ADMISSIBLE LIMITS OF M-SUBHARMONIC FUNCTIONS

J. A. Cima and C. S. Stanton

1. Introduction. In this paper we study the boundary behavior of M-sub-
harmonic functions (i.e. subsolutions to the invariant Laplacian) on the unit ball
in C”. In his thesis [7], Ullrich showed that such functions which satisfy

(M sup | Ju(r6)] do(p) <o
r<tV¥s
have radial limits almost everywhere on the unit sphere.

It is well known that Fatou’s theorem on radial limits of bounded holomorphic
functions extends to harmonic functions on the unit disc which satisfy (1), and
that non-tangential limits exist almost everywhere.

For subharmonic functions the situation is more complicated. Littlewood [2]
proved that a subharmonic function satisfying (1) has radial limits on a set of full
measure. Privalov [3] extended this result to subharmonic functions on the ball
in R". He also gave an incorrect proof of the existence of non-tangential limits.
Examples of Zygmund and others [5; 6] show that subharmonic functions satis-
fying (1) need not have an angular limit at any point on the boundary. This is
true even if the Riesz measure p is absolutely continuous with respect to Lebesgue
measure so that du = fdA (f>0). However, if u is subharmonic on the unit disc
and f satisfies

@ o V@Y U-lz? dA@ <o (p>1)

u will have non-tangential limits; this was proved by Arsove and Huber [1].

Our main result shows that M-subharmonic functions which satisfy (1) and a
condition analogous to (2) have admissible limits (in the sense of Koranyi) at
almost every point of the unit sphere. Reduced to the one-variable case our proof
differs from that of [1]; where they use a normal family argument we use the
invariance of certain integrals under the Md&bius group of the disc.

Similar problems have been studied in half spaces of R" by Widman [8] and
Wu [9]. Wu shows that by varying the exponents in the analogue of (2), various
kinds of convergence other than non-tangential can be obtained.

We would like to thank Professor David Ullrich for his helpful comments. In
particular he provided the examples showing that the theorems are sharp.

2. Notation and definitions. The notation and definitions are for the most part
those given in Rudin [4]. For z,w in C", set {(z,w)= Xj-,;z;w; and let B=
{ze C": |z| <1}, S= 03B with dv and do the Lebesgue measure on B and S respec-
tively. For z,ae B, (a#0) define
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(a—P,z—(1—]a|»)"?Q,z)
(1—(z,ad) ’

where P,z =(z,a)({a,a)) 'a is the orthogonal projection of z onto the space
spanned by {a} and P,z + Q,z =z. Each ¢, is a holomorphic automorphism of B
and each automorphism ¥ can be written as ¢ = U-¢,, where U is a unitary
transformation on C”. Note that ¢, is an involution. The following two identities
are found in Rudin [4], p. 26.

$bq(2) =

(1—<a,ay)(1—{z, w))

(1—<(z, a)) (1—<a, w))

(1-la]®)(1-]z]*)
1—<¢z, @)

(3) 1—{¢,(z), Pa(W)>=

@) 1—]¢.(2)|* =

The measure
d\(z)=(1—|z|?) """+ D dy(z)

is invariant under the automorphism group; thus for each fe L'(d\) and auto-
morphism y the equality (g f(z) dN(z) =[5 fo¥(z) dN\(z) holds.

A function u:B —[—o0, +00) is said to be M-subharmonic (M-sh) if it is
upper semicontinuous and

u(@) = | u(ga(r5)) do§)

for each ae B, r<1. The function u is M—harmon~ic if equality holds. For
ue C*(B), uis M-shif and only if Au = 0in B, where A is the invariant Laplacian

Au(a)=4(1—|a|?) i (6ix —a;dx) D;Dyu(a).
ik=1

For ze B and ¢ e S the invariant Poisson kernel is defined by

(1=|z*)"
Pz,{)=—"—"—"7""5.
@ O= T o
We define the Green function G(z, w) by setting
1 (l_tZ)n—l

g(r)=cng — e dl and G(z,w)=g(|¢.(Ww)]).

r

If u is M-harmonic in B and satisfies (1) then # can be represented as the Poisson
integral of a finite Borel measure 7,

u(@)=| P ) dr().

For u M-sh, the following analogue of the Riesz decomposition appears in
Ullrich [7].

PROPOSITION A. If u is M-sh in B and satisfies (1) then
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) u(@) =h(2)~|  Glz, W) du(w),

where h is the least M-harmonic majorant of u, and p. is a positive Borel measure.
The measure dp = Aud\ in the sense of distributions and satisfies

6) SB (1= |w[?)" du(w) < +oo.
Conversely, if p is a positive measure and satisfies (6), then the Green potential
V@)=~ Giz,w)du(w)

is M-sh on B.
Ullrich’s analogue of Littlewood’s theorem is

PROPOSITION B [7]. Suppose u is M-sh on B and
sup | Ju(r6)] do(§) <.
r<19S

Then lim, ., u(ri) exists for almost every ¢ € S.
For «>1and { e S, the domain, introduced by Koranyi,
Do(§)={zeC": [1=(z, | <(a/2)(1—|z[|*)}

in B is called an admissible domain. A function V on B is said to have an admis-
sible limit L at ¢ if
lim V(z)=L.
{z] -1
ze Dy (%)

Our third theorem below involves the concept of an admissible limit in L”,
introduced by Ziomek [10] in R". Define the truncated region Dg ,({) by

Dg,p(§)=Dﬁ(§)n{ZEB: |Z|>p].
A function # on B is said to have an admissible limit 4 in L? at ¢ if
. 1
g —
p—1 V(Dﬁ,p(g‘)) Dﬁ,p(f

Our results are as follows.

) lu(z)—A|?dv(z)=0.

THEOREM 1. Suppose u is M-sh in B and satisfies (1). Suppose that Au is
absolutely continuous with respect to d\. If

™ | @u@)ra-|zPydng <

for some p > n, then u has admissible limits a.e. on S.



214 J. A. CIMA AND C. S. STANTON

REMARK. When n=1 we have
Au(z) = Au(z) (1-[z|*)?
d\z) = (1—|z|*)"2dA(z),
and Theorem 1 is equivalent to the theorem of Arsove and Huber [1]; see (2).

THEOREM 2. Suppose f(z)=0, n< p <o, and

|, vy ane <.

Then the Green potential
®) v(z)=—{ Gz, w)f(w)dNw)

is continuous on the closed ball.

THEOREM 3. Suppose u is M-sh in B and satisfies (1). If g<n/(n—1) then u
has admissible limits in L? for almost every ¢ € S.

3. Some geometric lemmas. We use the following lemmas in the proof of
Theorem 1.

LEMMA 1. Let a>1, 0<r<1. Suppose ae D,(¢). Then

1
¢a(rB) S Dg(§) forany B= a(%).
REMARK. We can also show that if ae D,({) and a’=|a|{ then a e ¢, (rB)

for any r>+/1—a 2.

Proof. One can use the definition of the automorphisms ¢, and the fact that
the P, and Q, occurring in that expression are self adjoint projections to establish
the equality

(1-<z,a))(1—<¢4(2), £)) =(1—<a, ) (142, ¢ (£))).
Now if zerB and ae D, ({) we have

[1—($a(z), O] =

11—<z, a)|
_a/l+r\ (d-la)(—|z[*)
=2 (1—-r> 1<z, a)|?
s-§—(1—]¢a(Z)|2).
This is the required inequality. O]

LEMMA 2. Suppose z € B and o> 1. Define D, (z) < S by
D,(z)=(feS:zeD,({)}-
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There exists a constant C = C(«a, n) such that
0(De(2)) = C(1 - |z*)".
Proof. As in §5.1 of 4, we define the non-isotropic balls in S by
Q(5,8) ={neS: [1-<5, M| <8).

With ¢ € D,(z) (i.e. z€ D(§)), we set p=z/|z|. Now applying Lemma 5.4.3 of
[4] we see that

[1—<¢, )| <4a|l—<(z, nd| <4a(l—|z]?).
We deduce that
Do(z) € 0, 2((1— [2?))).
Appealing to Proposition 5.1.4 of [4], there exists a constant Ay(n) such that
o (Q(n, 2(ex(1—[2[*))"?) = Ag[4a(1—|2|)]". O
We conclude this section with

LEMMA 3. Suppose p=1 and

[, f@ra-jzPyana <.

Then
PdN(z) <
J i) /) AN <o
and hence
lim PdN(z)=0
,,nguﬂ,pmfm (z)

for almost every ¢ e S.

Proof. Observe first that by Lemma 2 o(Dg(z)) < C(1— |z|2)”. Hence,

Js (S ey (Z)"dMZ”) do(s)=| | xp,(5)do(5) f2)" dN(2)

< CSB (- 122" f(z)” d\(z).

Our assumption is that this last integral is finite, so an application of Fubini’s
Theorem yields the conclusion of the Lemma. ]

4. Proof of Theorem 1. Let u be M-sh in B and satisfy (1). Asin (5), u can be
written as the sum of a M-harmonic function /# and a Green potential. The func-
tion A satisfies (1) and thus by Koranyi’s theorem [4] has admissible limits a.e.
¢ e S. It suffices therefore to prove that the Green potential has admissible limit
zero almost everywhere,

We define
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8o(t)=8(x0,1(t)  &(t)=g(t)—go(?),
Go(z, w) = go(|:(W)]) Gi(z, w) = gi(|o.(W)]).
We now write the Green potential as
|, Gz w) Butw) aw) =Yo(2)+¥4(2)
with
Vo(@) = Golz, w)Au(w) d\(w)
and

Y1(z) = SB Gy (z, wYAu(w) di(w).

We will show both y and ¢; have admissible limits almost everywhere.

We begin with y;; here our estimates are essentially the same as in [7]. From
the definition of G; we see that G,(z, w) < C(1—|¢,(w)|*)". From this and the
identity (4) we deduce

W@=C| (1= [9.(w)[2)"Butw) an(w)

— 1—|Z|2 g 2\n X
_c§B (—Il—% W>|2> (1= |w|?)"Au(w) dA(w).

We define a measure 7 on S by
7(A4) = S,; (1= |w|?)"Ru(w) d\(w),
where A = {we B: w/|w| e A}. Since the measure Au(w) d\(w) satisfies (6), 7is a

finite measure.
From the inequality |1—<z, w/|w|)| <2|1—(z, w)| we conclude that

1____’z|2 n , l
(=) =2#(= 7))

W@ =C'| P, dr).

and hence

We define
[Mo¥1]1($) =sup{¥h(z) :z€ D, ({)}.

From the weak 1-1 boundedness of the admissible maximal function for the
Poisson integral of 7 [4, Theorem 5.4.5],

Il

U{Ma‘/’l>t}<CT-

By standard methods y; has admissible limits a.e. ¢.



ADMISSIBLE LIMITS OF M-SUBHARMONIC FUNCTIONS 217

We now consider yg. Observe that Gy(z, -) is supported on ¢,(B/2), and thus
for 1/p+1/q=1
I/p

/g _
Yo(a) = (SB [Golz, w)]"duw)) (L - [Au(w)]f’de))
By the invariance of dA,

| 1Goz w17 axem = Leo(|6:0mD17aN(w)

= |, Leo(wD1?axew).

From the estimates

log(l/t) 0<t<3, n=1
go(t) <4 ct?™2" 0<t<%,n22
0 1=<t<l

we deduce that |Go(z, *)|Laanow) = Cq,» for some finite C,,, independent of z if
g <n/(n—1). Hence, if p>n,

_ I/p
1[’0(Z)SCU [Au(w)]"duw)] .

z(B/2)

Let o> 1 be fixed and set §=3a. If |£] <5 we estimate |¢,(£)|>=2]|z|*—1, and
from Lemma 1 we obtain the inclusion

) ¢,(B/2)CDg ,(£) (p=2|z|*~1).
Thus

_ I/p
%(z)sc[SD . [Au(w)]”dx(w)]

B, p
so with f(w)=Au(w) in Lemma (3) and z € D,({) we have lim,_, ¢ ¥o(z)=0
(a.e. ). Since u = h+ Yo+ ¥, and each of the terms has admissible limits a.e. {, u
also has admissible limits a.e.

5. Proofs of Theorem 2 and Theorem 3. To prove Theorem 2 assume n < p
and then the conjugate g satisfies 1<g<n/(n—1). Then G(0,w) is in LI(d\)
and by invariance of A

|G (z, w)|Laany) = | G(O, W) Lacan)-

Thus the Green potential (8) is a continuous function, being the convolution of
an L?(d\) function with an L9(d)\) function.

For O0<r<1, let f.(z)=X,5(z) - f(z) and let V,(z) be the Green potential of
Jf+(z). Since f; has compact support, V,(z) — 0 uniformly as |z| — 1. By Holder’s
inequality

[V=Vlo=Cl/~fl»
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so that V, tends to ¥ uniformly on the ball as » — 1. Hence, V(z) — 0 uniformly as
|z| - 1.

To prove Theorem 3 we write u(z) =h(z)— (Yo(2)+¥1(z)) as in Theorem 1.
The proof of Theorem 1 shows ¥;(z) and A(z) have admissible limits a.e. ({)
and hence admissible limits in L? a.e. (¢). Thus, it suffices to show y, has admis-

sible limits in L? a.e. (¢).
Let u be the measure of Proposition A. We observe that our assumption (1)

and Lemma 3 (with du instead of fd\) imply that

lim du(w)=0 a.e. ¢€S.
HISD;;,,«) n(w) ¢
Let « be fixed and set 8 = 3c.. For p>V2/2 set r=2p2—1. Then by Lemma 1 and
the estimate (9), Go(z, w) is supported in Dg ,(¢) for all ze D, ,({).

Thus,

w@ @) =| | Gotz,w)dutw)

a, p

Sl)g,p(§)

= |, Gol@wxp, () dutw).

By Young’s inequality,

q 1/q , 1/q
(SDa,p(s“) vo(z) dMZ)) S(SB(GO(Z’W)) dMW)) (SDB,,(r)dﬂ(w))

If g < n/(n—1) the first integral is finite and the second integral tends to zero a.e.
(¢) as r tends to one as we noted above. Thus,

1im§ o, [H()I7dN@) =0 ace. (§).

p—1 a, p

We note that there are positive constants C; and C, which depend only on « and
n such that

Ci(1—p)"' = v(Dq, o (£)) = Co(1—p)"* .
Recall that d\ = (1—|z|*)~"*" d», and hence

1
1 . i
fl’H*nl ¥(Da,p(£)) SDa,pm [Yo(2)]"dr(z) =0.

6. Sharpness of the results.

EXAMPLE 1. The condition p>n is best possible in Theorem 1. Choose

sequences {z;}, {r;}, {¢;}, and {a;} such that
(i) z;€B, lim;_, »|z;|=1and D,({)N{z,} is infinite for each { €S,

(ii)) 0<r;<1/2 and the family {¢;;(r;B)} is pairwise disjoint,

(iii) €;>0and 3%, (1—|z;|*)e}/" <o, and

(iv) a;>0and lim;_, o a; = .

One can choose f; e CZ(B) with f; =0, support f; S ¢.,(r;B), | fj'd\<e; and
§ fi(w)G(zj, w)dN(w)>a;. Let f=3 f;. Then fe C*(B) and by the above
choices f satisfies
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[ fon 1= [w]2y" dnw) <oo.

Thus the Green potential v(z) defined by (8) is M-sh, Av = f, and by Proposition
Blim,_;v(r{)=0 for a.e. { €S. Also, v satisfies (7) of Theorem 1 with p=n.
However,

v(z;) < —SBf,-(w)G(z,-, w) d\(W) < —a;,

hence for a.e. £ €S

limsupv(z)=0 and liminf v(z)= —o.
|z| -1 |z| 1
ze D, () ze Dy ({)

REMARK. Since G(0, )& LV it is easy to construct functions which
satisfy g (f(z))"d\(z) < and for which the Green potential (8) assumes the
value —oo at points on the open ball. Hence the assumption p > nin Theorem 2 is
sharp.

EXAMPLE 2. The assumption g < n/(n—1) is best possible in Theorem 3. Pick
{z;] as before, so every D,({) contains infinitely many z;’s (¢; >0), so that
3 (1—|z;]*)"e; <o, and let u(z) = —3; ¢;G(z,, z). Then u satisfies the hypoth-
eses of Theorem 3 but does not have an admissible limit in LY for g =n/(n—1) at
any ¢e€S. Indeed, given €S, a>1, choose j and r>0 such that ¢;(rB) C
D, ,({). Then

SD ) lulqd”ZGJS (G(zj, w))Tdv(w) = o,

o, p z;j(rB)

which certainly implies # has no admissible limit in L7 at ¢.
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