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We denote by JC the set of functions f univalent and analytic in the right half
plane Re z > 0 which satisfy the condition

lim sup x2| f(x)| = 1.
X — 0
This class was introduced by Hayman [9], who proved that each function
Jfe 3L is the Laplace transform of a function a(¢):

J(z)= S: a(tye **dt, Rez>0.

The “Koebe function” for 3C is k(z) =z 2, the corresponding inverse trans-
form being a(¢) =¢. Hayman [9, p. 6] showed that

M |° 1rasinlay=|" [ka+inldy=m, sese.
Set a(t)=0 for ¢ =0. The inverse Fourier transform of f(1+iy) is a(f)e™".
Hence a(¢) € C(R) and

Ko=sup|a(1)|
fed
is finite. If fe 3C and A > 0 then A2 f(\z) € 3C and the inverse transform of N2 f(Az)
is Aa(t/\). We deduce that

la()| = Kpt, 0<t<oo, feIC.

Such “homogeneity” arguments will appear frequently in this paper.
One of the main results of [9] is the relation

Ko= lim = supf|a,|: fe S},
nowo N
where S is the usual class of functions f(z) =z+ X,_5 a,z" univalent in |z| <1.
Hayman’s “asymptotic Bieberbach conjecture” Ky=1 remained unproved until
recently, the best known estimate having been Horowitz’s K, =1.066 [11]. Nehari
[12], and later Bombieri [3], proved that Ky =1 implies Littlewood’s conjecture
|a,| =4n|ag| for the coefficients of non-vanishing univalent functions. Con-
versely, Hamilton [6] showed that the truth of Littlewood’s conjecture implies
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Ky =1. Since De Branges [4] has now proved Bieberbach’s conjecture, it follows
that the conjectures of Hayman and Littlewood are true too.

In [7] Hamilton proved that a(¢) is continuously differentiable on (0, ). The
purpose of this note is to give a sharper result of this kind. We shall prove that in
fact a’ satisfies a Lipschitz condition of order 1/2+7% on every compact sub-
interval [e, 1/e] of (0, ). Here 5 is a positive constant which we fix at 5 =1/632.
We do not know what the largest possible 7 is.

In order to state our result precisely it is convenient to introduce a certain
normalized subclass of JC.

DEFINITION. fe 3 if fe 3C and sup,cg|f(1+iy)|=]f(1)].

For fe JC we have lim,_, , ., f(1+iy)=0. This follows from (1) above and
(1.2) in §1. Thus the sup above is attained at some yse R. Now f(z+iy,) € IC
when fe JC [9, p. 6]. Thus, for each fe JC there exists yo€ R such that f(z+iyy) €
JCy. If a(¢) is the inverse transform of f(z), then the inverse transform of
S(z+iyo) is a(t)e "o,

Suppose that o> 0. Write « =N+ where N is an integer and 0=8<1. We
say that a function ¢ belongs to C*([J) if ¢ is N times continuously differentiable
on the interval 7 and

leM(t)— o™t | =Clt— 1|5, 1, 1€,
for some C.

THEOREM 1. For n=1/632 we have ae C32*1([e,e ") for every ¢ >0 and
fe€ 3. Moreover, if fe 3Cyand | f(1)|=A>0 then

Q) la’(£)| = C(e), est=e”!,
and
3) la’(t))—a’(t2)| S C(A, ) |ti— 12| *¥7, t,tele, e '].

Here C(e) and C(A, ¢) are constants depending only on the parameters shown,
not necessarily the same in different occurrences. Thus the inverse transforms of
functions in 3Cy for which | f(1)| is uniformly bounded away from zero form a
bounded set in C3/2+"([e, ¢~ '), and the derivatives of these functions are uni-
formly equicontinuous on compact sub-intervals of (0,o). The examples
f(z) =(z—iye) "2, a(t)=te'"’0 show that there are no good uniform Lipschitz
bounds in the full class 3C.

Examples in §3 show that C(e) in (2) cannot be chosen independently of € and
that C(A, €) in (3) cannot be chosen independently of either 4 or ¢. Concerning
(2), the proof we give of Theorem 1 yields only |a’(¢)| = C(A, €). To get rid of
the dependence on A one needs the following.

THEOREM 2. If fe 3Cy then

|* pra+miasc.
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Since the inverse Fourier transform of yf’(1+iy) is i(d/dt)(te 'a(t)), 2)
follows from Theorem 2. From (2) along with homogeneity considerations
follows the inequality

[la(t)|—|a(t)||=Clti— 2], 4, t2€(0, ).

This is the JC version of Hayman’s inequality ||a,4i|—|a.||=C for feS
([10]). Theorem 2 can be proved by mimicking the proof in [10] that

Slzi=r |z—z1||.f'(z)||dz| =Cn, feS,

where r=1—1/n and |f(z;)| = max{|f(z)|: |z| =r}. Since this is only an inci-
dental part of our paper, we shall omit the details.

Returning now to the situation of Theorem 1, we state a more general version
involving powers of fe JC. Let y=1/632 again. For p > 0 write 2p—% +9=N+8
where N is an integer and 0=8<1.

THEOREM 3. If p= - —1 > then for each fe JC there exists b e C(0, ) such that

) f"(z)=S: b()e~%dt, Rez>0.

The functions b satisfy

) |b()|=Ct?!, 0<t<oo,

©6) be C?P~ V2 1([¢,e7]), €>0.

Moreover, if fe 3Cyand | f(1)| = A then

(7) |6YV(t)| = Cle, p, A), tele,e '], j=N,

®) |6M(t)—bN(8)| = C(A, 6, p) | ti—1|P, 1, taele, €711,

Inequality (5) is the 3C analogue of the “Littlewood-Paley” theorem in S [13,
p. 131]:

M(r, f)=0(1-r)"*)=a,=0(n*"").

For « >3 this is classical and for o =-;- and slightly smaller it is proved by the
author in a forthcoming paper [2]. It is known [13] to be false for « =.17. The
techniques of [2] are needed to prove (5) for 21; =p=

Probably the most interesting cases of Theorem 3 are p —1, 2, and l . The
p =7 case is related to the unsolved problem about whether ||by, 1| — |b2,, E
Cn~'2 for odd univalent functions in |z]| <1 ([5, p. 177]).

In §1 we prove some lemmas which easily give the proof of Theorem 1 in §2.
The proof of Theorem 3 is similar to that of Theorem 1, and we will say just a
little bit about it. Then in §3 we give the examples already mentioned in connec-
tion with Theorem 1.

1. Preliminary results. For any univalent functions g in Re z >0 and any two
points z;, 2 in the right half plane with |z;—z,| = (1—¢) Rez; (¢ >0) we have
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(1.1) Cle) '|g'(z)| = g’ (z1)| = Cle) |g'(z2)].

To prove this, note that it suffices to consider z; = 1. (Look at g;(z) =g(A\z+ip)
for suitable A >0 and p € R.) Then define ~ in |z]| <1 by h(z) =g((1—2)/(1+2)).
This function satisfies |h”(z)| = C(1—|z|*)~"|h’(z)|, [13, p. 21, Lemma 1.3],
and (1.1) follows by integration and change of variable.

Now assume also that g is zero free. If z;, z, are as in (1.1) then

(1.2) Cle) ' |g(z2)| = |g(21)| = C(e) |g (22
This is proved the same way, making use of the inequality
(1.3) |h'(z)] =4(1—|z|*) | h(z)],
valid for zero free univalent functions in |z| <1 ([8, p. 95]). (1.3) also shows that
(1.4) (Rez)|g’(z)|=2|g(z)|, Rez>0.
Integration of (1.4) gives
xtle(x)| =x31g(x)|, 0<x<x;<oo.

If fe 3C then x2|f(x)| =1[9, p. 6, (¢)]. Also, fis zero free in Re z> 0, since
lim,_, . f(x)=0. Thus, if fe 3C,

(1.5) XSO =X f)[ =1, 0<x<x;<co.

Our first lemma gives a Hardy-Littlewood type of sufficient condition for a
function to be Lipschitz.

LEMMA 1. Suppose that He L\(R), that h(y)= [, H(t)e " dt, and that
Jor some >0, ag¢ Z,

(1.6) S ()| dy=s—®, szl
sS|y|S2s
and
1
(1.7 [~ 1nay=1.
Then He C*(R) and
(1.8) |HY o= C(a), j=0,1,...,N,
(1.9) |HM (1) —HM ()| = C() |t — 1%, 1, 1,€R.

Here a=N+B3 with Ne Z and 0<(3<1.
Proof. For j=0,..., N we have

= ol ars| inplays 5 7 1h(5)| dy = Clan,

- 2k§|y|§2k+l

which implies (1.8).
Let u(t+io), a>0, be the Poisson integral of H®™. We will show that

(1.10) ’%(Hia) =C(a)o®, 6>0.
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Then (1.9) follows from [14, p. 142, Proposition 7].
Write P,(¢t) =(1/7)a/(t*>+02). Then

du ) o JP,;
%(t+lo)—g

—w Jo

(1) HWN)(t—7) dr.
From [14, p. 142, (50)] and (1.8) we have
(1.11)

—g—‘i(mio) =|HM | Co'=C(a)s™], o>0.
g

Next, the Fourier transform of (du/da)(f+io) is

a
%((iy)Nh(y)e“"}") = —|»|(iy)Nh(»)e=V!,

Fix o€ (0,1), and denote the function on the right by #;(y). Let m be the
integer with 27"~!< ¢=2"". By (1.6) we have, for k=0,

Szk | =2k +1 |y (p)| dy < 2W+Dkg—02kp ~ka  g=02K k(1)
=|y|l=
Hence
m 00
SI | llhl(J")ldyé Y 2kUI=B o =2mThk-B)
r= k=0

k=m+1
= C(a)d® !, O0<o<l.

By (1.7) the same inequality holds for integration over (—oo, ©). This inequality
together with (1.11) for ¢ =1 yields (1.10). ]

The next lemma is essentially due to Hayman (cf. [9, p. 11]).

LEMMA 2. If fe 3Cy then

12
(1.12) |f(1+iy)|éy_zeXp{(CJr1°g+|y|)l/2(c+4log |f(11)|> }

Proof. By (1.2), it suffices to prove this with | f(1+4iy)| instead of | f(1+iy)]|.
By (1.5) we may assume y>1.

Fix y>1 and let Ry=]|f(1+4iy)|. Since |f(1)|=|f(1+4iy)|, there exists
s €[1, ) such that | f(s)| =R,. If s= y then by (1.5)

| f(1+4iy)|=|f(s)|Ss 2=y 2,
and (1.12) holds.

Assume 1 =s= y. The circles centered at y and y+4iy with radius y do not
intersect, and contain the points s and 1+ 4iy respectively. Define R, = y ~2. Then
R,z max (] f(»)|, | f(y+4iy)]), by (1.5) and the fact that f(z+iyy)e IC for
vo€ R (I8, p. 6]). If R, = e?R, then (1.12) holds. If R, > e2R, then, since f is uni-
valent and zero free in Re z >0, Theorem 2.6 of [8] asserts that

AN Ry -1
(1.13) (C+log ?> +(C+logy)_l§2(log—1—2———1> .
I
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Here C>0. Since R,=|f(s)|=s72|f(1)| (by (1.5)) and R;=y 2, we have
R, Z Ry| f(1)|(¥/s)?, so that

y 1 ( 1 Rz)
log—==—{1lo +log —=
®'s T Tk
Now | f(1)]=1and R, Ze%R,, so from (1.13) it follows that

R -1 R\!
C+lo -lgz(lo —’“——1) —2(2C+lo +1lo ——)
( gy) g R, g 7] g

-2
§(8C+4log |f(11)| )<log %—) .
1

lo &<(C+lo yYW2( C +41o 1 \"

which gives (1.12). ]

Hence

The next lemma is a slight generalization of an inequality of Clunie and Pom-
merenke (see [13, p. 132]). Suppose that f is univalent in |z| <1 and that E C
[0, 27]. For fixed r € (0,1) define M = supg| f(re*®)|, and for 6 € (0, 1/40] define
k>0 by

1 1—56+1062

—_— k=

2 2-%
LEMMA 3. With the situation specified above,
S;" |f’(rei0)| do < C(6)|f’(0)|6/(2_5)M(2_25)/(2_5)(1—r)_'/“".
Proof. It follows from Lemma 5.4 of [13, p. 129] that
(1.14) S;” | f/(re®)|? do = C(8) | £/(0)|>(1—r) 100",
Also, Lemma 5.2 of [13] gives
(1.15) SE | (re®®)2do = C(1—r) "' M2

That lemma is stated for fe S, but for the special case considered here the
proof there is valid for all univalent functions. For B> 0 let

E\={0cE: |f'(re®)|=B), E,=E\E,.
Then

[ reeldosB ] r ey do+BT | |1 e db.

Choosing
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o~ —1/(2-6) oo 1/(2—6)

J— 7 [ 7 I

B-(SE|f(re )| d9> (SE|f (re’®)| df))

and using (1.14) and (1.15), we obtain Lemma 3. O

Finally, we need a localized version of Lemma 3 for functions defined in a half
plane. Let 6 and « have the same meaning as in Lemma 3.

LEMMA 4. Suppose that f is univalent and zero free in Re 2 >0, that s > 1, and

write M = sup{| f(1+iy)|:s = y =2s}. Then
2

@16 |71+ dyscE)|fis) e Ime-e-dgy

Proof. Define g(z) in Rez >0 and h(z) in |z] <1 by

11—z
= ] N =h —— )
2@ =Sz +ie), 8@ =h(5 +z)

and define r€(0,1) by s '=(1=r)(14+r)"". Let E be a subarc of the lower
quarter-circle re’®, —x/2=6=<0, to be specified later, and let E, be its image in
Re z > 0 under the mapping z — (1—z) ~'(1+z). From Lemma 3 applied to 4 we
deduce

(1.17) SE lg’(z)||dz] gC(5)|gr(1)|6/(2—6)M1(2_za)/(2—5)s1/2—K

1
where M| =sup{|g(z)|:z€E;}. Now E, is a subset of the circular arc running
from z=s""to z=(1+r2)"'((1—r?)+2ri) with increasing real and imaginary

parts. Let E, denote the projection of E; onto the line Re z =5 . Using (1.1), it
is easily seen that

(1.18) §E2 lg’(z)||dz| §CSE1 g’ (2)]|dz].

If s =3 then (1.16) follows from (1.1), (1.2), and (1.4). Assume s> 3. Then
r>1/2 and 2r(1+r2)"!'>4/5. Choose E so that E, is the line segment from s~
tos~'+i/2. By (1.17), (1.18), (1.2), and (1.4)

1/2
Jo

where M, = sup{|g(z)|:z € E,}. A change of variables gives

1
g/<_;_ +l}’> | dy é C((S) |g(1)|6/(2—5)M2(2—26)/(2——6)S1/2—K’

(3/2)
S (A +ip)| dy = C©8) | f(s +is) |/ @0 MR-/ g1/2 -«
S

where M; = sup{|f(1+iy)| :S§)’§%S}.
By (1.2), we can replace | f(s+is)| by | f(s)|. Replacing s by %s and then add-
ing the integrals on the left, we obtain (1.16). O

2. Proof of Theorem 1. Take 6=1/40 in Lemma 3. Then «=1/316. Define
n=%k=1/632. Suppose fe 3Cy. By Lemma 2, | f(1+iy)| = C(A)|y|""2%
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Applying Lemma 4, we obtain for s =1
2
S s 1 (L+ip)| dy§C(A)|f(s)la/(z—a)(sn—z)(z—26)/(2—5)S1/2—K_
S
Since | f(s)| =572, by (1.5),
2s
@.1) S |f'(1+iy)| dy = C(A)s~¥27", s=z1.
S

The same inequality holds for integration over [—2s, —s]. Also, by (1.1),
(1.4), and (1.5), {4, |f (1 +iy)|dy=C.

It follows from Lemma 1 that te ‘a(t)e C¥**"(R). Calculus shows that
ae C¥**1([¢, ¢ ~'1). The bounds (2) and (3) follow from (1.8) and (1.9). O

For general fe 3C the conclusion fe C¥?+7 is obtained by consideration of
Sf(z+iyy) for appropriate y,.

Concerning Theorem 3, the smoothness statements are proved like those in
Theorem 1, starting from the inequality

2
2.2) j lg’(1+iy)| dy = C(A, p)s—@P—V2+0 | 5=,
S

Here g(z) = f(z)? and fe 3Cy. For p=1, (2.2) is obtained by replacing f by g
in the argument used to prove (2.1). For p>1 it follows from g’ =pf?~1f",
together with (2.1) (with y replaced by some ;> %) and Lemma 2. In the deduc-
tion of (6) from (2.2) there is a minor nuisance caused by the case 2 p—% +nel.
To avoid this, note that (2.2) still holds for some %, > » and then use the fact that
ce(I)c C¥(I) if o’ < o and I is compact.

For p >% we have, for fe 3C,

o ) dy

2.3 | 1+inrays|” —Lo=c),

@3) L Masinlrdys | s =C)

where C(p) is independent of p for pz%, say. This inequality follows from
Theorem 1 in [1] together with Hayman’s argument to prove Theorem 2 in [9].
Homogeneity gives appropriate bounds for integrals on the line Re z = x; exis-
tence of b(¢), along with the bound (5), is proved like that of a(#) in the case
p=1.

For small p we use instead of (2.3)

2.4) S _lga+inldysc, §-1n 1.

IIA
lIA

p

This and homogeneity show that there exists B(#) such that |B(¢)| = Ct 20 and
g'(z)= g: e *B(t) dt.

Then b(f) = —t ~'B(¢) is the function of Theorem 3.

For p> 7} , (2.4) can be obtained by adapting the argument used to prove
Theorem 5.3 of [13], but the constant on the right obtained by this method blows
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up as p — :}. In [2] we explain how to prove (2.4) on the range indicated with an
absolute constant. From (2.2), which we have proved in this paper, it follows
that g’(1+iy)e L'(R) for p= ;1; —%n, but the bound on the norm blows up when
max,|f(1+iy)| - 0.

3. Examples. Our first family of examples will show that the constant C(A4, ¢)
of (3) in Theorem 1 cannot be chosen independently of 4, no matter how small
e is. For s> 0 define g(z) = (z?+s2)~". These functions belong to 3C. For s>1
the maximum of |g(1+iy)| is attained at +y,, where y§=s*—1. Thus f(z)=
g(z+1iyg) belongs to JCy. The inverse transform of f is

] ist___e—ist
a(t)=e~"0! _
2is

so that
a'(t) =% (1+yos e i L O™, s 0.

Let ;=1 and t,=n(s+y) . Then, as s >, a’(t;)—1, a’(t,) - —1, and
t,—t; — 0. Thus the collection of functions {a’:s>1} is not equicontinuous on
any neighborhood of 7 =1, and the constant C(A, ¢) depends essentially on A4.

The second family of examples will show that C(A, ¢) depends essentially on e.
Let @ = C\T', where I' is the union of the negative axis and a small symmetric cir-
cular arc {w=Re'?:|p—7|=7}, and let g be a conformal mapping from
Re z>0 onto Q with g(0) =00, g(e)=0. Then g has a double zero at z=o0, a
double pole at z =0, and g(z) = g(Z). Multiplying g by a suitable positive con-
stant, we may assume g € JC.

Now |g(iy)| is a symmetric function on (—o0, ) which is non-increasing on
(0, ). It is not hard to show that log|g(z)| is the Poisson integral of log|g(iy)|,
and it follows from this that |g(x+iy)| is a symmetric non-increasing function
of y for every x> 0. Thus, the functions f defined by f(z) =Ng(Az), A\>0, all
belong to 3Cy.

Let b(¢) denote the inverse transform of g. If b’ were a constant C on (0, o)
then, since b(¢) = O(¢), it would follow that b(¢) = Ct, and hence that g(z) =
cz "2, which is false. Thus there exist s, s, € (0, ) such that |b’(s,)—b’(s;)| =
6>0.

Denoting by a(¢) the inverse transform of f, we have a’(¢) =b’(\"'¢), so that
|a’(As;)—a’(Asy)| =6. Letting A »0, we see that the collection of functions
{a’:0<\=1} is not equicontinuous on (0,1], even though |f(1)]=7|g(\)|
tends to a positive limit as A —» 0.

The last example will be an fe JCq for which a’ is not uniformly continuous on
(1, 0) and a’ & L(1, ). Thus the interval [e, e '] in (2) and (3) of Theorem 1
cannot be replaced by [e, o). Let @ =C\I', where I is a polygonal path from
w=0 to w=oo with just one small bend. Let g be a conformal mapping from
Re z>0 onto © with g(0) =, g(o)=0. Multiplying g by a suitable complex
constant, we may achieve also g(1) >0 and g € 3C.

There exists s >0 such that g’(s)/g(s) ¢ R. To see this, observe that if
g’(x)/g(x) were everywhere real then so would be log g(x)—log g(1), and hence
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g(x) would be real. Then Q would be symmetric with respect to the real axis,
which is impossible since I" has a bend.
Fix an s> 0 with g’(s)/g(s) ¢ R. Then

ad . g'(s+iy)
e log|g(s+iy)| Im 25T 1)
does not vanish at y=0, and hence the maximum of log|g(s+iy)| occurs at
some y, # 0. Define' f(z) = s2g(sz+iy,). Then fe 3C,.
Denote the inverse transforms of f and g by a and b respectively. Let g=
s “1yo. Then a(¢) =sb(ts e 9.
I claim that

3.1D lim ¢ ~'b(¢) = p exists and is non-zero.

f— o0

Assume this for the moment. Then we can write
a(t) = pte ' \(¢),

where lim,_ ., \(¢)=1. Define t,=2wnqg"', t,=Q2n+1)xq~". Then a(t,)=
ptaN(ty), a(ty) = —pt,N(t;). If a’ were uniformly continuous on (1, ) there
would exist a constant C such that |a’(¢) —a’(¢')| = C, whenever ¢, t' € [, ty41],
n=1,2,3,.... We leave it to the reader to show that this is incompatible with the
previously established relations a(¢,) ~ pyn, a(t,) ~ —pin (py=2wpqg~'). These
relations show also that a’ ¢ L*(1, «).

It remains to prove (3.1). By the Schwarz-Christoffel formula

_ z-—iy1 U
(2)=Az 7 ——
¢'(2) (H%)

where AeC, y, y,>0, and v is a real number with small absolute value. Thus,
for t >0,

(3.2) —tb(t) =22 ef2z~3(z—_fﬂ)7dz,
27wi JL zZ+iy;

where L is the vertical line from x —joo to x + ico, x denoting any positive number.
Deform L so that it becomes coincident with the imaginary axis except for a
small semicircle centered at 0 and traced counterclockwise. Let L; denote the
same path as L, except that the semicircle is in the left half plane and traced
clockwise. From the dominated convergence theorem and Riemann-Lebesgue
lemma it follows that

_— Y
(.3) limg e’1z-3<z—’_—yl) dz=0.
Z+iy;

{— o0 Ll

Now ((z—1iy,)/(z+iy;))" is analytic in the plane with the slits {iy: y = y,} and
{iy:y=—y,} removed. Let X7_,c,z" be its power series expansion near the

origin. Then
—1—~S ——S e'iz 3 2= 7dz=itzc +te+c
27i L Ji, 2+iys o TR
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With (3.2) and (3.3), this shows that

b(t)~ —%Acot, t — oo,

Since A# 0 and ¢o=(—y;/y,)? #0, we have (3.1).
We do not know any examples of fe JCy for which &’ is not uniformly con-

tinuous on (0,1), or even for which a’ ¢ L*(0,1).

10.

I1.

12.

13.
14.
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