THE EXTREMAL PSH FOR THE COMPLEMENT OF
CONVEX, SYMMETRIC SUBSETS OF R"

Magnus Lundin

Introduction. For a compact subset E of C", we define the extremal function

®(z) = sup{| p(z)|/4e7}.

The supremum is taken over all polynomials in N complex variables with |P|g <1.

This function has been investigated and used in connection with polynomial
approximation in C" by Siciak [4]. Zahariuta [6] and with a different method
Siciak [5] have shown that

0.1) log ®£(z) =supf{u(z)};

here the supremum is taken over all plurisubharmonic functions v with v(z) <
log(|z]+1)+C and v(z) <0 on E.

Similar functions have been used in connection with potential theory in CV
and also when investigating the complex Monge-Ampére equation; see for
example Bedford [1,2] and Bedford and Taylor [3] where further references can
be found.

In this note we give a fairly explicit formula for &z when FE is convex, sym-
metric with respect to 0 and contained in R” < CV. This calculation will also give
us a complex foliation of CN such that & is harmonic on each leaf except at the
intersections between the leaves and E.

Definitions and formulation of the main result. We will always consider R" as
a subset of C". When we talk about the topology of a subset of R we usually
refer to the R -topology.

Let Sy denote the unit sphere in R, and for e Sy, ze C" define £-z=
121+ - +EnzN.

For a convex symmetric set £ < R" with nonempty interior (symmetric means
symmetric with respect to 0, i.e. E = —FE), we have a representation

1.1 E={zeCN:a(¢)t-ze[—1,1] for all £ e Sn}.

Here a(£) is a continuous function on Sy which can be chosen as the reciprocal
of half the width of E in the direction £. The function a(§) is unique if £ has a
tangent plane at every boundary point. We now define

(1.2) F(&,z)=a()E-z+/(a(E)E-2)*~1.

Here we always choose the sign of the root function to make |F| = 1. This choice
makes, for a fixed &, F(£, z) into a holomorphic mapping of{z: a(§)é-z¢ [—1,1]}
onto the complement of the unit disc in C, with |F(£,z)| < C(|z|+1).
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Our representation of E (1.1) shows that for every z ¢ E there is a £ such that
a(£)é-z¢ [—1,1] and therefore |F(z, £)|>1.
We are now ready to define our candidate for ®z. Let

(1.3) Vi(z) = sup |F(§,2)].
feSy

The preceding discussion shows that log ¥£(z) is plurisubharmonic, log ¥g(z) <
log(|z|+1)+ C and log ¥g(z) <0 if ze E. This shows that ¥g(z) < Pg(z). We
also know that log ¥£(z) >0 if z ¢ E. Our main result can now be stated.

THEOREM 1. If E is a convex symmetric subset of R" with nonempty interior
then
Yi(z) = Pp(2).

The function log |F(%, z)| for fixed £ is the projection CY — Cin the £ direction
followed by the largest subharmonic function in C which is 0 on the projection of
E and grows not faster than log|z| as |z| - co. We now obtain the following as a
corollary.

THEOREM 2. The set Egx={ze CN: |®£(z)| <R} is convex if E is a convex
symmetric set in RY with nonempty interior.

Proof.
Ep={zeC": ¥x(z)<R)= () {zeC": |F(£,2)|=<R]
teSy
But we know that {z€ C: |[z++/2%2—1| <R} is convex (it is an ellipse) therefore
{ze CN: |F(&,z)| <R} and also Eg must be convex.

If E has empty interior (in R") then after a suitable rotation in R, E is a
subset of RV ™1 so we can use our methods in C¥~! and in CN\C"~! we have
®5(z) = +oo. This is seen from the functions Py(z) =k -z,. We have |Py(z)| =0
on CV'and ®5(z) = |Px(z)| = on CV\CV .

The case when a(¢) is differentiable. We first prove the theorem in the case
when a(§) is differentiable. In this case F(&, z) is a differentiable function of £ if
a(£)é-z¢ [—1,1], so we can find the maximum of |F(,z)| for a fixed z ¢ E by
differentiating with respect to £.

Let zo € E be fixed. Then the supremum in (1.3) is attained for some £3. Now fix
a basis {e,}YZ1 for the tangent space of Sy at &,. Then we have for the derivatives

d d
'(j’e—klog|F(E,Z())|E=go=RCEIOgU?(E,ZO)lg:gO:O for k=1,...,N—1.

If we use the definition of F(£, z) (1.2) and note that (3%/dex) | ;= ¢, = ek, we find
(for k=1,...,N—1) that

0
(2.1) a—eak‘ (£0)E0-zo+a(Eo)ex-zo=iMe N/ (a(E0)E0-20)°—1,

where A = (A, ..., \v_;) is a vector in RV, For £, and \ fixed and an arbitrary
z these equations define a 1-complex dimensional set in C". After a change of
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variables, we can assume that £, is the basis vector in the z, direction and ey is
the basis vector in the z; direction. Then we obtain the equations

___1 (oa _ —\. . _
(2.2) z= a(Eg)(aek(EO)zN iNe (@(0)zn) 1), k=1,...,N—1.

This set we parametrize by letting

1 1 X
U(EO)ZN=E(§+ ?> with [¢[=1.

If [¢| =1, then a(&g)zyve—1,1] and |F(&p,z)|=1.
We know that |F(%g,z0)| > 150 zo must correspond to a ¢, with || > 1. If we
now remember the choice of sign for the root function in (1.2) we see that

1 1
A (a(9)zn)i—1= 3(?— ?)

Thus we have the solution set of (2.2) given as

1 da . da )1 _ _
Zk=—2a(£0) ((c")ek (Eo)—l7\k)§'+<5‘é;(50)+l)\k>?>’ k=1,...,N-1

1 .
— >
2a(Ee) (§‘+ r), with |¢|=1.
This is a complex manifold with boundary which we call £, ;. We must re-
member that this representation is valid only after a suitable change of coor-
dinates in C".

From our construction we know that at z =z, |F(£, z)| attains its maximum
as a function of ¢ for £ =£&;. Out next step is to show that this is true for all
Z € Xy ¢, We need the following result.

2.3)

IN=—

LEMMA. If w, and w, are complex numbers then

(2.4 (Wi wi—1|=|wr+~/wi—1|

if and only if there is a 0 € R so that

wy=cos 8-w;+isinf/ wf—1.
The square root is always chosen to make |w++/w?—1|=1.

Proof. Let w, =I§(§‘1+1/§‘1) and w, ='5(§‘2+1/§‘2) with |{;] and |$|=1. For-
mula (2.4) now becomes |{;| =|¢2| or equivalently ¢, =e'’¢;. If we now insert
this in the formulas for w, and w, we get precisely w, = cos 6-w;+isin 6/ w? —1.

Now take a &, # +£&,. Since £y and {e;}, k=1, ..., N—1, form a basis in R we
can find real constants cg, ..., cy—; SO that

N—1
fi=0o 50+AE] Ck €.

This can be rewritten as
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_ _N—l Ck ﬂ N-1 cx ﬂ
El-(co k§1 (k) der (fo))fo*‘kgl 2(50) (E)ek (Eo)fo*‘a(fo)ek)-

For every z € C" we thus have

N—-1 d
a(¢)é1-z= doa(EO)ZN+k§—;l dy (‘55%(50)2/\/'!‘“(50)2/\')-

(Here we have used £y5-z=25 and e;-z=24.) do,...,dy_; are real constants
independent of z. If z € ¥, ¢, then we can use (2.1) to get

N—1
a(¢1)é1-z2=dy a(Eo)ZN'i'i(lE] dy M—) N (a(9)zn)?—1.

If for some z € ), ¢, but not in £ we have |F(&,, z)| = |F(&, z)|, then our lemma
shows that there is a ¢ so that

a(£)€-z = cos Oa(&o)zy+isin 0~/ (a(£p)zn)? —1.

But a(%))zy ¢ [—1,1], and a simple calculation shows that a(£;)zy and
i~/ (a(%)zn)?>—1 are R linearly independent, so we must have dy= cos 6 and
Y di N\ = sin . Now we can use the lemma again and conclude that

IF(E(),Z)|=|F(E1,Z)I for all ZEE)\,E()'

Since L, ¢, is connected we see that F(¢, z) has its maximum as a function of ¢ at
¢=§&for all ze Xy ¢, or in other words ¥£(z) = |[F(%0,2)| on Iy ¢,.

We now use the parametrization (2.3) of Xy, ¢, and find that ¥g(z) = |F(&, 2)| =
|| on Ey, - When |{] is large then we see from (2.3) that |{| ~ C|z|, so log ¥£(z)
is harmonic on Xy ;,\E, log ¥5(z) =0 on Xy ¢ NE, and log ¥g(z) ~log|z|+C
as |z| goes to o on Ly, ¢,. We now compare this to log ®£(z). This is a plurisub-
harmonic function in CV so its restriction to Xy, ¢, must be subharmonic, and
from (0.1) we see that it has the same behaviour when z goes to infinity and as z
approaches E as does ¥g. Thus on Iy, ¢, log ®g(z) —log ¥Y£(z) is a subharmonic
function of ¢ which is 0 for |{|=1 and is bounded as |{| goes to . Thus
log ®£(z) < log ¥g(z) on Xy, ¢, and since zo was arbitrary this is true in all of cV
and the theorem is proved in the case of a differentiable function a(£).

The nondifferentiable case. If a(£) cannot be chosen as a differentiable func-
tion, then take a decreasing sequence a,(¢) of differentiable functions converging
uniformly to a(£). Let

E,={a:a,(8)t-ze[—1,1] for all £ Sp}.
Since a, ™~ a we see that E,, 7 E so we must have, for all z,
Yi(z) < Pp(z) < Pp, =Yg, (2).
The function ¥z(z) is continuous as a function of E or equivalently a(§), so

Ve (2) M Vgp(z) as n— oo
Therefore
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$p(z)=VYg(z) forall zeCV

and the proof is complete. U
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