ON THE APPROXIMATION OF SINGULARITY SETS
BY ANALYTIC VARIETIES II

H. Alexander and John Wermer

Introduction. Let D be the open unit disc. For a compact subset X of the
closed unit polydisc in C2we denote XN (DX C) by X ° We say that X is a singu-
larity set if there exists a function which is holomorphic on DX C\ X % and singu-
lar at each point of X°. One class of examples arises from polynomial hulls: one
can show, using the “continuity theorem”, that if K c 8D x CcC?is compact
then the polynomially convex hull K of K is a singularity set; see Slodkowski [4].

A basic fact [6] about singularity sets X is that the maximum principle is satis-
fied for polynomials in the coordinate functions z and w; i.e., if P is a poly-
nomial in z and w, and N is a compact subset of X 9 with relative boundary 8N,
then |P(zo, Wo)| <maxyn|P|, for each (zo, wp) € N. The presence of the maxi-
mum principle suggests that it may be possible, in some sense, to approximate
X° by analytic subvarieties of C2. This is a variant of the general problem of
approximating polynomial convex hulls by varieties.

For N\ in D let X, ={weC: (\,w)e X}. We assume that X, # & for all \.
Under the assumption that each X, is contained in a single disc of radius r, we
showed in [1] that X ° can be approximated by an analytic variety, in fact, by the
graph of a holomorphic function on D. In the case of one-point fibres, it is a
classical result of Hartogs that X is an analytic variety. The analyticity of X in
the case of finite or countable fibres was studied by Bishop, Basener and others;
see [7] for a survey and further references. It is natural to examine the case of
totally disconnected fibres. It then may be possible to cover the fibres X, by a finite
number of disks. This is the kind of assumption made in our main result which
we now state; the assumption is for a set  containing all \ sufficiently close to
the unit circle and also the point A =0. The latter condition should be viewed
only as a normalization. The notation D(p, r) will denote {we C: |w—p|<r}.

THEOREM. Let X be a singularity set in C* with |w| <3 on X. Suppose that
there exists r with 0 <r <= and that there exist a domain Q € D and an integer
n> 0 with the following properties:

(i) For all N € Q there exist p;(\), p2(N), ..., pn(\) € C such that

X U D00, ),
p=

where | p;(\)| < 3 —4r (the p; are not assumed to be continuous functions
of N\) and X ,ND(p;(\),r)# D, 1<j=<n.

(i) |piN)—px(\)|>8rif j#k.

(iii) The set Q2 is smooth; 0Q =1"gUdD where distance (T'y,3D)=p>0; 0 Q;
wo(I'y) denotes the harmonic measure of T'y with respect to 0 € ).
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Then there exist polynomials f;(\), 1< j<n, such that for
POWY=w'+ i)W ™+ (),

the algebraic variety { P =0} approximates X in the following sense. If (Ao, Wy) €
X, then

(1) |[P(No, Wo)| =9 =5Q2n+1)r+(4/p)wo(Ty)
and
) there exists (\g, wg) in {P =0} over \q such that |w§—wo|<n'"".

One of our basic tools will be the construction of certain functions of the fibres
which are subharmonic. In the first section we obtain a result of this type which is
a variant of a lemma of Senitchkin [2]. We then apply it in the third section to
prove our main theorem.

1. Subharmonicity theorem. We shall formulate our result in the context of
maximum modulus algebras ([6], [7]). Let X be a locally compact Hausdorff
space, A4 an algebra of continuous complex valued functions on X, { an open set
in C, and fe A with f(X) Q. We say that (4, X, Q, f) is a maximum modulus
algebra provided the following hold:

(i) A separates the points of X and contains the constants.

(ii) For each compact K<Q, f{K)=[xeX: f(x)eK]} is compact; i.e.,
f: X —Qis a proper mapping.
(iii) For each closed disc A < Q with center \¢ and for each x%e £ ~!(\o),

lg(x%|< max |g|, geA.
S l(3a)

It was proved in [6] that if X < C?is a singularity set then (P, X°, D, z;) is a max-
imum modulus algebra, where P is the restriction of the polynomials in z; and z,
to X°.

Let (Ag, X«, @, pr), 1 <k <nbe n maximum modulus algebras over the same
plane set . Let ®"A be the algebra of all functions g on ILX; of the form

N
g(x)= '21 gj1(x1)gj2(x2) ... &jn(Xn)
J=

where x = (X1, x2, ..., x,), x;€ X; and g;; € A;. Let
XM =fx=(x1,...,%,) €ILX;: pi(x1) =p2(x2) = -+ = pp(Xn)}

and let 7: X > Q be 7(x) =pi(x1) (=p2(6) =+ =pu(x,)). Let A be the
restriction of ®"4 to X . Then r e A",

PROPOSITION. (A, X", Q, ) is a maximum modulus algebra.

REMARK 1. Senitchkin [2] proved this for the case of uniform algebras when
all of the n algebras and projections are the same. His proof also applies in our
case but we prefer to give a new proof which depends mainly on the maximum
principle for subvarieties of the polydisc.
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REMARK 2. By a result of ([5], [6]), if g€ A4 and (A4, X,Q, r) is a maxi-
mum modulus algebra then logZ, is subharmonic on {, where Z,(\)=
SUpP(xy=1|g(x)|. Applying this to the approximations PP O(gk/k') of eg for
ge A" and letting N — oo, we conclude that A - max,¢ -1 Re g(x) is subhar-
monic on Q for ge A, It is in this form that we shall use the result.

Proof. (i) and (ii) are clear. We shall verify (iii) and, without loss of gener-
ality, may assume that A is D the closed unit disc with center 0.

Let x0=(x?, ..., x?) where py(x{) =0. Since (iii) holds for 4 (i.e., |gk(xk )| =
Sup - 10D)| 8| for gk € A;) there is a representing measure p; on pg YoD) c Xy
for evaluation at x¢; i.e., gx(xQ) = | gk dux for gy € Ay. Then py. (i) (the pro-
jection of p; to dD given by | fdpr.(pn) =1 fopi du) represents the origin for
the disc algebra, and so by uniqueness p.(u) is normalized Lebesgue measure
dm=d6/2w on dD. Let p=p; X pa X --+ X u, on I1.X. Clearly F(x%) = Fdp for
Fe ®"A. Also Il,(p) has its support in the torus 7" (where 7=0D) and it is
straightforward to check that IT,(x) =dm X -+ X dm = do, Haar measure on the
torus, where Il = (py, P2, ..., Pn)-

Now for Fe L®(du) define F, e L™(de, T") by Il.(Fdp) =F.«do. We claim
that if Fe ®"A then F,e H®(T"). To see this it suffices to show that I=
fe1hei202 oS, do vanishes if Fe ®"A and the s; are integers with at least
one of them being positive. Without loss of generality we may assume that
F(x)=g1(x1) ... g,(x,) for g, € A; and that s;>0. Then

I=Spf1...p,§"Fd_u

= S p3t... 5"6 Di'8182 -+ &n d.ul(xl)) dps(x2) ... dpp(Xp)

the inner integral is p;(x)*-g,(x0)g, ... g, =0 since piig, e 4, and p;(x]) =
Hence 7 =0.

Now we shall also view F, as a bounded holomorphic function on the polydisc
D", We claim

*) lim |[F(§)|< max |F(x)]
-0 xeTI~Y¢p)
feD”?

for each (e T", Fe ®"A. Let cp(g‘)=sup{|F(x)|:er—l(g‘)} for teT". It is
easy to see that ¢ is upper semicontinuous on 7" and that |Fy|<¢ o-almost
everywhere on 7. We shall apply the following lemma which will be proved
later. The Poisson integral of u eLl(o, T") will be denoted Plu].

LEMMA. If u is upper semicontinuous on T" then

im  Plul(y)<u(fy) for SoeT"
topeTn
ceDn
We have |F.($)| = |PIF1($)| = P[|F«|1($) < Ple]($) for e D" and so from
the lemma
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im |F.(¢)|= lim Ple]($) < ¢ (o).
§—%0 §—%o

This is (%).
Thus for g e ®"A4 we have

Ig(x0)|=“gdﬂl=|5ﬂg*d0 =12.(0)|

< lim lgeOM N, .o, V)| (by the maximum principle on the
()\,)\’I}.l;)lel)n variety zy=z,=+-- =2,)

< sup |g(x)] (by (*))
Dx)=¢=({1, 825, §p)ETH

S1=52= =,

= sup |gl.

7 ~1(8D)

This gives the proposition. It remains to verify the lemma. Let e > 0. Fix {ye T".
Since u is usc there exists a continuous function y on 7 such that
(@) u<yonT"and
(b) ¥($o) <u($o) te.
Then Plu]=<P[y] and lim; ¢ P[Y]($) =v¥(o) (¥ is a continuotis function)
give
lim Plu]($o) = y($o) <u($o) +e.

$—$o
feDn

Since ¢ is arbitrary the lemma follows. Ll

2. We precede the proof of the theorem with a lemma. In this section a “disk”
will mean the intersection of Q with a disk.

LEMMA. Under the hypotheses of the Theorem, there exists a finite covering
{Dy} of Q by disks and for all k there exist n continuous functions ﬁ{‘ , 1’52" yeees ﬁ,’{
on Dy satisfying:

(i) Forall k and i such that DyN\D;# & and for all z € DN D;, the unordered
n-tuples [ﬁ}‘(z)}lsjsn and {Pj(z)}1<j<n coincide. We thus obtain an
unordered n-tuple of complex numbers for each \eQ which we call
Wi\ i< j<ns ie., (Wi(\}=1{5] ()} for Ne Dy.

(ii) X, < Ui D(w;(N\),5r), forall xe . If A is a sufficiently small closed disk
in Q then there exists a decomposition XN\~ (A)= Uk =1 Xk, where
X S{M W) NEA, [we(N)—w|<5r} and the Xy are compact, pairwise
disjoint sets with (Xy), non-empty for all A\ e A. Moreover the X are sin-
gularity sets in A°x C.

(iii) |wj(\)| <3 for xe.

Proof.
Assertion 1. There exists a 6 >0 such that for all \;, \; € Q, if |[\;—\;| <6 then
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X\ & _UID(pj(M), 3r)
j=

and X), has a non-empty intersection with each set D(p;(\),3r), 1=j=<n.

This follows from the compactness of { and the following assertion: For all
o€ D, there exists 8(\g) such that if |[N—Ng|<8(No) and Ae(, then X, C
U7=1D(p;j(N\o), r) and X, meets each set D(p;(\o),r), 1<j=<n.

To see this note that X, is disjoint from o = Uj-; dD(p;(No), r), and so there
is a 6(\o) such that X, is disjoint from o for |\ —X\¢| = 8(\g). The compactness of
X yields that if §(\o) is sufficiently small, then X, € U D(p;(N\o), r) for [A—\o| <
6(No). It follows that the sets

Xe={(\w)eX: [N=No[=6(No), [W—pr(No)|<T]

are disjoint, compact, non-empty subsets of X and that their union is XNA~'(A)
where A={\: [A\—=Xg|=8(\o)}N L.

We next verify that X} is a singularity set over A. In fact, the definition of X
as a singularity set gives a function f which is analytic in A? x C\ X and singular
at X. A standard Laurent decomposition applied in the second variable shows
that f is a sum of n functions f;, f5, ..., f,, where f; is analytic in A% x C\ Xy,
1 <k =<n. Then f; must be singular at X; and so X, is a singularity set over A.

Now suppose (X)), were empty for some \ € A, then the fibers of X; would be
empty for an open subset about A. From this one easily concludes by a Cauchy
integral argument that any function analytic on A° x C\ X} extends to be analytic
on all of A°x C. This contradicts the fact that X} is a non-empty singularity set.
Hence (X}), is non-empty for all A € A. This completes the proof of Assertion 1;
6 below will be the quantity given by this assertion.

Assertion 2. If \j, \; € @ and |\j—\z| <8, then for all i (1 <i<n) there exists a
unique j (1= j=<un) such that | p;(\;)—p;(A\2)| <4r.

The uniqueness follows from hypothesis (ii) of the Theorem. For the existence
observe that X),ND(p;(\;),3r) is non-empty by Assertion 1 and therefore
D(pi(\1), 3r) meets some D(p;(Nz2),r) by hypothesis (i) of the Theorem. The
following is a direct consequence of Assertion 2.

Assertion 3. In every subset W of Q of diameter <§ the {p;(\)} can be given
as single-valued (discontinuous) functions satisfying |p;(\;)—pi(\2)| <4r if
MM e W, 1=i<n. The functions {p;(\)} are unique up to order.

Now cover Q by a finite set of disks {Dy};<x<n such that D, <D, c W, cQ,
where {W;};<x<n are open disks of diameter <4§. Let {¢,}; <, <1 be a smooth
partition of unity of Q such that diameter(support ¢,) <6 for 1 <¢ =< T and such
that if support(e,) meets D, then support(p,) S W, forl<¢<T, 1<k<N. Fix
u, e support(e,), 1<t <T.

Let [p}‘}lsjsn be single-valued branches of p; in W, 1<k <N, which are
given by Assertion 3. We define p’}‘(z) for ze D; by

T
Pj @)= % pj ) ei()-
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Note that for z € Dy, if ¢,(z) #0, then spt ¢, meets Dy and hence spt(¢,) S W;;
hence u; € Wy =domain pjl-‘. Thus the 1’5}‘ are well-defined continuous functions;
for z € Dy,

15/ (2)—pf ()| =T (pf () —pf(2)) 0:(2)].
For ze€ Dy, ¢,(z) =0 unless z € spt(y,) and then |u,—z| <& and so

\pf () —pf(z)| <4r
by Assertion 3. Hence we get
(*) |5/ (2)—pf(z)| <4r
for ze Dy.

Assertion 4. The unordered n-tuples {p; k3 and § pj] coincide on Dy ﬂD

In fact, by Assertion 3, we can relabel the pj such that Dj (z) = =p; K(z) for all
z € WyNW,. With this labeling it follows that p;(z) = p; ¥(z) for ze DyND;.

We have now verified (i) of the Lemma. For (ii) we observe that (*) implies
D(pj(z),r) €D(w;(z), 5r) (after a possible reordering of the p;(z)). This gives
the first part of (ii). The second part follows from the proof of Assertion 1 where
the X are defined. Finally (iii) also follows from (x) and (i) of the Theorem.

3. Proof of the theorem. Fix j (1<j=<n) and ¢ in the disc algebra with
¢(0) =0. By the lemma we have » locally defined functions w;()\), ..., w,(\) on &,
and moreover we can write X, =U{-; Xx(\) locally over @ with X;(\) &
{(\, w)e Xt |[w—wi(N\) <5r}. For a fixed disc A in Q, Yy = Uyca Xk (M) are well
defined and (®y, Yy, A, z;) are maximum modulus algebras where @, is the re-
striction of the polynomials to Y, 1<k < n. Thus we can apply the result of Sec-
tion 1 over small disks in € to conclude that the function

Yvi(\)= max Re [go()\)(—l)j S w,-lw,-z...w,-j]
we € Xg(\) I<ij<--<ij=n
l<s=<n

is subharmonic on all of Q. If Y, is defined in the same way but with the negative
of the function in square brackets it is also subharmonic in . We define

GO =Re[(-D/p®) T w00, )|

1<11< J'_
=Re(e(N)a;(N))
for all A € @2, where the continuous functions a; are defined on Q by
n
X"+ aMNX" 4 ta,(N) =TT (X —w;j(\)).
j=1
LEMMA.

1y
IG<x>—¢1(x>l<5(j_’f1)(j2—) nrle()|  for heg.

The same estimate holds with Y, replaced by —.
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Proof. Fix Ne Q. Let F(wy, Wy, ..., Wy) = Xi<ij<iy< - <ij=nWiWiy-.. Wi;. Then
there exists wi € X;(\) for 1 =s < nsuch that Y;(\) =Re[(=1)/ o(N) F(wy, ..., w1,
and so |[GN) =1V < |eN) | |F(wr, ..., wi) —F(wi(\), ..., w,(\))|. From

oF /0w, = > Wiy Wigeo Wi

i:
. X . J
2S12<I3< “'<!an

|0F /w,| <<ji1)<%>j_]

if all |w;| < 3. Now |wt| <3 and |wi(\)| <3, and so we get

n 1V!
IVFI <\/E<J_1><E)

on the line segment from w* to w()\). Also |[w*—w(\)| < 5Var as |wi—wi(M\)] <
5r for 1 < k < n. The estimate for y; now follows from the mean value theorem.
The same argument applies to —y,. L]

we get

Let # be the harmonic extension of Re(¢a;) from 0% to Q. Let wy be harmonic
measure on 92 for the origin.

1Y
|h(0)|<5n(jfl>(5> rS|ga|dw0.

Proof. From the previous lemma we have Y, —¢q|¢| <G < —y,+¢q|¢| on ©,

where
n 1\V!
=5 — .
7 ”(,-_1)(2) ’

[ 1 dwo—q] ol duo< | Gdwo< | ¥2 dwo+q | |o] de.

LEMMA.

Hence

Since the y; are subharmonic, we have |y; dwg=y;(0) =0. This and | Gdwy =
h(0) yield the lemma. ]

Let g be the harmonic extension of Re(¢a;) from dD to D. We have, recalling
Q2 =aDUT,.

ReSaD a; dngwgdm=g(0)

= San gdwy= SaD Re(pa;) dwo+ SPO gdwg

= Re(oq)) dw0+SF0 (g — Re(pa))) dw.

Since {0 Re pa; dwy=h(0) we get
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(*)

Re | oq, dm‘ < |5(0)] + o (To) (gl ry+ I el rl il 0)-

By the previous lemma |#(0)| < g | |¢| dwo. Letting u be the harmonic exten-
sion of |¢| from 4D to D, and using the fact that |p| <u (since |¢| is subhar-
monic), we get {|o|dwy=<[udwy=u(0)=fudm=7{|p|dm; hence |h(0)|=<
q | |¢| dm. By estimating the Poisson integral we get |g[r, = (2/p)|a|op | |¢| dm
and |¢|r,=<(2/p) §|e| dm. Finally, using

ros(2)(3)

(since |w;(\)| = %) in (%) gives

< [q+wo(Fo)-%(';)(%)j]§ o] drm.

Applying (+*) for e’ with arbitrary real 8 yields

n 1V 4 n\/1Y
o s 1)) s ().

A standard duality argument now gives the following.

(%) Re S pa;dm

LEMMA. This distance from a; to the disc algebra in C(dD) is <u;. In par-
ticular there exists a polynomial f; such that |a;— fi|ap <u;.

We can now verify (1) of the main theorem. Let (Ao, wo) € X and let x be a
representing measure for this point which lives on X7=XN{(\, w): |\| =1} rela-
tive to the algebra of polynomials. Then, setting ay=1= f, and recalling P=

> j;-w""j:
P(ro, wo) = | Pay

=|, (EJS-(Mw"‘f—Ea,-(Mw""f)dwﬁ (Eaj()\)wj)d#
T\ 0 0 Xr\ o

n

=[ 3 G- T dp+ | TT v-wi00 d
XT_/ 1

Xt j=1

By the choice of f; we have

R 1 n—j
Il(ﬁ(k)—aj(x))w"‘fllxrsnj.(5>

)
e § () )

and
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Each of these last two sums is < 1. Also in IT|w—w;(\)| for (\, w) € X all factors
are <1 and at least one factor is < 5r. Thus we obtain

|P(Nos wo)| < 5Q2n+1)r+(4/p)wo(T).
This is (1); (2) follows directly from (1). 1
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