed, with A, B Cyx - and Cy,-valued of bounded type in D, B (X) being a Hilbert
space. Finally, let us mention that the ISP in the Hilbert space case was formu-
lated in [11] for the case X =[I S], in the study of pairs of self-adjoint operators.

We now exhibit a class of solutions to the ISP associated to X for X in H -
We first make some definitions: H? will be the space H2 endowed with the inner
product

[F, G]HJZ =(F, JG);{)%,

and for % a C,x,-valued inner function, Pz will denote the orthogonal projec-
tion from L% onto H?© EH}? and I'z will denote the operator

(3.5) Pe=Pzl'| y2ozu2

where T" is defined in (2.7).
We can now state the following.

THEOREM 3. Let X be an element of HX ., let J be some signature matrix,
and let & be a C, « ,-valued inner function analytic at some point of the boundary
of A, and such that the operator I'z defined by (3.5) is invertible. Then the sub-
space I of H? of functions

(3.6) pX*u, ueHIOEH?

is a reproducing kernel Krein space in the H 2 norm. Its reproducing kernel is of
the form (3.3) with a function © solution to the inverse scattering problem asso-
ciated to X.

For comparison, it is useful to note that in case X=[/, S] and A, =D, S
being a Schur function, the subspace M of Theorem 3 reduces to the J-orthog-
onal of the modeling space of Ball-Helton [7} and X9 to the model space of
Sarason [18].

In order to prove Theorem 3, we need a characterization of Krein spaces with
a reproducing kernel of the form (3.3). In the Hilbert case, and for p,(\) =
—2wi(\— w*), this characterization was first obtained by de Branges [10]; it was
then worked out in the circle case by Ball in [6]. We first need two definitions.

DEFINITION. A vector space of C,,-valued functions analytic in some open set
U is said to be resolvent invariant if it is closed under the operators R,, ae U
defined by

JN) —f(@)
AN—«a )
DEFINITION. A subset U of the complex numbers is symmetric with respect to

the unit circle (resp. with respect to the real line) if it is closed under the transfor-
mation w — 1/w* (resp. w — w*).

(Ra YN =

We can now state the following.

THEOREM 4. Let X be a reproducing kernel Krein space of C,,-valued func-
tions analytic in some open set U, which is symmetric with respect to the unit
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circle. Suppose that U intersects the unit circle, that X is resolvent invariant, and
that for any o, in U and F,G in X,

(3.7)  [F,Gl+a[R.F,G]+B*[F,RgG]— (1 —aB*) [R F, RgG] = G*(B) JF ()

Jor some preassigned signature matrix J. Then the reproducing kernel of X is
of the form
J—O(\)JO*(w)
1 - Aw*

Sfor some C,, ,-valued function © analytic in U.

THEOREM 5. Let X be a reproducing kernel Krein space of C,,-valued func-
tions analytic in an open set U, which is symmetric with respect to the real line.

Suppose that U intersects the real line, that X is resolvent invariant, and that for
any a,Bin Uand F,G in X,

(3.8) [Ro F, G]1—[F,RgG]—(a—B*) [Ro F, Rg G ) =27iG*(B) JF ()

for some preassigned signature matrix J. Then the reproducing kernel of X is of
the form
J—O(N)JO*(w)

—27i(A—w™)

Jor some C,,y ,-valued function © analytic in U.

The proofs of Theorems 4 and 5 follow exactly the Hilbert space case and will
not be recalled (see [6], [10]; we also refer to [2] where, in a Hilbert space context,
both theorems are given a unified formulation).

We will apply these two theorems for spaces X isometrically included in 2. In
this case, as noted in [4], equations (3.7) and (3.8) are automatically satisfied.
Moreover, Theorems 4 and 5 may then be proved using the Ball-Helton theaory
[7]1, as we now explain. Let us take & as in Theorem 5, and suppose X is isomet-
rically included in H} Its orthogonal in H} is thus of the form ©H?%, where J' is
some other signature matrix and ©(g) is (J, J’) isometric for |g|=1. Thus X =
H?© ©H?%, and the hypothesis that elements of X are analytic at some point of
the unit circle leads to J=J’. This argument shows in particular that J(©) is
uniquely defined for © analytic in D and J-unitary on the unit circle.

We now turn to the proof of Theorem 3, and proceed in a number of steps.

Proof of Theorem 3.

Step 1: Let MM denote the set of functions of the form (3.6). We first remark that
an element of 9 is uniquely defined by its associated element u in H2O EH?2.
Indeed, if pX*u =0 then I'su = Pz XJpX*u =0 and thus, by the presumed in-
vertibility of I'z, ¥ = 0. This observation allows us to show that 9 is a RKKS.
Indeed, let

F=pX*u and G=pX*v.
Then B -
[F, Gly3 = Tztt, VY3
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We deduce from this equality that 9 is a Krein space. Indeed, let ¢ be the opera-
tor from N to 9N defined by
o(pX*u)=pX*(sgnl'z)u,
where sgn I's denotes the signum of the self-adjoint operator I's. Clearly ¢2=1,
the identity in 9, and for any F, G in 91
[F,0Gly2=[0F,Gly2= (Tz|u, V) y2-
Hence, M endowed with the inner product
3.9 (F,G),=IF, aG]Hz
is a Hilbert space. Indeed, since |I'z| is bounded and boundedly invertible, there
are two constants k; and &k, such that
ko u, u)y‘g =(F,F), < k(u, u)Hg

and hence 91 is readily seen to be complete in the norm induced by (3.9). To con-
clude that 9T is a Krein space, it suffices to check that the operator o is a signa-
ture operator in the Hilbert space (91, {, );), that is, satisfies 0 = o ~! = ¢*. But
this is self-evident. Thus the relationship

LF, Gy =(F,0G),
expresses the fact that 91T is a Krein space when endowed with the inner product
[ ’ ]H}-

Step 2 consists of computing the reproducing kernel of 9, and showing that
9N is a K (O) space. By the hypothesis on &, the elements of H?OEH? are ana-
lytic at some point of the boundary of A, and we extend the elements of M to
the domain of analyticity of = via:

f(e”) f()‘) eitdt if A, =D

' 1
FOO=X0)/ 0+ 5= [ (X*(e™)—x"(0)
and

1 oo
FO)=X*()f N+ 5 S (X*(t)— X*(i ))(f
i -

@ —+S)  SO)?
—\ 1241 )dt

if A+=C+.

Fand pX*f coincide in A, . Rather than 9, we first consider MY, the set of func-
tions F with the inner product [F, Flgo=[pX*f, pX*f]. MO is a resolvent invar-
iant Krein subspace of H?, and an application of Theorem 5 if A, =D or Theo-
rem 6 if A, = C permits us to conclude that its reproducing kernel is of the form
(3.3). (One has to check that point evaluations are bounded in 0MY; this is left to
the reader.)

The reproducing kernel of 9N is then easily identified as the reproducing kernel
of MO restricted to A, that is, of the form (J—O(\)JO*(w))/p,(\), w, Nin A,
and © C,,«,,-valued and analytic in A .

To conclude the proof of the theorem, it remains to show that O is a solution
to the ISP. This is done in step 3.
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Step 3: Let F be in M. Then XJF = (XJpX*)f and thus, by the description of
the space B(X), XJF belongs to ®&(X) and

[XJF, XIF)awx)= [F, Flyz =T f, n-

Hence the mapping F— XJF is an isometry between the spaces 9 and B(X),
and hence O is a solution of the ISP associated to X, which concludes the proof
of the theorem. O

To conclude, we remark that Theorem 3 deals with functions X in H%,,, but
the case where X is of bounded type in A is easily adapted. The solutions © ex-
hibited in Theorem 3 are such that J(O) is isometrically included in H?, and
such that the map F— XJF is an isometry. Theorem 3.10 of [7] will show that the
present method exhausts all solutions with these properties; details are omitted.
Moreover, there may exist solutions which do not satisfy X(6) C H7 (see [3], [8],
[13] for X =[1I,, S]). These are not covered by Theorem 3.

ACKNOWLEDGMENT. The results presented in this paper are based on re-
sults of a Ph.D. thesis done under the supervision of Prof. H. Dym at the Weiz-
mann Institute of Science (Rehovot, Israel). The author wishes to thank Prof.
H. Dym for his guidance. The author also wishes to thank the referee for his use-
ful comments.

REFERENCES

SN

. D. Alpay, P. Dewilde, and H. Dym, On the existence and construction of solutions to
the partial lossless inverse scattering problem with applications to estimation theory,
to be submitted.

2. D. Alpay and H. Dym, Hilbert spaces of analytic functions, inverse scattering, and

operator models 1, Integral Equations Operator Theory 7 (1984), 589-641.

3. , Hilbert spaces of analytic functions, inverse scattering, and operator models
II, Integral Equations Operator Theory 8 (1985), 145-180.
4. , On applications of reproducing kernel spaces to the Schur algorithm and ra-

tional J-unitary factorization. Operator theory: advances and appl. 18 (1986).

5. N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950),

337-404.

J. Ball, Models for non contractions, J. Math Anal. Appl. 52 (1975), 235-254. .

J. Ball and J. W. Helton, A Beurling-Lax theorem for the Lie group U(m, n) which

contains most classical interpolation theory, J. Operator Theory 9 (1983), 107-242.

, Interpolation problems of Pick-Nevanlinna and Loewner type for meromor-
phic matrix functions: parametrization of the set of all solutions, Integral Equations
Operator Theory 9 (1986), 155-203. ‘

9. J. Bognar, Indefinite inner product spaces, Springer, New York, 1974.

10. L. de Branges, Some Hilbert spaces of analytic functions 1, Trans. Amer. Math. Soc.
106 (1963), 445-468. ' :

11. L. de Branges and J. Rovnyak, Canonical models in quantum scattering theory. Per-
turbation theory and its applications in quantum mechanics (Univ. of Wisconsin,
Madison, Wis., 1965), 295-392, Wiley, New York, 1966.

N




SOME KREIN SPACES OF ANALYTIC FUNCTIONS 359

12. L. de Branges, Hilbert spaces of entire functions, Prentice Hall, Englewood Cliffs,
N.J., 1968.

13. P. Dewilde and H. Dym, Lossless inverse scattering, digital filters and estimation the-
ory, IEEE Trans. Inform. Theory 30 (1984), 644-662.

14. H. Dym, CBMS Lecture Notes (in preparation).

15. M. G. Krein and H. Langer, Uber die veraligemeinerten Resolventen und die charac-
teristischke Funkion eines isometrischen Operators im Raume I1,. Hilbert space oper-
ators and operator algebras (Tihany, 1970), 353-399, North-Holland, Amsterdam,
1972.

16. H. Lev-Ari, Non stationary lattice filter modelling, Technical Report, Information
Systems Laboratory, Stanford Univ., Stanford, CA, 1983.

17. M. Rosenblum, A corona theorem for countably many functions, Integral Equations
Operator Theory 3 (1980), 125-137.

18. D. Sarason, Generalized interpolation in H>, Trans. Amer. Math. Soc. 127 (1967),
179-203.

19. P. Sorjonen, Pontryagin Rdume mit einem reproduziederem Kern, Ann. Acad. Sci.
Fenn. Ser. A I Math. 594 (1975), 1-30.

Department of Electronic Systems
Tel-Aviv University
Ramat-Aviv, Israel

Current address:
Department of Mathematics
Groningen University

POB 800

9700 AV Groningen

The Netherlands






