THE UNIQUENESS OF DECOMPOSITION OF A
CLASS OF MULTIVALENT FUNCTIONS

A Lyzzaik and D. Styer

1. Introduction and statement of main theorem. Let P be a nonconstant poly-
nomial. A curve ¢ will be called a curved P-ray if there is a path v from [0, ©)
onto ¢ such that y(¢) » o as f » o, and P-+y is one-to-one. Although a curved
P-ray may contain critical points of P, we will be interested here in curved P-rays
that do not.

Let B, C, and P denote (respectively) the unit disc {z:|z| <1}, the complex
plane, and the Riemann sphere. Also, for any subset 4 of C let Int(A4), Bd(A4),
Ext(A4), and Cl(A4) denote (respectively) the interior, boundary, exterior, and
closure of A in C. Denote by S the familiar class of all functions f analytic and
univalent in B satisfying f(0) =0 and f’(0) =1.

Let f be a function which is analytic in B and has p —1 critical points (counting
multiplicity). Also, suppose that f= P-¢, where P is a polynomial of degree p
and ¢ € S. This decomposition may not be unique in the sense that there may be
another polynomial Q of degree p and another univalent function ¢ € S such that
f=0Q-0. At the end of this paper we give an example of a function with non-
unique decomposition. This example can be read independently of the rest of the
paper. For another example see Lyzzaik [5].

The purpose of this paper is to give a quite general sufficient condition that
guarantees unique decomposition, as follows.

THEOREM 1. Let f be a function which is analytic in B and has p—1 criti-
cal points (counting multiplicity). Suppose f = Po-¢, where P is a polynomial of
degree p and ¢ € S. Also, suppose that B= P ~'{P(z): z is a critical point of P},
and that there is a disjoint collection W of curved P-rays { in C— ¢(B) such that
BN(C—o(B))CUpew b. If f=Q0-y, where Q is a polynomial of degree p and
v E€S, then Q and Y are identical to P and ¢, respectively.

Note that B is the finite set of critical points of P and points mapped by P to
the images of critical points. Since ¢(B) contains all critical points of P it fol-
lows that A = BN (C—¢(B)) is finite and contains no critical point of P.

The example we give at the end of this paper is one of the snnplest functions
that does not satisfy the hypotheses of the theorem.

We will show that the class of functions described in this theory properly con-
tains the class K(p) of close-to-convex functions of order p as defined by Liv-
ingston [3].

2. Proof of theorem. The proof of Theorem 1 will be executed in a sequence
of lemmas. For convenience let ® =¢(B), and let A =BN(C—®).
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Recall the assumptions of Theorem 1, and let 4=y ¢ ~, so that 4 is a confor-
mal map between ® and y(B). Since P-¢ = Q-y in B, A is a (single-valued and
analytic) branch of Q ~'e P. For the purpose of this proof we will assume that W
consists only of that finite number of curved P-rays required to cover A. Further-
more, we assume (without loss of generality) that the initial point of each curved
P-ray in W belongs to A.

Since the proof of Theorem 1 is fairly long, let us look at what we know and
what we are trying to show, so that it will be easier to understand why thereis a
difficulty. We want to show that 4 is the identity function. Since ¢ and ¢ arein S,
h(z)=z+a>z*+ ---. If we could just show that 4, with domain &, has an ana-
lytic continuation to a univalent function on C, then # would have to be linear.
When this is combined with the fact that 2(0) =0 and 4#’(0) =1, we would be able
to conclude that A(z) =z, as desired. This would finish the proof of Theorem 1.
The notation we use for analytic continuation is adopted from Conway [1].

Suppose y:[0,1] —» C is a path such that (0) € . We wish to show that the
function element (A, ) admits analytic continuation along +. Since 4 is a branch
of Qs P, P is a polynomial, and O ! has only finitely many branch points, the
continuation proceeds perfectly smoothly until P(y(#)) comes to a branch point
of O~'. Furthermore, since f=Po¢ = Q-y we must have {P(z): P'(z) =0} =
{O(2): Q'(z) =0}. It follows that if P(y(¢)) lies at a branch point of Q"‘1 then
v(t)e B=P {P(z): P’'(z) =0} defined above. Even when we exclude the points
of the set A, the other points of B, those in & can cause difficulty if the path +
leaves @ and then returns to a point of B in . We start with the following.

LEMMA 1. The function h extends to a locally univalent functionin C—U;cy (.

Note that C—U,c ¢ is a simply connected domain that contains ¢, but no
point of A. Therefore, we find it entirely reasonable to expect that whenever
returns to &, the continuation of (/; ®) returns to the same germ so that (4, $)
admits analytic continuation along all v in C— U, < w £. Thus, by the Monodromy
Theorem, 2 would extend to an analytic function in C—U,cp £.

Proof. Let T" be a Jordan curve in ¢ whose inner domain contains BN ®. Let A
be the outer domain of I', and let K=AN®. Then K is a doubly connected region.

Suppose v: [0,1] > C— U cw £ is a path such that y(0) e . We shall show that
the functional element (4, @) admits an analytic continuation along +y.

First, let us suppose that v is contained in Cl(A)—Uyecn £. Then yNB=O.
Since {P(z): P'(z)=0}={0(z): Q’(z) =0} and 4 is a branch of Q7 'oP in ®, A
admits an analytic continuation along v, via P followed by Q ~! both applied lo-
cally. In this case we need to show that if yv(1) € ® then the continuation of (A, )
along + yields (A4, ®) at y(1). Thus, suppose v is contained in Cl(A)— U ew !
with y(1) e ®. Let {(4,,P,); 0=t <1}, ho=h, and $3= & be an analytic continu-
ation of (4, ®) along . We show that [A;],a)=[A],1). There exists a path o:
[0,1] - Cl(A)N P such that ¢(0) =v(0), o(1)=+(1), and ¢ and v are fixed end-
point homotopic arcs in Cl(A). Note that the singleton set {(4, ®)} is an analyt-
ic continuation along o. Since [Ag],0) = [#]s(0), the Monodromy Theory yields

(mlyoy=[A)eqy=[A])yq)-
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Now suppose that v is contained in C— U,y £ with y(0), v(1) € K. Suppose
further that (A4, ®) admits an analytic continuation (using the notation above)
along y. We need to show that [h;],q) =[4],q). Suppose this is false; then, from
the above, v must meet the inner domain of I'. Similarly, y cannot lie entirely in
P. Let v=supf{r:0<z<1and y(f)eI'}. Since yNI is closed, y(v)eI and 0<
v <1. It follows from the preceding paragraph that [/,], ) # [#],); otherwise,
[hl]-y(l) = [h]-y(l)- Now let u = inf{t: o<it< 1, "Y(t) € F, and [h;].y(,) # [l’l],},(,)}.
Note that v exists, 0<wu <1, and y(u)eI". Suppose [A,],@)=[h],w)- Then h, =h
in some open neighborhood of y(u«). This implies by the continuity of y that there
is a 6 > 0 such that [/4,],) =[], for all { € (u—46, u+ 6), which contradicts the
definition of u. Hence [4,], ) # [A],(). By the definition of u, y(¢) ¢ I" for ¢ near
u, t<u. As a consequence of the previous paragraph, the subarc v | (o, of v
must have an interior point in the inner domain of I'. Let s =supf{¢: r € (0, u) and
v(#) eT'}. Then s exists, y(s) eT’, and s <wu. From the definition of ¥ we have
[As]y sy = [h],s). Observe that the restriction of  to (s, «) lies either in A or in
the inner domain of I'. In either case we can conclude that [4,],w)=[/],u), @
contradiction. Therefore, our assumption is false and [/;],1) =[A],q)-

We complete the proof by showing that (4, ®) admits analytic continuation
along v, where v is now assumed to be general. Suppose that thereisa 7, 0 <7 <1,
such that (4, @) admits a continuation {(/,, ®,): 0 < ¢ < 7} only along the subarc
v | 10,y of v. It follows directly that y(7) e BN® and 7y | {0, ) N(C—P) # . Thus
there exist #1, #; € (0, 7) such that y(#,), y(#2) € K and the subarcs of v correspond-
ing to the intervals [0, #;] and [#,, 7] are contained in . From the preceding para-
graph we conclude that the branches of the continuation at v (¢#;) and y(#,) are
[Aly and [A],,), respectively. This, however, implies that (4, ®) continues
analytically beyond v | [o,), and that the branch at y(7) is [A],(). Therefore,
(A, ) continues analytically along «.

By virtue of the Monodromy Theorem, since C— ;< ¢ is simply connected,
h extends to an analytic function in C—U;¢w £. This function is locally univalent
since it is a branch of Q "'+ P and P has no critical values in C—&. This com-
pletes the proof. ]

We now assume that 2 has been continued analytically to all of C—U;cy ¥,
which is all of C except for a finite number of disjoint curved P-rays. Further ana-
lytic continuation of % to a larger simply connected domain can be viewed as a
local matter, continuing 4 up each curved P-ray in W until locally univalent con-
tinuation fails or 2 continues the total length. This process leads us to a unique
minimal collection V of curved P-subrays of W such that 4 extends locally uni-
valently to C— U,y £. The crux of the proof of Theorem 1 is in showing that V'
is empty.

LEMMA 2. Every curved P-ray in V has its initial point o€ A, and lim¢_, ¢ h({)
is a critical value of Q, where the limit is taken within C—U,cy {.

Proof. If ¢o& A, then A4 can be continued through {( since there will be a neigh-
borhood N of ¢, such that P will be univalent on N and the appropriate branch
of Q_1 will be univalent on P(N). This is impossible since V' is minimal. J
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That the limit of A({) (as ¢ — §o within C— U, ¢) exists and is a critical point
of Q is clear from the local nature of branches of Q ~! near any point. However,
we provide a proof that this limit exists. Let D be an open disc centered at P($g).
We choose D small enough so that Q ~!(D) is a disjoint union of components, G,
each of which under Q covers every point of D the same number of times with
the exception of P({), which is covered exactly once. Note that although Q| g'
is not necessarily a (single valued) function, it is continuous at P({p). We may
suppose that D is small enough so that 2 maps some neighborhood M of { uni-
valently onto D. The curve ¢ in V with initial point {o may divide M into several
components. Choose the one component, My, that has {y on its boundary. Since
h is defined on My, and P is univalent on My, there is a branch of Q ! on P(My)
such that A= ~'e P on My. Also, as { — o in Mg, P($)— P($o) and Q ~H(P(§))—
O " (P(%0)), a critical point of Q.

Of course, V' is empty, but we don’t know it yet. What we do to get around this
is build a Riemann surface that contains the image of # on C—U,cy f. Using the
terminology of Springer [7], we show that our Riemann surface is a smooth, un-
limited covering of C. This leads directly to the fact that the Riemann surface is a
one-sheeted covering surface of C. From there it will be relatively easy to show
that 4 is the identity function.

LEMMA 3. Every { € V is contained in a simply connected domain G such that
Bd(G) is a Jordan arc with infinite endpoints, and P is univalent in C1(G). More-
over, if G and G’ are two such domains then CI(G)NCI(G’) = D.

Proof. We construct a disjoint collection of neighborhoods of the curves in V'
such that P is univalent in each neighborhood. Let ¢ = £(¢), 0 < < oo, be a curve
in V.

We provide an inductive procedure to cover ¢. Let D, be the largest open disc
centered at £(0) such that D; meets no other curve in V, and P is one-to-one on
DUY. Let H; be the open disc centered at £(0) with radius half that of D,. That
D, exists may be seen by assuming the contrary, and then choosing sequences
of points, {a,}n - and {b,}, -1, such that ¢, C—?¢ and a,— ¢(0), b, e, and
P(a,)=P(b,). We may assume without loss of generality that b, — b € £. Either
b =1¢(0) so that ¢£(0) is a critical point of P, or b # ¢(0) so that P(¢(0)) = P(b)
and P is not one-to-one on f. Either case is contradictory to the hypotheses.

Assume that Dy and H,, 1<k =<n, have been chosen with center ¢(7;). We
choose D,,, in the following manner. Let 7, be the first point greater than ¢,
such that ¢(¢,,41) € Bd(H},). Let D, , be the largest open disc centered at ¢(#,4;)
such that D, meets no other curve in V, and P is one-to-one on

143
eu( UHk>UDn+1.
k=1

That such a D, exists is obvious since, for small radii, it would be inside D,,.
Let H, ,; be the disc centered at ¢(¢,, ;) with radius half that of D, ;.

We claim that f C U= Hy. Let N(¢)=Ug—, H;. If ¢ ¢ N(¢), then the centers
0(ty)—>ael, ag N(f). We will show that there is an open disc D centered at a
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such that D meets no other curve in V, and P is one-to-one on ¢ UN(¢)U D. Sup-
pose no such D exists. Choose sequences {a,},-; and {b,},=; such that ¢, C—
[CUN()], b,e tUN({), P(a,)=P(b,) foralln, a,— a,and b,— be CI[f UN()].
If b ef? we have the same contradiction obtained in the selection of D;. Thus,
suppose that b € CI(H;) for some s, and b ¢ ¢. But then P cannot be one-to-one on
gU( ;;11 H; YU D; since P(b)=P(a). Thus (for all k sufficiently large) Cl1(D;)C
D, a contradiction to the maximality hypothesis for D;. Hence ¢ C N(¢).

Ife,e’eV, £:¢’, then NE)NN(’')= . If this were not the case, then there
would be a point a e N(¢)NN(£’) so that @ € H; N H}, where Hy is one of the discs
forming N(f) and H; is one of the discs forming N(£’). Assume, without loss of
generality, that the radius of Hy is as big as the radius of H;. Then the center of
Hj lies in Dy, a contradiction to the hypothesis that D, N¢’'= .

If each N(?) is replaced with the smallest simply connected domain that con-
tains NV(£) then P will still be univalent on the new domains, and the new collec-
tion of domains will continue to be pairwise disjoint. We designate each of the
enlarged domains by the same symbol, N(¢).

Since lim, _,  £(#) = oo, infinity is an accessible boundary point (on P) of N(¢)—?¢
from both sides of ¢. Thus one easily forms a Jordan curve in (N(£)—¢)U [}
that “bounds” a simply connected domain G C N(f) with ¢ C G. It is also clear
that CI(G)NCI(G’) = D since CI(G) C N(¢) and CI(G’) C N(£’). This completes
the proof. O

As pointed out earlier, our goal is to show that V' = . To do this, suppose that
V# & and let X be the Riemann surface of # in C— ;< ¢ taken over the image
plane. We intend to reach a contradiction through a global study of X.

The Riemann surface X is constructed in the usual manner of points, (z, #(z)),
and inherits both the topological and conformal structures of C— U<y ¢ under
h. Let = denote the projection map w ((z, #(z))) = h(z), and het 4 be the bijection
h(z) =(z, h(z)). Then A is conformal, = is analytic, and A= 7oA.

LEMMA 4. X, w can be embedded in a smooth, unlimited covering ¥,I1 of C.

Proof. Let G be the collection of all domains G obtained in Lemma 3. Lemma
3 implies that 4 is univalent in CI(G)—¢, where ¢ € V is in G. Clearly A(Bd(G)) is
a Jordan arc with its two ends at infinity. Thus it divides C into two simply con-
nected domains, one of which, Dg, contains 2(Cl(G) —?¢).

For every G e G let Dg = {(Dg, w): we Dg}. Extend 7 to the “domain” D¢ by
I1(Dg, w) =w. Put on each Dg the topology that makes IT | D @ homeomorphism.

Let ¥, be the free union of X and the domains Dy, G e G. Identify points T e
D¢ with Ue A(CI(G) —¢) if TI(T) =T1(U). Let ¥ be the quotient space of ¥, by
this identification. For convenience, we view X and each Dg as subsets of ¥. Also,
we view IT as defined on ¥. In fact, by Dugundji (see [2, pp. 120-136]), X and
each Dg are open in V.

We shall show that the pair ¥, IT is a smooth and unlimited analytic covering
of C. It is routine to verify that ¥ is connected and Hausdorff. Since each Dg
is homeomorphic to Dg under I, and X is homeomorphic to C— U,y £ under
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A, ¥ is a surface. We take {(Dg,I1|Dg): G e GJU{(X, A~")} to be the atlas of
local homeomorphisms. This atlas forms a conformal structure on ¥; ¥ becomes
a Riemann surface and I'T becomes a locally univalent map. Thus ¥, IT is a smooth
covering surface of C in the sense of Springer [7]. We still must show that ¥, IT is
an unlimited covering surface of C.

Let us first show that Il: ¥ — C is surjective. Since Bd[A(C—U;cyp £)] is con-
tained in Ugcg Dg, and A(C— U,y £) contains Bd(Dg) for all G e G,

Bd[h CcC-U E)U( U D(;)]:@.
teV GeG
Thus A(C—Uey ) Ugeg Dg =C; I is surjective.

Let v:[0,1] - C be a path, and let Ry be a point of ¥ above (0). Suppose
there is a lift through Ry of v | [o,,). Let ¢,T¢y. Since h = Q ~lo P, ¥ is finite-sheeted
over C. Therefore we may assume that all P,, where P, is the lift of y(¢,), liein
one chart £ which is X or Dg. By the nature of Bd(Dg) and BA(A(C—Ucv {))
we may assume that P, —» Pge ¥. II is univalent in a neighborhood of Py, so that
the lift of v may be continued through #y. This completes the proof. ]

The proof of Theorem 1 is now easily completed. Since ¥, IT is a smooth un-
limited covering surface of C, it is in fact a one-sheeted covering (see Springer [7,
p. 88]). Recall that #: C—U,cp £ = Cis h=1II+A, so that A is univalent. Since V'
has been assumed nonempty, this leads to a contradiction to Lemma 2: #(®) con-
tains all the critical values of Q, so that # cannot both be univalent and satisfy
lim¢ . ¢, £($) equals a critical value of Q. We finally conclude that V= .

By the definition of V, A is a locally univalent entire function. Since 4 is a
branch of Q ~!- P, & has a pole at infinity. Hence A#(z) = az + b. But 4#(0) =0 and
h’(0) =1, so A is the identity map. Therefore ¢ and ¢ are identical, and so are P
and Q.

3. Applications and examples. Lyzzaik [4] has shown that if f belongs to Liv-
ingston’s class K(p) of close-to-convex functions of order p then f=P-¢, where
P is a polynomial of degree p and ¢ € S. Furthermore, Lyzzaik [5] has shown
that this decomposition is unique. Theorem 1 is a generalization of this latter re-
sult. We give a corollary that provides a new proof of Lyzzaik’s result.

A curved P-ray f is called a P-ray if P(¢) is a Euclidean ray.

COROLLARY 1. Let f be a function which is analytic in B and has p —1 critical
points (counting multiplicity). Suppose f= Po¢, where P is a polynomial of de-
gree p and ¢ € S. Also, suppose that C— ¢(B) is a union of P-rays such that any
two of them either have disjoint interiors or one is a subset of the other, and that
each P-ray starts on Bd(¢(B)). Then this decomposition of f is unique.

Proof. A finite number of the P-rays in the ruling of C — ¢(B) contain all points
of BN(C—¢(B)). Assume, without loss of generality, that no one of the P-rays
in this finite collection is a subset of another. All that is needed to satisfy the hy-
potheses of Theorem 1 is to extract a collection of P-subrays that are disjoint and
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still contain BN (C—¢(B)). If the initial point of a P-ray ¢ lies on the interior of
the P-ray ¢’, remove an initial segment of ¢. If two or more P-rays have the same
initial point ¢, and ¢ is not an interior point of some ray in the finite collection,
then remove an initial segment from all but one of the P-rays. The resulting col-
lection of P-rays is disjoint, and may be assumed to cover BN (C—¢(B)). By
Theorem 1 the decomposition of f is unique. ]

The class of functions described in Corollary 1 is the closure under uniform
convergence on compact subsets of B of K(p), under the restriction that no criti-
cal point is lost in the limit (see Livingston [3], and Lyzzaik and Styer [6]). It is
an open question whether or not this restricted closure properly contains K(p).

We finish with a couple of examples of “pretzel” functions. The first example
shows that the decomposition f= P-¢ need not be unique. The second example
shows that the decomposition may be unique, even though the hypotheses of
Theorem 1 are not satisfied. In other words, this second example shows that The-
orem 1 gives a sufficient, but not necessary, condition for uniqueness of decom-
position.

EXAMPLE 1. See Figure 1. The function f has simple critical points at ¢ and b.
Symmetry is not important in this example.

Figure 1

The three discs in Figure 2(a) or 2(b) represent the three sheets of the image
of a polynomial of degree three. They are to be interpreted as superimposed up-
on each other; the matching dotted lines of the slits are to be identified, and the
matching solid lines of the slits are to be identified. Thus, the inside ends of the
slits become the two branch points of the Riemann surface of the image of the
polynomial of degree 3.

Figure 2 shows the Riemann surface of the image of f embedded in the Rie-
mann surface of the image of a polynomial of degree 3. In Figure 2(a) the embed-
ding is made one way, and in Figure 2(b) it is made a different way.

A curve cannot be drawn from c or d to infinity, outside of the image of f, the
projection of which is one-to-one into the plane. The two parts of Figure 2 cor-
respond to two distinct decompositions of f, f=Po¢ and f = Q-+, where P and
Q are polynomials of degree 3 and ¢,J € S.
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Figure 2

Figure 3
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EXAMPLE 2. See Figure 3. We see that g is obtained by a very small modifica-
tion in the image of f. However, of the two corresponding possible decomposi-
tions, the one corresponding to Figure 2(a) works while the one corresponding to
Figure 2(b) forces ¢ to be bivalent. See Figure 4.

Figure 4

One sees that even though there is unique decomposition g = Po-¢, and P is
a polynomial of degree 3, and ¢ € S; still a curve cannot be drawn from c to in-
finity, outside of the image of g, the projection of which is one-to-one into the
plane. This shows that Theorem 1 is a sufficient, but not necessary, condition for
the uniqueness of decomposition. A good necessary and sufficient condition for
uniqueness of decomposition is still an open problem.
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