THE EXTREMAL PSH FOR THE COMPLEMENT OF CONVEX, SYMMETRIC SUBSETS OF \mathbf{R}^N

Magnus Lundin

Introduction. For a compact subset E of \mathbb{C}^N , we define the extremal function

$$\Phi_E(z) = \sup\{|p(z)|^{1/\deg p}\}.$$

The supremum is taken over all polynomials in N complex variables with $||P||_E \le 1$.

This function has been investigated and used in connection with polynomial approximation in \mathbb{C}^N by Siciak [4]. Zahariuta [6] and with a different method Siciak [5] have shown that

(0.1)
$$\log \Phi_E(z) = \sup \{u(z)\};$$

here the supremum is taken over all plurisubharmonic functions v with $v(z) \le \log(|z|+1)+C$ and $v(z) \le 0$ on E.

Similar functions have been used in connection with potential theory in \mathbb{C}^N and also when investigating the complex Monge-Ampére equation; see for example Bedford [1, 2] and Bedford and Taylor [3] where further references can be found.

In this note we give a fairly explicit formula for Φ_E when E is convex, symmetric with respect to 0 and contained in $\mathbf{R}^N \subseteq \mathbf{C}^N$. This calculation will also give us a complex foliation of \mathbf{C}^N such that Φ_E is harmonic on each leaf except at the intersections between the leaves and E.

Definitions and formulation of the main result. We will always consider \mathbb{R}^N as a subset of \mathbb{C}^N . When we talk about the topology of a subset of \mathbb{R}^N we usually refer to the \mathbb{R}^N -topology.

Let S_N denote the unit sphere in \mathbb{R}^N , and for $\xi \in S_N$, $z \in \mathbb{C}^N$ define $\xi \cdot z = \xi_1 z_1 + \dots + \xi_N z_N$.

For a convex symmetric set $E \subseteq \mathbb{R}^N$ with nonempty interior (symmetric means symmetric with respect to 0, i.e. E = -E), we have a representation

(1.1)
$$E = \{ z \in \mathbb{C}^N : a(\xi) \xi \cdot z \in [-1, 1] \text{ for all } \xi \in S_N \}.$$

Here $a(\xi)$ is a continuous function on S_N which can be chosen as the reciprocal of half the width of E in the direction ξ . The function $a(\xi)$ is unique if E has a tangent plane at every boundary point. We now define

$$(1.2) F(\xi,z) = a(\xi)\xi \cdot z + \sqrt{(a(\xi)\xi \cdot z)^2 - 1}.$$

Here we always choose the sign of the root function to make $|F| \ge 1$. This choice makes, for a fixed ξ , $F(\xi, z)$ into a holomorphic mapping of $\{z : a(\xi)\xi \cdot z \notin [-1, 1]\}$ onto the complement of the unit disc in C, with $|F(\xi, z)| \le C(|z|+1)$.

Received February 27, 1984.

Michigan Math. J. 32 (1985).

Our representation of E (1.1) shows that for every $z \notin E$ there is a ξ such that $a(\xi)\xi \cdot z \notin [-1,1]$ and therefore $|F(z,\xi)| > 1$.

We are now ready to define our candidate for Φ_E . Let

(1.3)
$$\Psi_E(z) = \sup_{\xi \in S_N} |F(\xi, z)|.$$

The preceding discussion shows that $\log \Psi_E(z)$ is plurisubharmonic, $\log \Psi_E(z) \le \log(|z|+1)+C$ and $\log \Psi_E(z) \le 0$ if $z \in E$. This shows that $\Psi_E(z) \le \Phi_E(z)$. We also know that $\log \Psi_E(z) > 0$ if $z \notin E$. Our main result can now be stated.

THEOREM 1. If E is a convex symmetric subset of \mathbb{R}^N with nonempty interior then

$$\Psi_E(z) = \Phi_E(z).$$

The function $\log |F(\xi, z)|$ for fixed ξ is the projection $\mathbb{C}^N \to \mathbb{C}$ in the ξ direction followed by the largest subharmonic function in \mathbb{C} which is 0 on the projection of E and grows not faster than $\log |z|$ as $|z| \to \infty$. We now obtain the following as a corollary.

THEOREM 2. The set $E_R = \{z \in \mathbb{C}^N : |\Phi_E(z)| \le R\}$ is convex if E is a convex symmetric set in \mathbb{R}^N with nonempty interior.

Proof.

$$E_R = \{ z \in \mathbb{C}^N \colon \Psi_E(z) \le R \} = \bigcap_{\xi \in S_N} \{ z \in \mathbb{C}^N \colon |F(\xi, z)| \le R \}$$

But we know that $\{z \in \mathbb{C} : |z + \sqrt{z^2 - 1}| \le R\}$ is convex (it is an ellipse) therefore $\{z \in \mathbb{C}^N : |F(\xi, z)| \le R\}$ and also E_R must be convex.

If E has empty interior (in \mathbb{R}^N) then after a suitable rotation in \mathbb{R}^N , E is a subset of \mathbb{R}^{N-1} so we can use our methods in \mathbb{C}^{N-1} and in $\mathbb{C}^N \setminus \mathbb{C}^{N-1}$ we have $\Phi_E(z) = +\infty$. This is seen from the functions $P_k(z) = k \cdot z_n$. We have $|P_k(z)| = 0$ on \mathbb{C}^{N-1} and $\Phi_E(z) \ge |P_k(z)| \to \infty$ on $\mathbb{C}^N \setminus \mathbb{C}^{N-1}$.

The case when $a(\xi)$ is differentiable. We first prove the theorem in the case when $a(\xi)$ is differentiable. In this case $F(\xi, z)$ is a differentiable function of ξ if $a(\xi)\xi\cdot z\notin [-1,1]$, so we can find the maximum of $|F(\xi,z)|$ for a fixed $z\notin E$ by differentiating with respect to ξ .

Let $z_0 \in E$ be fixed. Then the supremum in (1.3) is attained for some ξ_0 . Now fix a basis $\{e_k\}_{k=1}^{N-1}$ for the tangent space of S_N at ξ_0 . Then we have for the derivatives

$$\frac{\partial}{\partial e_k} \log |F(\xi, z_0)|_{\xi=\xi_0} = \operatorname{Re} \frac{\partial}{\partial e_k} \log |F(\xi, z_0)|_{\xi=\xi_0} = 0 \quad \text{for } k=1, \dots, N-1.$$

If we use the definition of $F(\xi, z)$ (1.2) and note that $(\partial \xi/\partial e_k)|_{\xi=\xi_0}=e_k$, we find (for $k=1,\ldots,N-1$) that

(2.1)
$$\frac{\partial a}{\partial e_k}(\xi_0)\xi_0 \cdot z_0 + a(\xi_0)e_k \cdot z_0 = i\lambda_k \sqrt{(a(\xi_0)\xi_0 \cdot z_0)^2 - 1},$$

where $\lambda = (\lambda_1, ..., \lambda_{N-1})$ is a vector in \mathbb{R}^{N-1} . For ξ_0 and λ fixed and an arbitrary z these equations define a 1-complex dimensional set in \mathbb{C}^N . After a change of

variables, we can assume that ξ_0 is the basis vector in the z_N direction and e_k is the basis vector in the z_k direction. Then we obtain the equations

(2.2)
$$z_k = -\frac{1}{a(\xi_0)} \left(\frac{\partial a}{\partial e_k} (\xi_0) z_N - i \lambda_k \sqrt{(a(\xi_0) z_N)^2 - 1} \right); \quad k = 1, ..., N-1.$$

This set we parametrize by letting

$$a(\xi_0)z_N = \frac{1}{2}\left(\zeta + \frac{1}{\zeta}\right)$$
 with $|\zeta| \ge 1$.

If $|\zeta| = 1$, then $a(\xi_0)z_N \in [-1, 1]$ and $|F(\xi_0, z)| = 1$.

We know that $|F(\xi_0, z_0)| > 1$ so z_0 must correspond to a ζ_0 with $|\zeta_0| > 1$. If we now remember the choice of sign for the root function in (1.2) we see that

$$\sqrt{(a(\xi_0)z_N)^2-1}=\frac{1}{2}\left(\zeta-\frac{1}{\zeta}\right).$$

Thus we have the solution set of (2.2) given as

(2.3)
$$\begin{cases} z_k = -\frac{1}{2a(\xi_0)} \left(\left(\frac{\partial a}{\partial e_k}(\xi_0) - i\lambda_k \right) \zeta + \left(\frac{\partial a}{\partial e_k}(\xi_0) + i\lambda_k \right) \frac{1}{\zeta} \right), \ k = 1, \dots, N-1 \\ z_N = \frac{1}{2a(\xi_0)} \left(\zeta + \frac{1}{\zeta} \right), \quad \text{with} \quad |\zeta| \ge 1. \end{cases}$$

This is a complex manifold with boundary which we call Σ_{λ, ξ_0} . We must remember that this representation is valid only after a suitable change of coordinates in \mathbb{C}^N .

From our construction we know that at $z = z_0$, $|F(\xi, z)|$ attains its maximum as a function of ξ for $\xi = \xi_0$. Our next step is to show that this is true for all $z \in \Sigma_{\lambda, \xi_0}$. We need the following result.

LEMMA. If w_1 and w_2 are complex numbers then

$$|w_1 + \sqrt{w_1^2 - 1}| = |w_2 + \sqrt{w_2^2 - 1}|$$

if and only if there is a $\theta \in R$ so that

$$w_2 = \cos\theta \cdot w_1 + i \sin\theta \sqrt{w_1^2 - 1}.$$

The square root is always chosen to make $|w + \sqrt{w^2 - 1}| \ge 1$.

Proof. Let $w_1 = \frac{1}{2}(\zeta_1 + 1/\zeta_1)$ and $w_2 = \frac{1}{2}(\zeta_2 + 1/\zeta_2)$ with $|\zeta_1|$ and $|\zeta_2| \ge 1$. Formula (2.4) now becomes $|\zeta_1| = |\zeta_2|$ or equivalently $\zeta_2 = e^{i\theta}\zeta_1$. If we now insert this in the formulas for w_1 and w_2 we get precisely $w_2 = \cos\theta \cdot w_1 + i\sin\theta\sqrt{w_1^2 - 1}$.

Now take a $\xi_1 \neq \pm \xi_0$. Since ξ_0 and $\{e_k\}$, k = 1, ..., N-1, form a basis in \mathbf{R}^N we can find real constants $c_0, ..., c_{N-1}$ so that

$$\xi_1 = c_0 \xi_0 + \sum_{k=1}^{N-1} c_k e_k$$
.

This can be rewritten as

$$\xi_{1} = \left(c_{0} - \sum_{k=1}^{N-1} \frac{c_{k}}{a(\xi_{0})} \cdot \frac{\partial a}{\partial e_{k}}(\xi_{0})\right) \xi_{0} + \sum_{k=1}^{N-1} \frac{c_{k}}{a(\xi_{0})} \left(\frac{\partial a}{\partial e_{k}}(\xi_{0}) \xi_{0} + a(\xi_{0}) e_{k}\right).$$

For every $z \in \mathbb{C}^N$ we thus have

$$a(\xi_1)\xi_1 \cdot z = d_0 a(\xi_0) z_N + \sum_{k=1}^{N-1} d_k \left(\frac{\partial a}{\partial e_k} (\xi_0) z_N + a(\xi_0) z_k \right).$$

(Here we have used $\xi_0 \cdot z = z_N$ and $e_k \cdot z = z_k$.) d_0, \dots, d_{N-1} are real constants independent of z. If $z \in \Sigma_{\lambda, \xi_0}$ then we can use (2.1) to get

$$a(\xi_1)\xi_1 \cdot z = d_0 a(\xi_0) z_N + i \left(\sum_{k=1}^{N-1} d_k \lambda_k \right) \sqrt{(a(\xi_0) z_N)^2 - 1}.$$

If for some $z \in \Sigma_{\lambda, \xi_0}$ but not in E we have $|F(\xi_0, z)| = |F(\xi_1, z)|$, then our lemma shows that there is a θ so that

$$a(\xi_1)\xi_1 \cdot z = \cos\theta a(\xi_0)z_N + i\sin\theta\sqrt{(a(\xi_0)z_N)^2 - 1}$$
.

But $a(\xi_0)z_N \notin [-1,1]$, and a simple calculation shows that $a(\xi_0)z_N$ and $i\sqrt{(a(\xi_0)z_N)^2-1}$ are **R** linearly independent, so we must have $d_0 = \cos\theta$ and $\sum d_k \lambda_k = \sin\theta$. Now we can use the lemma again and conclude that

$$|F(\xi_0, z)| = |F(\xi_1, z)|$$
 for all $z \in \Sigma_{\lambda, \xi_0}$.

Since Σ_{λ, ξ_0} is connected we see that $F(\xi, z)$ has its maximum as a function of ξ at $\xi = \xi_0$ for all $z \in \Sigma_{\lambda, \xi_0}$, or in other words $\Psi_E(z) = |F(\xi_0, z)|$ on Σ_{λ, ξ_0} .

We now use the parametrization (2.3) of Σ_{λ,ξ_0} and find that $\Psi_E(z) = |F(\xi_0,z)| = |\zeta|$ on Σ_{λ,ξ_0} . When $|\zeta|$ is large then we see from (2.3) that $|\zeta| \sim C|z|$, so $\log \Psi_E(z)$ is harmonic on $\Sigma_{\lambda,\xi_0} \setminus E$, $\log \Psi_E(z) = 0$ on $\Sigma_{\lambda,\xi_0} \cap E$, and $\log \Psi_E(z) \sim \log|z| + C$ as |z| goes to ∞ on Σ_{λ,ξ_0} . We now compare this to $\log \Phi_E(z)$. This is a plurisubharmonic function in \mathbb{C}^N so its restriction to Σ_{λ,ξ_0} must be subharmonic, and from (0.1) we see that it has the same behaviour when z goes to infinity and as z approaches E as does Ψ_E . Thus on Σ_{λ,ξ_0} , $\log \Phi_E(z) - \log \Psi_E(z)$ is a subharmonic function of ζ which is 0 for $|\zeta| = 1$ and is bounded as $|\zeta|$ goes to ∞ . Thus $\log \Phi_E(z) \leq \log \Psi_E(z)$ on Σ_{λ,ξ_0} and since z_0 was arbitrary this is true in all of \mathbb{C}^N and the theorem is proved in the case of a differentiable function $a(\xi)$.

The nondifferentiable case. If $a(\xi)$ cannot be chosen as a differentiable function, then take a decreasing sequence $a_n(\xi)$ of differentiable functions converging uniformly to $a(\xi)$. Let

$$E_n = \{a : a_n(\xi) \xi \cdot z \in [-1, 1] \text{ for all } \xi \in S_N \}.$$

Since $a_n \setminus a$ we see that $E_n \nearrow E$ so we must have, for all z,

$$\Psi_E(z) \le \Phi_E(z) \le \Phi_{E_n} = \Psi_{E_n}(z).$$

The function $\Psi_E(z)$ is continuous as a function of E or equivalently $a(\xi)$, so

$$\Psi_{E_n}(z) \searrow \Psi_E(z)$$
 as $n \to \infty$.

Therefore

201

and the proof is complete.

REFERENCES

- 1. E. Bedford, Extremal plurisubharmonic functions for certain domains in C², Indiana Univ. Math. J. 28 (1979), 613-626.
- 2. ——, Envelopes of continuous plurisubharmonic functions, Math. Ann. 251 (1980), 175–183.
- 3. E. Bedford and B. A. Taylor, *The Dirichlet problem for a complex Monge-Ampére equation*, Invent. Math. 37 (1976), 1–44.
- 4. J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322–357.
- 5. ——, An extremal problem in a class of plurisubharmonic functions, Bull. Acad. Polon. Sci. Sér Sci. Math. Astronom. Phys. (8) 24 (1976), 563-568.
- 6. V. P. Zahariuta, Extremal plurisubharmonic functions, orthonormal polynomials and the Bernšteĭn-Walsh theorem for functions of several complex variables, Ann. Polon. Math. 33 (1976/77), 137-148.

Department of Mathematics Chalmers University of Technology and the University of Göteborg Göteborg, Sweden