TWO COUNTABILITY PROPERTIES OF
SETS OF MEASURES

G. Koumoullis and A. Sapounakis

1. Introduction. Let X be a (Hausdorff) topological space and let C(X)
denote the space of bounded continuous real-valued functions on X. The space
of (non-negative) bounded o-additive Baire measures on X is denoted by M, (X))
(M, (X)). This paper deals with the following countability properties:

(a) A subset M of M,(X) is called countably separated (c.s.) if there exists a
sequence { f,} in C(X) such that for every u and v€M

(%) andu=Sj§1dV for all n=p=".

(b) A subset M of M,(X) (resp. M, (X)) is called countably determined
(c.d.) in M, (X) (resp. in M, (X)) if there exists a sequence {f,} in C(X) such
that for every p €M, (X) (resp. p€M, (X)) and véM

andu=8f,,dv for all n=p€eM.

Countability properties of this kind occur naturally in classical and functional
analysis, probability theory and general topology. Here are some examples.

The classical moment problem (see VII.3 in [6]) relates to R and the particular
sequence f,(x)=x", x €R. It is clear that if u, » are carried by a bounded closed
interval, then (*) holds. If u, v are arbitrary Baire measures on R, (*) does not
hold, even if all moments are finite (see example on page 227 in [6]). However, a
different sequence { f,,] exists such that (*) holds for every ¢ and v € M, (R), that
is, M, (R) is c.s. In fact this is true in a more general set-up (see §4).

The c.s. property is related to the separability of C(X) as follows: M, (X) is
c.s. if and only if C(X) is separable in the weak topology ¢(C(X), M, (X)), or
equivalently in any locally convex topology which yields M, (X) as dual space
(see §4).

A topological space Y is called separably submetrizable [20] if there exists a
sequence {g,} in C(Y) which separates points of Y. It is clear that Y is separably
submetrizable if and only if Y with its Baire o-algebra is a countably separated
measurable space [5, p. 6] if and only if the set M= {§,: y €Y} of Dirac measures
on Y is c.s.

If M is a c.s. subset of M;(X) and (f,] is as in the definition of the c.s.
property, the sequence g,: M —>R, n=1,2,..., with
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(**) gn(P")=andH'

separates the elements of M. Thus M endowed with the relativization of the weak
topology o(M,(X), C(X)) is separably submetrizable. The converse is also true
when M is a vector subspace of M, (X)), but not in general (see §2).

The c.d. property appears naturally as follows: consider M, (X) as a subset of
R, Then a set MC M, (X) is c.d. if and only if M is determined by countably
many indices in the sense of [15].

A subset Y of a topological space X is called distinguishable in X [7, p. 408] if
there exists a sequence {g,} in C(X) such that for every x€X and y€Y

gn(x)=g,(y) forall n=x€Y.

Every c.d. set of measures is distinguishable, but not conversely (see §2). The
above discussion shows that the c.s. (resp. the c.d.) property of a set of measures
M is derived from the notion of separable submetrizability (resp. distinguish-
ability) if we require the sequence {g,} to be of the form (**).

The purpose of this paper is to summarize conditions on X and a set M of
measures which satisfies the c.s. and c.d. properties. Our own work on the c.s.
property received impetus from the following well-known result.

THEOREM A. For a compact space X the following are equivalent:
(i) M (X) isc.s.;

(i) M} (X) is metrizable in (M, (X), C(X));

(ili) X is metrizable;

(iv) C(X) is norm-separable.

A proof of the equivalence of (iv) to (i) and to (iii) follows easily from the
Stone-Weierstrass Theorem and the fact that every separably submetrizable
compact space is metrizable. The equivalence (ii) ¢ (iii) is a well-known special
case of {21, Part II, Theorem 13].

Thus for a compact space X the c.s. property for M, (X) is fully characterized
by the above theorem. In §3 we consider a compact space X and our focus of
attention is the set My of non-atomic measures in M, (X). We show that the c.s.
property for My is equivalent to My being separable metric; but X need not be
metrizable. This property implies the c.d. property for My and, when X has no
isolated points, the separability of X. Moreover, we show that in general no
other implication between these three conditions is valid. Thus the countability
properties for My describe two classes of compact spaces which properly contain
compact metric spaces. We also prove that for compact totally ordered spaces
without isolated points, each of the countability properties for My is equivalent
to the separability of X.

If X is an arbitrary Hausdorff space and M, (X) and M, (X) denote the spaces
of the 7-additive and tight (or Radon) measures on X (see [21]), then the inclu-
sions M, (X)CM.(X)CM,(X) hold. When X is completely regular, there are
strict topologies 8,, 8; and 8, on C(X), which yield M,(X), M, (X) and M,(X)
as dual spaces, respectively ([17]; see also [22]). When X is compact, the above
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strict topologies coincide with supremum-norm topology and, of course, the
corresponding spaces of measures coincide as well.

In §4 we generalize Theorem A to non-compact spaces. We show that M;(X)
(for s=a,7 or t) is c.s. if and only if (C(X), B;) is separable if and only if
M (X) is separably submetrizable. Summers [20], using a Stone-Weierstrass
Theorem for (C(X), B;), has proved that the last two conditions for s=¢ are
equivalent to X being separably submetrizable. Our approach does not make use
of Stone-Weierstrass Theorem (in fact, (C(X), 8,) and (C(X), 8;) do not have
in general the Stone-Weierstrass property [8]); for s=7 we have a positive
answer to a question of Summers. We also examine the validity of (iii)= (i) in
Theorem A. In [20] it is proved in an equivalent form that M,"(X) is c.s. if X is
metrizable with cardinality <c, the cardinal of the continuum. We extend this
result to M,;7(X) and show that it cannot be extended to M, (X). Finally, we
show that these results remain valid for some non-metrizable spaces.

The authors wish to thank Professor S. J. Taylor of the University of Liverpool
for his suggestion of the countably separated property.

NOTATIONS. All topological spaces X are assumed to be at least Hausdorff.
A zero set in X is a set of the form Z=f"'({0}) for some f€ C(X) and a cozero
set in X is a complement of a zero set. The family of Baire (resp. Borel) sets
is the o-algebra B (X) (resp. B, (X)) generated by the zero (resp. closed) subsets
of X.

If u€M,(X) and f€C(X), we write u(f) instead of | fdu considering u as a
functional on C(X). All topological statements about the spaces of measures
will be with respect to the weak topology ¢(M,(X), C(X)).

If f: X—Y is a continuous function, we define fi: M,(X)—>M,(Y) by
L) (g)=p(gef) for all geC(Y). It is well known that f, is continuous,
[ (M (X)) CM(Y) for s=0, 7 or t and f,(p)(B)=pu(f Y (B)) for BEB(Y).

For a Baire (resp. Borel) measure ¢ on X and a measurable set A, we denote by
w4 the Baire (resp. Borel) measure on X with p4 (B) =u(ANB). The cardinal of
a set A is denoted by card(A4).

2. Preliminary results. This section contains some useful characterizations of
the c.s. and c.d. properties for sets of measures on an arbitrary topological space
X and connections to some known countability properties.

PROPOSITION 2.1. For a subset M of M,(X) the following are equivalent:

(i) M is c.s.;

(ii) there is a countable family H of bounded Baire measurable functions such
that if n, v€EM, then

Sfdpa=§fdv for all fEH= p=y;

(iii) there is a countably generated o-algebra B of Baire sets such that if
w, VEM, then

w(B)=v(B) forall BE®=p=ny;
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(iv) there is a continuous function f from X onto a separable metric space
such that if u,vEM, then

Si(p)=fi(v)=pn=v.

PROPOSITION 2.2. For a subset M of M,(X) (resp. M} (X)) the following
are equivalent:

(i) Misc.d. in M,(X) (resp. in M;5(X));

(ii) there is a countable family H of bounded Baire measurable functions such
that if nEM,(X) (resp. n€EM (X)) and vEM, then

S fdpL:S fdv forall f€H=pneEM;

(iii) there is a countably generated c-algebra & of Baire sets such that if
REM,(X) (resp. €M, (X)) and vEM, then

w(B)=v(B) forall BE®=>ueM;

(iv) there is a continuous function f from X onto a separable metric space such
that if nEM,(X) (resp. n€ M, (X)) and vEM, then

fulp)=fi(v)=peEM.

The proofs of the above propositions are based on the method used in [11, 3.2
and 3.3] and are omitted.

The next two propositions contain some cases where the c.s. and c.d. proper-
ties coincide with the separable submetrizability and distinguishability, respec-
tively.

PROPOSITION 2.3. (i) For a compact subset M of M,(X) we have: M isc.s. if
and only if M is separably submetrizable if and only if M is metrizable.

(ii) For a compact subset M of M,(X) (resp. M, (X)) we have: M is c.d.
if and only if M is distinguishable if and only if M is Gy in M,(X) (resp. in
M (X)).

Proof. (i) Every compact separably submetrizable space is metrizable, so it is
enough to show that the metrizability of M implies the c.s. property. Since M is
also compact, it is second countable. Thus we can find ., €M, f, € C(X), €,>0,
for n=1,2,..., such that all finite intersections of the sets

U,={reM: |(M—ﬂn)(fn)|<en], n=1,2,...

form a base for the open sets in M. Then { f,} separates measures in M.

(ii) Every compact distinguishable set is G;, so it is enough to show that if M is
G; then M is c.d. Using the compactness of M, we can find u, €M, f,€C(X),
€,>0, forn=1,2,...,such that M is the intersection of some finite unions of the
sets

Up={rE€EM;(X): [(p—pn) ()| <en}, n=12,....
Then { f,} satisfies the definition of the c.d. property for M. 0O
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PROPOSITION 2.4. (i) If M is a vector subspace of M,(X), then M is c.s. if
and only if M is separably submetrizable. (ii} If M is an arbitrary subset of the
vector space M, (X ), then M is c.d. if and only if M is distinguishable in M ,(X).

The proof follows directly from [I1, Lemma 2.8 (ii)].

We now show by means of examples that the assumptions on M in Proposi-
tions 2.3 and 2.4 (i) are necessary and that Proposition 2.4 (ii) is not true if we
replace M, (X) by its positive cone M, (X).

EXAMPLES 2.5. (a) Let S be the Sorgenfrey line (i.e. the real line with the
topology of the right half-open intervals) and M the set of all Dirac measures on
S. Then M is c.s. (and separably submetrizable) but not metrizable since M is
homeomorphic to S.

(b) The set of all non-negative measures on R with compact support is c.d.
(and distinguishable) in M, (R) but not G (cf. [11, Proposition 2.7]).

(c) Let X=Y U {0} be the one-point compactification of a discrete space Y
with cardinality X, and

M={peM, (X): p*({0})=0}.

Then M is homeomorphic to M,*(Y), hence metrizable (see [21, Part II,
Theorem 13]) and separably submetrizable since card (M) < ¢ (see [20, Corollary
3.3]). M is also G; in M, (X) (see [21, Part II, Theorem 17]). However, M is
neither c.s. nor c.d. in M, (X). This follows from the fact that every continuous
function on X is constant on the complement of a countable subset.

(d) Assume that there are no real-valued measurable cardinals. Let X be a
discrete space with card(X)>c and M the set of Dirac measures on X. Then
M (X)=M,(X) is metrizable [21, Part II, Theorem 13] and M is closed in
M} (X). Thus M is metrizable, distinguishable and G; in M, (X). Since
card(X) >c, it follows from the next proposition that M is neither c.s. nor c.d.

PROPOSITION 2.6. For the set M of Dirac measures on a completely regular
space X the following are equivalent:

(i) M isc.s. (that is, X is separably submetrizable);

(ii)) Misc.d.

Proof. (i)=(ii). We have that there is a continuous one-to-one function
f: X— RN, The result now follows easily from Proposition 2.2 (iv).

(ii)=(i). Let {f,]} be as in the definition of the c.d. property for M and
x, Y€ X such that 6,(f,) =6,(fy) for all n. Then (36,+ 38,)(f,) =8, (/) for all
n. It follows that %6X+%6y€M and, since X is completely regular, o, =0,. O

We recall that a subset M of MY (X) is uniformly regular (C*-uniformly reg-
ular in [2]) if there is a separable continuous pseudometric d on X such that
u(ZY=pu(Z?, for every p €M and every zero set Z in X. (Here Z“ denotes the
closure of Z with respect to the topology of d.) In the case where M={u}, the
measure g is called uniformly regular [1].

PROPOSITION 2.7. If MC M, (X) is uniformly regular then M is both c.s.
and c.d.
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Proof. Let d be as in the definition of uniform regularity for M and let & be
the o-algebra of all subsets of X which are Borel with respect to the topology of
d. Then & is a countably generated sub-c-algebra of ®B(X). Moreover, if
REM(X), vEM and p(B)=»(B) for all BE®, then v(Z)=v(Z%) =p(Z% >
u(Z) for every zero set Z in X. By the property of regularity, we have u <» and,
since u(X)=vr(X), we deduce that u=v. It follows from Propositions 2.1 and
2.2 that M is c.s. and c.d. in M, (X). O

The converse of the above proposition is not correct in general. Indeed, let X
be any completely regular space which admits a G point x that has no countable
base (for example, take X to be a countable dense subspace of [0, 1]¢ with the
product topology). Then the set M= {4, } is c.s. and c.d. in M,F(X). This follows
from Proposition 2.3 since for any f€ C(X), f=0 with {x}=/f"'({0}) we have

g 1 1
M= {uEMi(X): k()] < and |u(1)—ax<1)|<;},
n=1
so M is G; in M (X). However, M is not uniformly regular since x has no
countable base.
We finish this section with the following characterization of uniform regu-
larity.

PROPOSITION 2.8. A subset M of Mt (X) is uniformly regular if and only if
there is a sequence { U,} of cozero sets in X such that if U is any cozero set then

p(UNU {U,: U, CcU)=0
Sor all pe M.

Proof. Assume that {U,} is as in the statement of the proposition and, for
each n, let f,,: X — [0, 1] be a continuous function with U, ={x€X: f,(x)>0}.
Define d(x, y)=X =1 (1/2")|f.(x) —f2(¥)|. Then d is a separable continuous
pseudometric on X and each U, is d-open. If U is any cozero set in X, then

U(U,:U,cUjCinty(U)CU.

Therefore p(U)=pu(int,(U)) for all p€M.

Conversely, assume that M is uniformly regular. Let d be as in the definition
of uniform regularity and { U, } be a countable base for the topology of d. Then
each U, is cozero in X. Moreover, if U is any cozero set in X, then intyz(U) =
U {U,: U,CcU}. Therefore u(U\U {U,: U,CU})=0 for all u€ M. ]

3. Compact spaces. All measures in this section are assumed to be non-
negative; in particular, the c.d. property is always referred to M, (X). Here we
study the c.s. and c.d. properties for the set of non-atomic measures on a com-
pact space X. We note that every p €M, (X) has a unique regular Borel exten-
sion, so we assume that u is defined on the Borel sets of X.

Our first result is to show that the converse of Proposition 2.7 is true for com-
pact spaces.
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THEOREM 3.1. Let X be a compact space and MC M, (X). The following are
equivalent:

(i) Misc.s.and c.d.;

(ii) M is uniformly regular.

Proof. We prove only (i)= (ii) since, by Proposition 2.7, the converse is true in
general.

By Proposition 2.1 and 2.2, there is a compact metric space 7 and a contin-
uous function f from X onto T such that f,: M, (X) = M, (T) is one-to-one on
M and M=f,"'(f.(M)). Let {V,} be a countable base for the topology of T and
set U,=f"1(V,). We show that {U,} satisfies the condition of Proposition 2.8.

Let W be any cozero subset of X and set Wo={x€W: [ ({f(x))CW}.
Clearly, W, is open in X and we claim that u(W) =u (W) for all u € M. Suppose
that this is not the case. Then there is a compact set KC W\W, and p €M such
that u(K)>0. Let L=(X\W)Nf~Y(f(K)) and observe that f(K)=/f(L). It
follows that there is v €M, (X) such that »(L)=»(X) and f.(v)=fi(uk) (see
e.g. [11, Lemma 2.2]). If we set N=v+p(x\x) then fL(N) =fi(pg) +fa(x k) =
Jf+«(p) and p#\ since N(K') =0. This is a contradiction since p EM=Ff""(f.(M))
and f, is one-to-one on M.

Now let V=T\f(X\W). It is easy to see that WoC f~'(V)CW, hence
w(W\f~Y(V))=0 for all n€M. Since V is open in T, f~(V) is the union of
some U,’s and the proof is complete. O

If X is a compact space we denote by My the set of all non-atomic measures in
M (X). The space X is called scattered if it has no nonempty perfect subsets,
which is equivalent to Mx={0} (see [10]).

PROPOSITION 3.2. For any compact space X, My is c.d. if and only if there is
a compact metric space T and f: X — T continuous, onto such that f “(qet)) is
scattered for all t€T.

Proof. Let f: X — T be continuous, onto, where 7 is a compact metric space.
By Propositions 2.1 and 2.2, it is enough to show that My =f,"'(f.(My)) if and
only if £~!({¢}) is scattered for all t€T.

If £~Y({¢)) is not scattered, there is u € My such that u(f ~'({¢})) =u(X) =1. Let
x€f£7Y({¢t})) and v=8§,. Then we have fi,(p) = fi () =8, s0 vE f; ' (fu (Mx))\My.

Now assume that f~1({#}) is scattered for every t€T. If u € My, then f,(u) €
M. Indeed, if {¢#} were an atom for f,(u) then p(f“'{t]) >0,s0f'({t]) would
not be scattered. Moreover, if u € M,F(X) has an atom, then f,(u) has an atom.
Therefore £, (f, (Mx)) =My. O

COROLLARY 3.3. Let X, and X, be compact spaces such that Mx, and Mx, are
c.d. Then Mx,xx, is c.d.

Proof. Let Ty and T, be compact metric spaces, f;: X; =7 and f5: X5 =T
continuous, onto, satisfying the condition of Proposition 3.2 for X, and X,,
respectively. Then the function f: X;x X, —>T;xT,, defined by f(x;,x;)=
(f1(xD), f2(x32)), satisfies the same condition for X; X Xj. O
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THEOREM 3.4. For any compact space X the following are equivalent:
(i) My isc.s.;

(i) My isc.s. and c.d.;

(iii) My is separable metrizable.

Proof. (i)=(ii). Let T be a compact metric space and f: X — T continuous,
onto such that f is one-to-one on My (Proposition 2.1). By Proposition 2.2, it is
enough to show that My =f£,"'(f.(My)).

Let u € My and assume (if possible) that there is an atom {¢} for fi(x). Then
w(f~1({£}) >0 and we can find two disjoint subsets A and B of f~!({¢}) with
#w(A)>0and u(B)>0. We set

1 1
= pa and  pp=——=-pup.

w4y p(B)
Then u €My, u €My and fi(p) =fi(n2) =6,. This contradiction shows that
S+ (Mx) CM7. Moreover if p€M,T(X) has an atom, then f,(u) has an atom
Therefore My =f,"(f. (My)).

(ii)= (iii). As above there is a continuous function f from X onto a compact
metric space 7 such that f: My —> M7 is continuous, one-to-one and onto. More-
over if we set MJ(X)={peEMH(X): u(X)<r) and Mx={pEMy: p(X)<r}
for any r>0, then we have

Se(MG(X)\My)CMy(T)\MTr.
Thus, if F is a closed subset of M, then
S« (F)=fu(Clyron FYNMT

is closed in Mt (since MJ(X) is compact). It follows that f,: My —> M7y is a
homeomorphism. Since the sets of the form {p €M% : u(X)<r}, r>0, form an
open covering of My, f.: My — Mr is a homeomorphism, so My is separable
metrizable.

(iii)= (i). This is, in essence, proved in Proposition 2.3 (i). O

A family of open subsets of a space X is called a pseudobase if every nonempty
open subset of X contains a nonempty member of the family.

The next corollary follows from Theorems 3.1, 3.4 and Proposition 2.8. When
the space X is totally disconnected, the result was first proved by S. Argyros
using different methods.

COROLLARY 3.5. If X is a compact space without isolated points and My is
c.S., then X has a countable pseudobase and, in particular, X is separable.

Proof. By Theorems 3.1 and 3.4, My is uniformly regular. Let {U,} be a
sequence of cozero sets in X as in Proposition 2.8. If W is a nonempty cozero
subset of X then u(W) >0 for some u € My (since W has no isolated points). By
Proposition 2.8, there is an # such that U, C Wand u(U,) > 0. Therefore { U, } is
a pseudobase for X. 0
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By the above results, for every compact space X without isolated points, if My
is c.s. then My is c.d. and X is separable. As we shall see later (Examples 3.10)
these properties are distinct.

We now restrict ourselves to compact totally ordered spaces. Recall that a
space X is a totally ordered space if its topology is the interval topology of some
total ordering < on X (see [18, Example 39]). The connection between the
separability of such spaces and other countability properties has been studied
by many authors (see e.g. [3], [9, Ch. 4], [19]). For our purpose we have the
following.

THEOREM 3.6. Let X be a compact totally ordered space without isolated
points. The following are equivalent:
(i) My isc.s.;
(ii) My isc.d.;
(iii) X is separable.

For the proof of the essential direction (ii)= (iii) we shall use the following two
lemmas.

LEMMA 3.7. If f: X = R is continuous order preserving, then there is a pair-
wise disjoint family § of non-empty open intervals in X such that X\U § is sep-
arable and f is constant on each element of § with different values on different
elements of §.

Proof. For every t €£(X), f~'({t}) is a closed interval in X, thatis, f ~'({t}) =
[x;,¥:], where x;, y. €X, x;<)y;. Let § be the family of all non-empty intervals
of the form (x,,y,). It suffices to show that the set Y=U,esx) { X/, y} is sep-
arable. Let C| be a countable dense subset of f(X), C, be the (necessarily count-
able) set of all isolated from the left and all isolated from the right points of
f(X), and set S=U,ec,uc, [X;, ;). We prove that S is dense in Y, that is, if
(x,y)NY #D then (x,y)NS#J.

Thereis t € f(X) such that x, € (x, y) or y, € (x, y). Assume that x; € (x, y) and
set t’=f(x), sothat t'<t. If (¢,t)Nf(X)=@, then t€C, and x, € (x, y)NS. If
(t,)Nf(X)#a, then (¢,t)NC# @ and x, € (x,y)NS for all g€ (¢, )N C.
Therefore (x,¥y)NS# @. The proof when y, € (x,y) is similar (setting ¢'=
J)). c

Let 3 be the family of all continuous order preserving real-valued functions
on X.

LEMMA 3.8. The set Q@ of all differences of elements of 3 is uniformly dense in
C(X).

Proof. Since @ is clearly a subalgebra of C(X), by the Stone-Weierstrass
Theorem it is enough to show that @ separates points of X.

Let x,y€X with x<y. If (x,y) is non-empty, there is u €My such that
p(x,y)=p(X)=1(since (x, y) has no isolated points). Let F, be the distribution
function of p defined by F, (x)=p({y€.X:y <x}). Then F, is order preserving,
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continuous (since p is non-atomic) and F,(x) =0, F,(y)=1. If (x, y) is empty,
then the distribution function F3, of the measure 6, belongs to 3 and F5,(x) =0,
F,(y)=1. O

Proof of Theorem 3.6.

(i)=(ii). This is true in general (Theorem 3.4).

(ii)=(iii). Let { f,} be a sequence in C(X) which satisfies the definition of the
c.d. property for My. By Lemma 3.8, we can assume that f,, €3. For every n let
3, be the family of open intervals corresponding to f, as in Lemma 3.7. We set
Y,=X\U Y, and Y=UJ, Y,. It is enough to show that Y is dense in X.

Let (x,y) be a non-empty interval in X. There is u; € My with p;(x,y)=
p(X)=1and let u,=4,, where z€ (x, y). Since pu, & My, there is an # such that
{ fudu #f,(2). If IN(x, y)=@ for all I€ §,,, then (x, y)CY, CY. On the other
hand, if IN(x, y)# @ for some 7€ J,, then at least one of the endpoints of 7
belongs to (x,y) (since otherwise (x, y)CI and | f,,dp;=1,(z)). It follows that
Y is dense in X.

(iii)= (i). Let T be the set of all left limit points of X together with the point
Xo=min X. We define f: X > T by f(x) =sup{yeX: y<x}, if x#xpand f(xy) =
Xo. Consider T as a totally ordered space with the restriction of the ordering.
(Notice that this topology on T is coarser than the relative topology it inherits
from X.) Clearly, f is order preserving, continuous and onto.

Since X is compact and separable, so is 7. Moreover, using the fact that X has
no isolated points it is not hard to see that 7" is connected. It follows from a well-
known result that T is order isomorphic to the closed unit interval in R. For every
closed interval I in X, the set f~!(f([)) differs from 7 in at most two points.
Therefore, using Proposition 2.1 ((iv)= (i)), we conclude that My is c.s. O

REMARK. The assumption in Theorem 3.6 that X has no isolated points can-
not be dropped since there are compact non-separable totally ordered spaces
with Mx={0} (so (i)# (iii)). However, conditions (i) and (ii) are equivalent for
any compact totally ordered space X. Indeed, if My is c.d. and Y is the perfect
kernel of X (possibly Y= @), then My is also ¢c.d. By Theorem 3.6, My is c.s.
and so separable metrizable (Theorem 3.4). Since My is homeomorphic to My,
My is also separable metric and so c.s.

COROLLARY 3.9. If X is a compact, connected totally ordered space and My
is c.d. (or c.s.), then X is order isomorphic to the unit interval, provided that X
has more than one point.

It is clear that conditions (i)-(iii) of Theorem 3.6 are satisfied when X is a
compact metric space. Moreover, for every compact space without isolated
points, (i)= (ii) and (i) = (iii) (Theorem 3.4 and Corollary 3.5). The next exam-
ples show that no other implication between these conditions is valid.

EXAMPLES 3.10. (a) Let Y=[0,1]x {0, 1} with the lexicographic ordering.
Then Y is a separable compact totally ordered space without isolated points.
Thus Y satisfies conditions (i)-(iii) of Theorem 3.6, but is not metrizable.
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(b) The space X=[0, 1] is separable, but My is not c.d. Indeed, if f is a con-
tinuous function from X onto a compact metric space 7, then f is determined by
countably many indices [15]. Thus f~'({¢}) is not scattered for any t€T and
Proposition 3.2 yields that My is not c.d.

(c) Let Y be the one-point compactification of a discrete uncountable space
and X=1[0,1] X Y. Then X is not separable but My is c.d. (by Proposition 3.2,
using the projection from X onto [0, 1]).

(d) Let Y be a separable compact non-metrizable totally ordered space without
isolated points (Example (a)) and set X=Y X Y. Then X is separable and My is
c.d. (by Theorem 3.6 and Corollary 3.3). However, My is not c.s., as the follow-
ing proposition due to S. Argyros shows.

PROPOSITION 3.11. Let X,Y be compact spaces such that Mx #{0} and
My vy isc.s. Then Y is metrizable.

Proof. There are two sequences { f,} in C(X) and {g,} in C(Y) such that the
sequence {f,-g,} in C(X X Y) separates My y. Let y;, y, be two distinct points
of Yand p€My, p#0. We set uy=p X0y, and py=p X dy,. Since pj, pr €E My v,
there is an # such that u;(f,-gn) Zp2(fn-gn), that is, g, () #&€,(»,). This shows
that {g, } separates points of Y, so Y is metrizable. O

The above proposition can also be proved more easily using Theorem 3.4.
Indeed if p is a non-zero measure in My the space M={uXé,: yEY] is con-
tained in My y and so is metrizable. Since Y is homeomorphic to M, Y is also
metrizable.

We wish to thank Professor S. Argyros for useful communications regarding
this section.

4. Spaces of measures. Up to now we have treated the c.s. and c.d. properties
for certain sets of measures. Here we examine these properties for the spaces of
measures M;(X), s=o0, 7 or {. It turns out that the c.s. property for M (X) is
equivalent to the separability of C(X) in the weak topology o ((C(X), M,(X)).
Since the separability is possessed or not by all locally convex topologies with the
same dual, the weak topology can be replaced by the strict topology 3; when X is
completely regular.

THEOREM 4.1. For any space X and s = a, 7 or t the following are equivalent:
(i) M(X) isc.s.;

(i) MY (X)isc.s.;

(iii) C(X) is separable in the weak topology o (C(X), M (X));

(iv) M (X) is separably submetrizable;
(v) every element of M;(X) is Gs.

Moreover, conditions (1)-(v) for s=t are equivalent to:
(vi) M (X)isc.s.andc.d. in M (X);
(vii) X is separably submetrizable.

Proof. (i) (ii). Assume that M;t(X) is c.s. and let {f,} be a sequence in
C(X) separating measures in M;"(X). Let u, » be in M (X) with u(f,) =v(f,)
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for all n. Then (u—»)* (f;)=(u—r)"(f,). Since (u—»)* and (u—»)~ are in
M (X), it follows that (u—»)" = (u—»)", so u—r=0. The converse is trivial.
(i) e (iii). Using the Hahn-Banach Theorem it is easy to see that a sequence
{ /2] in C(X) separates measures in M, (X)) if and only if the linear span of { f,}
is dense in C(X) for the topology (C(X),M,(X)).
(i)= (iv)= (v) are easy to see. If the zero measure is Gs in M;(X), then there is
a sequence { f,} in C(X) such that

{0)= N {REMU(X): |u(fr)|<1/m].
n,m
It follows that { f,,} separates measures in M;(X), so (v)=(i). Therefore the first
five conditions are equivalent. Notice also that the equivalence (i) & (iv) follows
from Proposition 2.4 (i).

(i)= (vii). The set of Dirac measures on X as a subset of M(X) is c.s., so X
must be separably submetrizable.

(vii)= (vi). We have that there is a continuous one-to-one function f: X — RN,
By a well-known result f,: M;7(X) - M, (R") is also one-to-one, from which
the c.s. property for M;"(X) follows (Proposition 2.1). An easy way to see that
M (X) is also c.d. is as follows: let u€M, (X) and v€ M,*(X) with fi(u)=
f+(v). By Propositions 2.1 and 2.2, it is enough to show that u=v». If K is a com-
pact subset of X, then K=f"'(f(K)) where f(K) is a zero set in RN. Thus X is
also a zero set in X and '

p(K) =fu(p) (F(K) =£(0) (S(K)) =r(K).

Therefore p and v coincide on compact subsets. If Cis a ¢-compact subset of
X with »(C)=r(X), then since u(X)=vr(X) we have p(C)=u(X). Thus n€
M,T(X) and by the property of regularity p=v.

Finally, it is obvious that (vi)=(ii) for s=¢, completing the proof of the
theorem. ]

REMARK. Summers, using a Stone-Weierstrass type theorem, has proved the
following equivalences from Theorem 4.1:

(a) (iii) e (iv) for s=¢; and

(b) (vii)e (iv) for s=t¢,
(see [20, Theorems 2.1 and 4.3]). Further, he asks whether (a) and (b) for s=7
hold (see also [22, Problem 13.3]). Clearly, Theorem 4.1 contains a positive
answer to (a). We shall give some partial positive answers to (b) (4.2 and 4.5),
though the answer in general is probably negative.

PROPOSITION 4.2. [f the Baire o-algebra ®&(X) on X is countably generated,
then M,(X) is c.s. and so C(X) is separable in a(C(X), M, (X)).

Proof. This follows from Proposition 2.1. O

In particular, Proposition 4.2 holds when X is the Sorgenfrey line, or a sep-
arable metric space (see [22, Theorem 13.2]). Further, Proposition 4.2 holds
when X is a cosmic space (i.e., regular continuous image of a separable metric
space). To check that @ (X) is countably generated, let 7 be a separable metric
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space, f: T— X continuous onto and 33 a countable base for the topology of T.
Then using the fact that X is hereditarily Lindel6f and regular, it is easy to see
that { f(B): BE®) is a countable family of zero sets generating & (X).

It is more interesting to examine the c.s. and c.d. properties in spaces where
the o-algebra of Baire sets is not countably generated. If M,7(X) is c.s. then
card(X) < card(M,* (X)) <c. We shall prove that for a metric space X, (i)
M} (X) is c.s. if and only if card(X) <c, and (ii) M,"(X) is c.d. if and only if
either card (X)) <c or M, (X)=M.(X). In fact, these are true for a wider class
of spaces (Corollary 4.5 and Theorem 4.6).

We recall that a space X is developable if there is a sequence {U,},, of open
covers of X such that for each x€ X

ullelu,:xeU}, n=l1,2,...

is a neighborhood base for x.

It is clear that

(i) every metric space is developable;
(ii) a subspace of a developable space is developable;
(iii) every closed subset of a developable space X is G;, so every Borel measure
on X is regular.

We shall also need the following result [4, Theorem 9]: every open cover of a

developable space has a o-discrete closed refinement which covers the space.

LEMMA 4.3. Let X be a developable space with card(X) <c. Then there is a
countably generated o-algebra of Borel sets containing all subsets of X which are
second countable and Gj in X.

Proof. Let {U,} be a sequence of open covers of X witnessing to the develop-
ability of X. For every n let &, be a o-discrete closed refinement of U, which
covers X and set F = U, F,. Then & is a o-discrete closed covering of X with the
property that every open set in X is a union of some members of F. Indeed, if V
is open in X and x €V, there is an n such that U {U€U,: x€U}CV. Let FETF,
with x € F. Since §, refines U,,, there is U€ U,, with FC U. It follows that FC V.

We write F=U, @, where each @, is discrete. For every n the family
@,U{X—-UQ,} is a partition of X with cardinality <c, so we can find a real-
valued function f, on X such that f, is constant on each element of the partition
and takes different values on different elements of the partition. Since @, is a
discrete family of closed sets, f,;'(B) is a Borel set in X for any BCR. In par-
ticular, f, is Borel measurable. We define F: X = RN by F(x) = (fn(X)),en and
set ®=F (B (RV)).

We now show that ® has the desired properties. Clearly, ® is a countably gen-
erated o-algebra of Borel sets and FC ®. Let Y be a second countable subset of
X with Y=,en V,, each V, open in X. For every x€Y, there is a sequence
{Fx n}n of elements of §F with x€F, ,CV,. We have Y=, Uyey Fx . More-
over, for every n the family (F, ,:x€Y} is o-discrete and each of its elements
has non-empty intersection with Y. Since Y is second countable, it follows that
these families are countable. Therefore Y€ ®. a
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THEOREM 4.4. Let X be a developable space with card(X) <c. Then thereis a
countably generated o-algebra & of Borel sets in X such that if u, v are two non-
negative Borel measures on X and v is t-additive, then

w(B)=v(B) forall BE®=pu=v.

Proof. Let G be as in Lemma 4.3 and assume that u(B)=v(B) for all BE &.
Let {U,]} be a sequence of open covers of X witnessing to the developability of
X. Applying the 7-additivity of », for each cover U, we find a countable V,,CU,,
such that »(UV,)=v(X). Then Y=N;-,UV, is Gs, second countable and
v(Y)=v(X) (see Prikry [13]). For every closed subset F of X we have that FNY
is second countable and G; in X, so FNYE® and u(FNY)=y(FNY). In par-
ticular u(Y)=»(Y)=v(X)=u(X), so u is 7-additive. Since p, » coincide on the
closed sets, by the property of regularity u=». a

The following corollary is immediate from the above theorem and Proposi-
tions 2.1 and 2.2.

COROLLARY 4.5. Let X be a metric space, or more generally a developable
space with (X )= ®y(X), such that card(X) <c. Then M,*(X) isc.s. and c.d.
in M;t(X), so C(X) is separable in o(C(X), M, (X)).

By the above corollary, if card(X) <c then M,;T(X) is c.d. in M, (X). Trivi-
ally this is also true when M, (X)=M,"(X). The next theorem shows that these
are the only possible cases. Its proof makes use of {0, 1}-measurable and real-
valued measurable cardinals (see [9, Ch. 5]).

THEOREM 4.6. Let X be a metric space or more generally a developable
space with &(X)=®y(X). Then M (X) is c.d. in M} (X) if and only if either
card(X) <c or M (X)=M(X).

Proof. We give a proof for the general case of a developable space with
®(X)=®By(X). We assume that M, (X) is c.d. in M, (X). By Proposition 2.2,
there is a separable metric space 7 and f: X — T continuous, onto such that for
every pn €M, (X) and v€E M, T (X),

f*(#)zf*(V):HEM:(X)-

Claim 1. Card(X) < the least {0, 1}-measurable cardinal.

Suppose that the claim is false, so there is a non-zero {0, 1}-valued measure A
defined on all subsets of X and vanishing on singletons. Set u= 7\|(B( X) eEM}(X).
Then f, (1) €M, (T) is a non-zero {0, 1}-valued measure, so there is some tET
such that f,(x)=8,. If x€f~1({¢}), then fi(r) =/ (8,), thus p €M, (X). Since
p is also {0,1}-valued and u({x})=A({x})=0 (because {x}€® (X)) for every
x € X, this leads to a contradiction.

Claim 2. If M;F(X)#M, (X), then there is a real-valued measurable car-
dinal <card(X).

This is well known when X is metrizable (see [21, Part I, Theorem 28]) and we
include a proof for the sake of completeness. Using a standard argument there is
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a non-zero u € M, (X) and an open covering V of X such that u(U) =0 for every
uewv. Let U; -, C, be a g-discrete closed refinement of V. Fix an n such that
p(U C,)>0. Choose a subset D of X by picking one point from each member of
C,. Set

ME)Y=p(U[CEC,:CNE#Q))

for every ECD. Then A is a non-zero, g-additive measure defined on all subsets
of D and vanishing on singletons. Since card (D) < card(X), the proof of claim 2
is complete.

Now assume (for the purpose of a contradiction) that M, (X)#M,"(X) and
card(X)>c. Using claims 1 and 2, there is by Ulam’s Theorem [9, p. 297] a
real-valued measurable cardinal <c. Since card(X)>c, there is €7 such that
card(f1({t})) >c. Set Y=,"'({¢}). As in the proof of Lemma 4.3, there are
discrete families &,, n=1,2,..., of closed subsets of Y such that every open
subset of Y is the union of some members of U, -, F,. For every n, let ¥, be a
subset of U F, containing exactly one point from each member of &,. Then each
Y, is closed and discrete and U, =, Y, is dense in Y. Since Y is first countable,
card(U,=; Y,) Zc. Fix an n such that card(Y,) 2c and let N\ be a probability
measure defined on all subsets of Y,, and vanishing on singletons. (Such A exists
because there is a real-valued measurable cardinal < card(Y,).) Let

p(A)=NANY,) forevery A€EB(X).

Then p €M (X)), fi(p)=256=fi(5,), where x€f~'({¢}), which is a contradic-
tion since u & M, (X). O

REMARKS. (a) An example of a developable non-metrizable space is the set of
all finite subsets of R endowed with the Pixley-Roy topology [12]. Further, in
[14] it is proved that assuming Martin’s Axiom and the negation of the con-
tinuum hypothesis, there exists a subspace Y of this space with the same proper-
ties, which is also normal, so B(Y)=8,(Y).

For the special metric case Corollary 4.5 and Theorem 4.6 can be proved more
directly by a similar method, using that (i) every metric space has a o-discrete
base and (ii) every 7-additive measure on a metric space is carried by a closed
separable subset. In this case Corollary 4.5 contains a result of Summers [20,
Theorem 3.2].

(b) Theorem 4.4 and Corollary 4.5 are not valid for M, (in the presence of
real-valued measurable cardinals) even for discrete spaces. Indeed, let k <c be a
cardinal such that there exists a probability measure A defined on all subsets of «
and vanishing on singletons, such that the measure algebra of A is not generated
by countably many of its members. (It is an unpublished result of D. H. Fremlin
that such a measure exists if k =c is real-valued measurable.) Let 3 be any count-
ably generated o-algebra of subsets of x. Without loss of generality we can
assume that A is homogeneous and, using Maharam’s representation theorem of
measure algebras, we can find an uncountable family {B,},¢, of stochastically
independent subsets of x of A-measure 1/2 which generates the measure algebra



46 G. KOUMOULLIS AND A. SAPOUNAKIS

of A\. Let E be a countable subset of p such that @ is ‘‘contained’’ in the measure

algebra generated by { B, }eck. If « € E and p, v are the restrictions of A to B, and

k\B,, respectively, then p and » coincide on @&, but u#v. We are grateful to

Professor Karel Prikry for communicating to us the content of this paragraph.
This discussion suggests the following:

QUESTION. If X is a metric space with M,t(X) c.s., is it then true that
Ma+(X) =MT+(X)?

By Corollary 4.5, if the answer to this question is ‘‘yes’’ then M, (X) is c.s. if
and only if card(X) <c and M, (X) =M (X).

(c) Motivated by Theorem 4.4, one may introduce new notions by replacing in
the definitions of the c.s. and c.d. properties the continuity (or, equivalently,
the Baire measurability) of the sequence {f,} by the Borel measurability. Of
course, if ®(X)=®((X) there is nothing new, though in general we obtain two
much weaker notions. Indeed, let Y be a discrete space with card(Y) =X, and
X=YU {oo} the one-point compactification of Y. Then the set {J- } is not c.d. in
M. (X) (Proposition 2.3 (ii)) and M, (X) is not c.s. since X is not metrizable.
However, because the cardinality of X is < c and every subset of X is a Borel set,
there is a countably generated o-algebra of Borel sets containing all singletons.
Since X is scattered, it follows that M, (X) is c.s. in the Borel sense. Moreover,
we show by an example that the analogue of Theorem 3.6 and Corollary 3.9 for
the c.s. and c.d. properties in the Borel sense are not correct.

EXAMPLE 4.7. The extended long line L* [18, Example 46] is constructed
from the space of all ordinals < w; by placing between each ordinal a« < w, and its
successor a copy I, of the open unit interval (0, 1). Consider L* with its natural
ordering. Then L* is a compact non-separable connected totally ordered space.
We show that the set M, of all non-atomic measures on L* is c.s. and c.d. in the
Borel sense.

Let {U, n}n be a countable base for the open sets in I,. For every n,
{Uq n: a<w} is a pairwise disjoint family of open sets in L*. Since the cardinal
of each of these families is <c, as in the proof of Lemma 4.3, we can find a
countably generated o-algebra &3 of Borel sets such that U, ,€ ® for all o and .
Now let v€M;. and €M, (L*) such that u(B)=»(B) for all BE®. Since
vEM;., there is a closed separable subset C of L* with full v-measure (]I,
Theorem 3.4] and [16, Theorem 3.2]). Using the separability of C we deduce that
C\{w,} is bounded by an oy <w;. Thus every Borel subset of C differs from a
member of &3 by a countable set. It now follows easily that u=v.
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