ON SUBMANIFOLDS WITH PLANAR NORMAL SECTIONS

Yi Hong

1. Introduction. Let M be a submanifold of dimension # in a Euclidean
m-space E”. For any point p in M and any unit vector ¢ at p tangent to M, the
vector ¢ and the normal space N,M of M at p determine an (m—n+1)-dimen-
sional vector subspace E(p,t) of E™ through p. The intersection of M and
E(p, t) gives rise to a curve « in a neighborhood of p which is called the normal
section of M at p in the direction ¢. The submanifold M is said to have planar
normal sections if normal sections of M are planar curves. In this case, for any
normal section vy, we have y"Ay”Ay”=0. A submanifold M is said to have
pointwise planar normal sections if, for each p in M, every normal section v at p
satisfies y’Ay”Avy"” =0 at p. Submanifolds with (pointwise) planar normal sec-
tions were investigated in [1, 2, 3, 6]. B. Y. Chen [3] classified surfaces in E"" with
planar normal sections, and he proved the following theorem:

THEOREM A. Let M be a surface in E™ with planar normal sections. If,
locally, M does not lie in a 3-dimensional hyperplane of E™, then M is an open
subset of a Veronese surface in a 5-dimensional hyperplane of E".

In the following, by a Veronese submanifold V" we mean a real projective
n-space isometrically imbedded in E"*""+D/2 vy jts first standard imbedding
(cf. [4, pp. 141-148]).

In this paper, we generalize Theorem A to higher dimensions. We shall prove
the following theorems.

THEOREM B. Let M be an n-dimensional submanifold in E"™ with planar
normal sections. If, locally, M does not lie in an (n(n+1)/2)-dimensional affine
subspace of E", then M is an open portion of a Veronese submanifold V" in an
(n+n(n+1)/2)-subspace of E™.

THEOREM C. Let M be a 3-dimensional submanifold in E"™ with planar
normal sections. If, locally, M does not lie in a 5-space E> of E™, then M is an
open portion of a Veronese submanifold V> in E® or is the Riemannian direct
product of the real line R with the Veronese surface.

2. Proof of Theorem B. Let M be a submanifold in £”, V and V be the
covariant derivatives of M and E", respectively. For any two vector fields X,Y
tangent to M, the second fundamental form # is given by #(X,Y)=VyY—V, Y.
For any vector field £ normal to M, we have Vx £ = —A4; X + Vi £, where A, is the
Weingarten map associated with £ and V* is the normal connection of the normal
bundle N(M). Define the covariant derivative of A by

2.1) (Dh)(X,Y, Z)=Vx(h(Y, Z))~h(Vx Y, Z)— h(Y,Vx Z),
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for vector fields X, Y, Z tangent to M, Dh is an N(M )-valued tensor of type
(0, 3).

Assume that M has planar normal sections. Let # be a unit vector tangent to M
at a point p € M. Let y(s) be the normal section of M at p in the direction ¢ with s
as its arclength and y(0) = p. We put T(s) =~'(s). Similar to [3], we can show that

2.2) T, ViT)NW(T,T)=0 along v.

First, assume that y(s) is a geodesic arc on a small neighborhood of p =+(0),
then Vr7'=0. Similar to [3], we have:

LEMMA 1. Let M be a submanifold in E™ with planar normal sections. If a
normal section y(s) is a geodesic on a neighborhood of p =~(0), then for every
unit vector z orthogonal to t =+'(0), we have

(2.3) (h(t, t), h(t,z2)>=0.

If v is not a geodesic in any sufficiently small neighborhood of p =+v(0), then
there is a sequence s,—0, such that V7, T#0, where 7,=T7(s,). Let u,=
(Vr,7)/ |1, T|, by (2.2), h(T,, u,) Nb(T,, T,) = 0. By choosing a local coordinate
chart, we see that there is a subsequence of {u,] converging to a unit vector
ueT,M, since u, L T,, we have u L ¢, and

2.9 h(t,u)Nh(t,t)=0,
or equivalently, there is a unit vector #*e T, M, such that
(2.5) h(t, t*)=0.

Thus, we have the following.

LEMMA 2. Let M be a submanifold in E" with planar normal sections. If a
normal section «(s) at p is not a geodesic arc on a sufficiently small neighbor-
hood of p, then there is a unit vector t*€ T,M, such that h(t, t*)=0, where

t=~'(0).

Let p be any point on M such that there are te U,M, ze U,M, t 1z and
Ch(t, t), h(t,z)>#0. Thus, there is a neighborhood U of ¢ in U, M, such that for
any t;€ U, there is a vector z; L ¢, z1€ U, M, and {h(ty, t;), h(t,21))#0. Thus
the normal section on the direction of ¢, is also not a geodesic in any neighbor-
hood of p, so by Lemma 2, there is a unit vector ¢{e U, M, such that i(#, t{) =0.

We shall show, in this case, dim(Imh)<n(n—1)/2 at p. In fact, since
dim(Im #) = n(n+1)/2, we only need to show that there are at least » linearly
independent relations between the vectors h(e;, e;), 1 <i< j=<n, wheree,,..., e,
is a basis for 7, M. May assume e, € U. All vectors v satisfying h(e;, v) =0 form a
subspace VC T, M. If V=T, M, we have n independent relations already. Other-
wise, choose a basis vy, ..., vk, in V; then we have k(1) linearly independent
relations:

h(els v)=0,..., h(eh vk(l)) =0.
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By changing basis in 7,M, we may assume

q+1
vg= 2 bige;, 1=q=k(l).
i=1
Suppose we have found vectors uy, ..., u,, € U, such that we have linearly inde-
pendent relations

h(ul, U]) =0, veey h(u,, Uk(')) —_—0,
(2.6) h(uz’ Uk(l)-l'l):o)---,h(uz,vk(z))zo’

h(uma Uk(m—1)+l) =0,..., h(uy,, Uk(m)) =0.
So that vgn—1)+1, -.-» UVk(m) SPan the space V(u,), where
Viu)={v|lveT,M,h(u,v)=0}, uel,

and the dimension of spfuy,...,u;, vy, ..., %)} is no more than k(j)+1, 1<
J <m. Thus, we may assume that
r
u;= 3 aj;e;, where r=k(j—1)+1, a,;#0, 2=<j=m,
i=1
g+1
vg= 2 bige;, for 1=g=<k(m).
i=1
If k(m) < n, choose a unit vector u,, 1€ U, 16§ V(Uy), Uny1= 2i=1 Qi m+1€i,
where s =k(m)+1, as, ,+1#0. Choose any v#0, v e V(u,,+1). Then the relation
h(u,,+1,v) =0 is independent of all relations in (2.6).
If fact, if this were not the case, assume v= XY{_; b;e;; then

s s+l

h(tyy 41, 0) = E E ai,m+lbjh(eis ej) =0.
i=1j=1
Since every relation in (2.6) fails to contain A(e;, e;;) and h(es,e;), we have
bs+1=0, by=0. And every relation in (2.6) fails to contain /(e;, e;) except the
last one, hence we have vAu, =0, thus u,,, € V,,; this is a contradiction.
Thus, if we choose a basis Vk(my+15 -+ Ukm+1) fOr V(u,,41), then

h(um+h Uk(m)+l) =0,..., h(um+l’ Uk(m+l)) =0,
together with (2.6) are independent relations. By induction, there are n inde-
pendent linear relations between h(e;, e;) and we have dim(Im /) <n(n—1)/2
at p.
Now let
M,={peM|dim(Imh)<n(n—1)/2}.
Then M, is a closed subset of M, if M = M, then by applying Theorem 1 of [2],

M is locally contained in an n(n+1)/2 dimensional affine subspace of E"™. If
M # M, then M — M, is an open subset of M, at every point p e M — M, we have
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(h(t, t), h(t,u))=0 forany t,ueU,M, tLu.

This implies that M is isotropic at p [7]. Let G be a component of M — M, then
G is isotropic. By the following lemma, we know that G has planar geodesics.

LEMMA 3. Let M be a submanifold of E"™ with pointwise planar normal sec-
tions. If M is isotropic, then M has planar geodesics.

Proof. Since M is isotropic, there is a differentiable function & on M, such that
(X, X), (X, Y)=k*X,Y) for X,YeUM).

ThUS, AII(X,X)X= kzX.

If k=0, then #(X?) =0 for any X € T(M); this means M is a linear subspace
of E', so M has planar geodesics. Suppose k>0 at p e M. Then in some neigh-
borhood U of p, k>0, so for any X e T(U), h(X,X)#0. If dim(ImA)=1 in
U, then U is totally umbilical, thus M is a sphere, having planar geodesics. If
dim(Im /) =2 in an open subset U; C U, by Theorem 1 of [6], we have

(Dh)(X?) = b{Xo, XDh(X?),

where b is a differentiable function on U;, and X, is a differentiable vector field
on U,. By induction, it is easy to see that for any n=1, (D"h)(X ") Ah(X?) =0.
Thus, Aprpyxn+2yXAX =0. By Theorem 2.3 of [5], U, has geodesic normal
sections. Thus & is a constant, so by continuity, U;=U=M and (Dh)(X?) =0
for all X e T(M), hence M has planar geodesics.

Now, we know that G has planar geodesics, thus G is a helical immersion of a
compact rank one symmetric space or its open subset [5, 10]. Thus we can choose
an orthonormal basis f{e, ..., e,} of T(G), such that the components R;;;, of the
curvature tensor R are independent of the points. Then we have [6]

(2.12) Ch(e;, e;), hlex, e,)y=(1/3) [Rixjr+ Rirjx + ki (8;; 8k, + 8ix 8jr +8ir8j1) 1,

where k; = |h(ey, e;)| is constant. By continuity, (2.12) is also true on boundary
points of G, thus on the boundary, dim(Im#) has the same value as in the
interior. This implies G is closed in M. Thus G =M. Therefore by applying a
result of Little [7] and Sakamoto [9], M is either a linear subspace or an open
portion of a compact rank one symmetric space imbedded in E” by its first
standard imbedding. If M is an open portion of an n-sphere, a complex projec-
tive space, a quarternion projective space, or a Cayley plane imbedded in E” by
its first standard imbedding, then M lies in an n(n+1)/2 dimensional affine sub-
space of E™ (cf. [4, pp. 144, 155]). Thus we conclude that if locally M does not lie
in an n(n+1)/2 dimensional affine space, then M is an open portion of a Veronese
submanifold. 1

3. The proof of Theorem C. Let M3 be a 3-dimensional submanifold in E”
with planar normal sections, but at some point p, the normal section on some
direction ¢t € T,M is not a geodesic. Then by Theorem B, M? is contained in a
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6-dimensional space E®. We shall show that in this case, either dim(Im /) <2 at
p or we can find a unit vector u € U, M, such that h(u, v) =0 for allve T,M. We
need the following lemma.

LEMMA 4. Let A, B, C be linearly independent symmetric linear transforma-
tions on a 3-dimensional Euclidean space V. If for every vector ve V, Av, Bv, Cv
are linearly dependent, then there is a unit vector ueV, such that Au=Bu=
Cu=0.

Proof. Choose orthonormal eigenvectors e;, ,, e; of A such that 4e, # 0. Since
Aey, Bey, Cey are linearly dependent by replacing one of B, C by a linear combin-
ation of A4, B, C, we may assume Ce; =0. Put

a;=(Ae;,e;), b;j=(Be;,e;), c;j=(Cej,e;), I,j=1,2,3.
Thus for any vector v = x1e;+ x;e,+x3 €3, the condition that Av, By, Cv are lin-
early dependent can be written as
arxy byxi+bypx+bi3x; 0
(3.1 A Xy byXxi+bpx,+by3xs Cpxa+cazxy| =0.
a3X3 by X1+ 03X+ bizxs  caaxa+cyzxg

By linear combination again, we may assume by, =0. If by;=b3;=0, (3.1)
would become

byyxs+by3xs  Cpxa+Ca3xs

=0,
D32X2+b33x3  C3X3+C33X;3

this would imply that B, C were linearly dependent. Thus, at least one of by, b3,
is not 0. Now in (3.1), the terms containing x; are

o1 X1+ banxa+ba3xs  CpXa+C3X3

=(.
D31 X1+ b3 X2+ b33xy  C3pXp+C33X3

a xy

It is easy to see that (byy, b2z, ba3, €22, C23) and (b, by, b33, €32, €33) are pro-
portional. If @, = a3 =0, we can find a unit vector u = x,e,+x3e;, such that

byaxa+by3x3=0, Cpxp+c3x3=0;

u is the vector desired.
If @, #0, a3 =0, then (3.1) becomes

ayX2(b1ax2+ bi3x3) (C32x2+ €33%3) =0,

thus ¢3; = ¢33 =0. But C #0, 50 ¢, # 0; this means b3, = b3, = b33 =0. Thus, e; is
the vector desired. If a, and a3 are both not zero, the same argument shows that
C =0, which is impossible. 1

Now, assume dim(Im /#) =3 at p, and denote an orthonormal basis for N,M
by &4, &5, £6. By

(Axt,uy=<h(t,u), &y tueT,M, x=4,5,6,
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we define symmetric linear transformations Ay, As, Ag on T, M. Since dim(Im ) =
3, they are linearly independent. By Lemma 2, there is a neighborhood U of ¢ in
T, M, such that if ¢, e U, we can find a unit vector ¢{ e U,M, h(¢, t{)=0. This
means (A,t,1{)=0, x=4,5,6. So Ast,Ast|, Agt; are linearly dependent.
Although this condition is satisfied in an open set U, but (3.1) is a polynomial
equation on (X, X,, x3); if it is satisfied in some open set of the (x|, x,, x3) space, it
is satisfied for all xq, x,, x3. Thus, by Lemma 4, there is a unit vector x, 2(¢,x) =0
forall te T, M.

Now, in some neighborhood G of p, dim(Im /) = 3. It is easy to see that x is a
differentiable vector field in G. Thus, we may assume e; = x, so

(3.2) h(ei, e)) =h(e, e;) =h(e;, e3)=0.
It is also easy to see that
(Dh)(e}) = (Dh)(ef, e2) = (Dh)(ef, e5) =0,
(Dh)(ef, e2) = Verh(ey, €2) — (Ve e1, €2) — h(ey, Ve, €)
= —wi(e)) h(er, &) —wi(e) h(es, e3),

where wi, w3, wi are connection forms on M. Since k(e,, ;) and h(e,, ;) are
linearly independent, we have

(3.3) wi (e)) =wi (e;) =0.
Also, by the equation of Codazzi and
(Dh) (e, 1, €3) = —h(Ve, €1, €3)

= —wi(e)) h(ey, e3) —wi(er) h(es, e3),

(Dh)(es3, ey, €2) = —h(Ve, €1, €3)
= —wi(es) h(ez, &) —wi(es) h(ez, &),
since h(ey, e3),h(e;, e3), h(e;, e3) are linearly independent, we have
(3.4) wi(e) =wi(e;), wi(e)=wi(e;)=0.
By (3.2) and (3.3), we have Velel = Ve, =0. Thus, the integral curves of e, are
straight lines. By (3.4) we have
[e2, &3] = wi(ez)e; — w3 (es)es,

so the 2-dimensional distribution spanned by e,, e is integrable, thus we see that
M?3 is the Riemannian direct product of R with a 2-dimensional manifold M,.
Since M has planar normal sections, so does M;. But M; does not lie in a 3-space,
by Theorem A, M is an open subset of a Veronese surface.

By the following lemma, we know that the direct product of R with the Veronese
surface has planar normal sections.

LEMMA 5. Let M" be a submanifold of E" with planar normal sections. Then
the Riemannian direct product N=E*xM" is a submanifold of E™** with
planar normal sections.
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Proof. Let the equation of M" in E'" be (locally)
(3.5) Xi=fiXm—nt1seesXm), I<i=m—n.

Assume the origin o e M" and the plane x; = --+- =Xx,,,_, =0 is the tangent plane
of M", and the equation of N=EXx M in E"*¥ is the same as (3.5), the coordi-
nate in E™ X is (X1, «ovs Xs Xt 15 +oos Xmax). Let X;=9/0x;, then a basis for T, N
iS X;n—n+ts---» Xm+k, and a basis for N, M is Xi, ..., X,,—», Which is also a basis
for the normal space of N at o.

We only need to show that the normal section at o on the direction ¢ =
Xp—ns+1€080+ X, .1 sin@ (0<0<2) is planar. In fact, the normal section on
the direction X,,,_,4; has equation

x;i=0, Xi=fi(Xm-n+1,0,...,0), 1<sis=m—n, m—n+1<j=m+k.

By assumption, it is planar. The normal section on the direction #=
Xm—n+1c080+ X, sinf has equation

Xm—n+18IN0 =Xy g cos0=0, Xx;=fi(Xp-n+1,0,...,0), 1=si=m—n,
x;i=0, m—n+1<j<m+k.
It is easy to see that this is also planar.

Now we prove Theorem C. Theorem B shows that either M is the second
standard immersion of a 3-sphere or dim(Im #) <3 at each point pe M.

Suppose dim(Im #) <3 at each point pe M. Let My ={pe M |dim(Im h) =3}.
Then by the arguments in the last paragraph, we know that each component U of
M is an open subset of the direct product of R with the Veronese surface, hence

it is also closed in M. Hence either U= M or M, is empty. Theorem C is proved.
O

The author wishes to express his hearty thanks to Professor C. S. Houh for his
valuable suggestions, and is very grateful to the referee for his valuable sug-
gestions which improved the theorems.
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