DUALITY AND MULTIPLIERS FOR MIXED NORM SPACES

Patrick Ahern and Miroljub Jevtié

Introduction. If p>0, ¢>0, > —1, a function f, holomorphic in the unit
disk U, is said to belong to the space A% * if
1 -
10 ga=| (1=r)M,(r, )y dr <o, where
0

27
My(r, 7= o= |7(re®)[7 s,
2w Jy

with the usual understanding if p or g = oo,

In the first section we deal with the dual space of A”*?*, We list some known
results and calculate the dual in two cases that, up to now, had been left unsettled.

In the second section we use the duality results of the first section along with a
method of J. Anderson and A. Shields, [3], to calculate the coefficient multi-
pliers of some of the spaces A”>% ¢, It seems that the multiplier theory for A?%¢
is similar to that for H9. We shall see that if 2 < g < oo then the multipliers for
AP%* gre the same as for A”%%, We can find the multipliers for 4?72 but not
for A»?% 1<qg<2.

In [2], J. Anderson has calculated the multipliers for Lipschitz spaces A%,
2 < p < oo, and asks about similar results for 1 < p <2. We are able to calculate
multipliers for AL.

In the third section we introduce some special mixed norm spaces D 9. We
show that when g =2 these are exactly the spaces D” introduced by F. Holland
and B. Twomey [11]. They showed, using the Hardy-Stein identity, that for
p <2, H?CD?, and for p 22, D? C H?. Using only a classical result of Hardy
and Littlewood we generalize this to show that H”C D9 for p<gq and
D?2C HP? for g < p. We also give some results on fractional integrals and deriv-
atives for functions in the spaces D9, as well as a result on multiplication by
bounded functions.

1. Duality. If X and Y are spaces of functions holomorphic in U, the state-
ment ‘“‘X* =YY"’ means that for every continuous linear form, ¢, on X thereis a
unique g(z) = Lf-o & z* € Y such that if f(z) = L& frz¥ € X then

e(f)=lim ¥ figr*,
r—>1k=0
and conversely if f, g are given as above then lim,_,; Xr_o fr 8xr* exists and
defines a bounded linear form on X.
If g(z) = %0 &xz* is holomorphic in U, and « is any real number then we
define (D*g)(z) = Lo (K+1)%giz*.
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We note that for >0, 0 <p <1, we have

=] 2a 1 1 a—1 27 . ] d9
= k__ i0 o i0
(1.1 kgofkgkp = T(@) So<log——r> (So f(re'Y(D“g)(rpe )_27r )rdr.

Here we are following Flett’s treatment of fractional integrals and derivatives,
[71.
We now state some duality results.
1.If1<p<o, 1<g<oo, then (A% *={g: D**'g € AP>9>%} where
1 1 1 1
—+—=1, —+
p p q q
This can be found in M. Taibleson [17]. See also J. Shapiro [16].

2. If p=1, 1<g< o, then (A4 *={g: M,.(r,D**?g)=0((1-r)"")}.
For g =1, this is the result of P. Duren, B. Romberg and A. Shields [6]. For g>1
it was proved by T. Flett [7].

3.If0<p<l, 1<q, then (AP?%)* = (A% (@*D)/P=1y* "This was proved by
J. Shapiro [16], when g=1, and by Flett [7] in the general case.

4. The dual of A?"%* when 0 < p <1, 0<gqg <1 has been calculated by J. Sha-
piro [16].

The cases g=1, 1< p<oo, and g=00, 1< p< oo, will be treated below. The
proof of the next lemma follows closely to one of the proofs of Hilbert’s in-
equality, [9].

=1,

LEMMA 1. If 1<p<co there is a constant c,>0 such that if f>0 and
fo f(r)P dr < we have

1 1 1
| (S Fo)Y(=ro) " dpy? dr<c, | f(r)?ar.
0 0 0

Proof. 1t is sufficient to show that if g 20, I(l) g(r)? dr < oo, then

1 .1
SO Sog(r)f(p)(l —rp)~'dpdr < .

1.1
|, ) gy =ro) dpar

1.1 1— 1/pp’ 1— 1/pp’
={ g(")<1—r> f(p)( ") (1—rp)~dpdr.
A —p 1—r

By Holder’s inequality this last integral is at most
1

1 S 1—=r 1/p
[S Sg(r)f’( ) (1—rp>-1dpdr]
090 1—p

1

1 1— 1/p’ 1/p
X [XO Sof(p)f’( l_ﬁ) (1 frp)—ldpdr] .

1/p’

The first factor is
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1

1
5 g(r)?'(1 —-")”"(S (l—p)_”‘”(l—-rp)“dp> dr
0 0

and the second factor is

1 1
| f(pm-p)w(g (1—r)-“P'(1—rp)"dr) dp.
0 0

The result now follows from the inequality

1
S (1—x)"*(I—tx)"ldx<c, (1—1)"¢,
0

valid for 0 <a< 1. O
THEOREM 1. If 1< p<oo, (APL*)*={g: Dotlge AP 2},

Proof. First we assume «a=0. Take g such that D'g€ A”>*:0 and let f be a
polynomial, then by (1.1) we have
1,2

Efkgk=25 S f(refe)(Dlg)(reie)ELdrdﬁ.
0v0 w
So

1
iszgk <2 SOMI(r,f)Moo(rleg) dr

1 1/pr 1 1/p’
< 2“ M, (r,f)? dr] [S Mw(r,Dlg)p'dr]
0 0

=2[fllp1,01D'€llp',0,0-

Since the polynomials are dense in 47°1%, the mapping ¢ (f) = T fi & extends to
be a bounded linear form on A?"%, If f is holomorphic in a neighborhood of
the closed unit disc the partial sums of the Taylor’s series for f converge to f in
AP19 and hence ¢(f) = ¥ fx & in this case. In general, if f€ 4”710 we know
that f, = fin A?"% where f,(z) = f(rz), it follows that

e(f)=1lim ¥ figr~.
r—>1 k=0

Now, take ¢ € (47°1:0)*, By the Hahn-Banach theorem ¢ extends to be a
bounded linear form ® on the space L?! of all measurable complex valued func-
tions F defined on U such that j('] M, (r,F)?dr <. By a theorem of A. Benedek
and R. Panzone [4] there is a complex valued function G defined on U such that

j(l) M, (r,G)P dr < oo and
1,2

@(F):H F(re®)G(re®) —— dodr forall FeLP!.
0v0 27
In particular

1 .27 ) ] r
9°(f)=§5 f(re®YG(re’®y — dodr for feAPLO
0vo 27
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Let
1.2

o= L

0%0

G(re®®)(1—zre %) 2rdrde

be the Bergman projection of G. If f is a holomorphic polynomial, then

1 .27 . i r
e(N=| | fire™)G(re™) =~ drdo
0v0 27['

1 2«7 _
=S S f(reie)H(re‘B)LdrdG
0v0 2T

1 .27 i
= S S f(re'®yDlg(re') T dras,
0Y0 27

where g is defined to be D ~'H. The proof will be complete if we can show that
fo Mo (r, H)?' dr < oo, Now
. 1 1 .27 . .
H(re®y=—| | G(pe*)(1=rpe’®=)%pdpdy
T Jo Y
and hence

1

1 27 do
Mo (r,H) < — | Mw(p,G)Q ———le) dp

0 0 |1—rpe

1
<c§ M., (p, GY(1—rp)~' dp,
0

where we have used the well-known inequality

27 do o
SO T e SCell=n)'7 a1,
Now apply Lemma 1 to finish the proof of the case a =0.

By the theorem of Hardy and Littlewood on fractional integrals [10] we know
that [§(1—r)*M;(r, f)? dr <o if and only if [, M;(r, D~*/Pf)P < oo. This fact
combined with the case @ =0 gives the general case of Theorem 1, if we use the
observation that

0(D—"‘f)k(D"‘g)krk- O

s

Y fedkrk=
k=0

THEOREM 2. If 1< p< oo, (AP**)*=(g: D*tlge 4P 1.2},

Proof. The proof that {g: D**'g € A7"1%) € (AP *)* goes just like the first
part of the proof of Theorem 1. In the other direction take ¢ € (47> %)*. If we
define g, = go(zk) it is easy to see that g€ H(U) and

(=X fidr=1lm Y figr*
k=0 r—1 k=0
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for any function f, holomorphic in a neighborhood of the closed disc U. Fix r,
0<r<l1, then

||D“+1g,- ”Ap’,l,a — SUD{Il//(Da+lgr)|: 1p € (Ap',l,a)*, ”1//“ <1}

<Csup{ lim ), (D““g,)kfkpk :”Da+lf“Ap,uo,a<1]

p—>1 k=0

= Csup |lim T &0 o+ 1D fllane <1}
p—>1 k=0

= Csup{|e(D**f)|: | D' f|lap.o.a <1}

<Clel.

It follows that D**lg € A?>1:% So, we have shown that there exists g, D**lg e
AP>Le such that o (f) =lim, . Li—o fx&xr*, for all £, holomorphic in a neigh-
borhood of the closed unit disc. The theorem will follow if we show such func-
tions are dense in A”>*>%. We show that if f € A”* % then f, — fin AP,

1

If =S (15, 0,0 = Xo(l —p)*Mx (p, f— 1)’ dp

A . 1
= SO (1—=p)*Mw (p, f—f)P dp+ Sx(l —p)*Mu (p, f— S, )P dr

A 1
< jo (1= )M (p, f—£,)? dp+27 S)\(l —p)*M. (p, f)? dp.

First we choose A so that the second term is as small as we please, independent of
r, then the first term goes to zero as r — 1. O

2. Multipliers. We use an approach for finding coefficient multipliers due to
J. Anderson and A. Shields [3]. If A and B are sequence spaces (A, B) denotes
the multipliers from A to B. If A is a sequence space A is defined to be the
set of sequences {\,,} such that lim, ,; Y=o N\, a,r" exists for all {a,} € A, and
s(A) is defined to be (/*, A). It is shown that s(4) S A4 and if {a,} €s(A4) and
|b,| < |ay,| then {b,} €s(A), and s(A) is the largest subspace of A with those
properties. A special case of one of their results is that (A, %) = (s(A%)%,I°),
1< s o0,

We will need some other sequence spaces, namely

‘ w alp
l(p,q>={a={an}: lallg., = E( y |ak|f’) <oo},
kel

n=0
1< p<oo, 1<g<oo,
where I, = {k: k is an integer, 2" '<k<2"}, n=1,2,...,1o={0}. In the case

where p or q is infinite, replace the corresponding sum by a supremum.
We will also use the following result of M. Mateljevic and M. Pavlovié [15].
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THEOREM A. If p, a > 0 there are positive constants A, ., and B, , such that if
a, 20, k=0,1,2,...,

o p 1 o D
Ap o Mo 2‘”"( ) ak> gS (1—r)°‘“< Y akrk) dr
n=0 0 k=0

k€I,

o p
<B, . M 2“”“( Y ak).

n=0 kel,

THEOREM3. If p>1, (AP 15)y = ({ e }: {(k+1)@tVPX Y€ (s, 1)) where
t=ifszpandl/t=1/s—1/pif s<p.

Proof. By Theorem 1, (A7h%)?=(g: D**'g € AP"**}, Now

1 1 o !
S (l—r)“Mw(r,D““g)"'drSS (1—r)°‘< r (k+1)°‘+'|gk|rk)p dr
0 0 k=0

=< p’
< C E 2—n(a+l)< E (k+1)a+l|gk|>
n=0 kEI,
by Theorem A. This last expression is bounded by constant times
) D’
)y ( )y (k+1)‘“+”’”|gkl> :
n=0 \ke€l,

In other words {/g: {(k+1)tDPg v e (1, p)}Ss((AP1¥)?). On the other
hand if g €s((A4”"%)7) then so is G(z) = Li-o|gx|z*. But M, (r,D**'G) =
Yoo (k+1)**!gc|r¥, and it follows from Theorem A that {(k+1)(**D7g, )€
[(1,p’). In other words we have shown that

s((APhN) =g ((k+ D) D Pgyel(1, p)).
Now it is easy to see that /(1, p’)? =1(o0, p) and from this it follows that
(s(AP L) = (N s {(k+ 1)@ DPN Y€ (o0, p)).
We conclude that
(AP ISy = ((s(AP ) 1)
= {{\e): ((k+ D) DN € (I(e0, p), 1))
= {{ M) (k+1) DN Y€ (U0, p), I(s,5)))
= {{ M) (k1) FDPN T E (I(s, 1))

wheret = if p<sand 1/t =1/s—1/p, if s < p. Here we have used the result of
C. Kellog, [13] to calculate (/(o, p),[(s,s)).

To calculate the multipliers of A7°%%, 2 < q < %, we need to find s(A7?%),
1<g<2.

LEMMA 2. [f 1< p<oo and 1< q <2, then s(AP*7%) = AP2=,

Proof. It is clear that A”*>*Cs(AP?%)Cs(AP %) for 1 < g <2. We use the
Rademacher functions {r, } in a standard way, as in [3]. If f € s(A?!**), then so
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is fi(z) = E2o0 ri () fez®, moreover Ife5.1.a < €p,a» for every t €[0,1]. By
Khintchine’s inequality we have

o 1/2 1 1
( E Ifk|2r2k>
k=0

scS |f,(rei9)|dt and hence Mz(l‘,f)SCS M (r, f;)dt.
0 0
Since p 21 we may use Jensen’s inequality to conclude that

1

l of L (7 i0 4
oo>cp,a>go<go(1—r) (?{SO fi(re )]dB) dr)dt

1 1 1 27 0 p
=SO(1—r) (S()(E SO If,(re )|d0) dt)dr

1

1 p
> (1—r)°‘<§ Ml(r,f,)dt> dr
0 0
1
2| (=ryMP(r,p)ar.
0
This shows that s (A7 %) = A?7>%% and completes the proof. O
THEOREM 4. If p>1, 2< g < ©,
(AP 1)y = (N ): (k+ D) CTDPN Y € (u, v))

where
1_=l——1— if s<2 and u=o if 2<s
u s 2

and
1—=L——1-ifs<p and v=o if p<s.
v s D

Proof. (A?%*)={g:D*"'g€ 4?9} and hence
s((APT))={g: D*tlge AP 22y,

If D%*!g € DP>%* this just means

1 o p/2
S (1—r)°‘<kE (k+1)2‘“+”|gk|2r2’<> dr <o,
0 =0

which is equivalent to

@ p'/2
E 2-—n(a+l)< E (k+1)2(a+l)lgklz> < 0.
n=0 kel,

This, in turn, is equivalent to

o p'r2
E ( E (k+1)2(°‘+””’lgk|2> < oo,

n=0\k€l,
ie. {(k+1)e*DPg yEi(2,p’). So we see that
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(S(AP LY = {{ N }: ((k+ 1)@ DPN Y el(2, p))
and hence that
(APTe 15y = ([N} {(k+ 1) DPN € (12, p), I(s,5)) =1(u, v))}

where l/u=1/s—1/2 if s<2andu=w if 2<sand 1/v=1/s—1/p if s<p and
v=oo if p<s. O

REMARK 1. Case 0 < p <1 in Theorem 3 is covered by known theorems on mul-
tipliers (B9,{°), where BY = AVL D=2 o < g < 1. For example (A"12,15) =
(N, ): [(k+1)*TIN, € 1(s,0)]. If 0 < p <1, use Duality 4.

REMARK 2. Case 0 < p <1 in Theorem 4 can be treated in a similar way. Use
Duality 3 instead of Theorem 1 and Theorem 2 and the fact that s(A%) = A2, if
1 < g < 2. (Definition of AZ below.)

In [2], J. Anderson considers coefficient multipliers for the spaces

A =(g:g€H(U), My(r,g)=0((1-r)*"1)},

1<p<oo, 0<a<l. He is able to calculate (A%,/°) for 2< p< oo, 0<a<l,
1 < s < oo, and asks about similar results for 1 < p <2.

Using the same methods as above we can calculate (A}, 7). Indeed we can do
somewhat more. We start by noting that by a result of Hardy and Littlewood, if
0<a<1, the function g belongs to A? if and only if Mp(r,D““g) =0((1-r)7".

With this in mind we may define A% for all o >0 by this condition. As we
noted above, T. Flett [7] has shown that, for a >0, (A% 1)*= Al and, as he
points out, it easily follows that (AL ) =A41=*"1 As we showed in the proof of
Theorem 3, s(A" % )y ={g: ((k+1)%gx} €/(1,1)). It follows from this that
(s(AL= 7N = ([N ): ((k+1)*N ) €17). If we combine these observations
with the fact that (/®,/°) =1° we have established the following.

THEOREM 5. Fora>0, 1<s< o, (AL, I5)={{ e }: [(k+1)"N, J €15},

3. D? 9 spaces. In [11], F. Holland and J. Twomey introduced the spaces D”
as follows: a function f, holomorphic in the unit disc U is said to belong to D?,
O0<p<oo,if

1= (17 1rweme 2 doas | ar <o
b 0 (s

0v0

Of course
1

P — i 2.2k P2
”f”DP"S k—lklfkl r dr.

Note that L= (k+1)|fx [*r?* = M3 (r, D'/%f), if £(0) =0, and hence that f € D?
if and only if ](1, M, (r,D'?f)? dr < . Now by the theorem of G. Hardy and
J. Littlewood, [10], on fractional derivatives (or its extension due to Flett, [8], if
0<p<1) we see that, for 0 < p <2, f€DP? if and only if

1
| a=ryrrmy e dr <o,
0

0
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and, in general, f € D? if and only if ]('](1 —rY2M (r, f)P dr <o, 0<p<oo,

Now, the inclusion H” € D? for 0 <p <2 is just the classical inequality of
Hardy and Littlewood (Theorem 5.11 in [5]). Indeed if 0 <p <00, 1 < g < o0, we
are led to define DP9 = { f: [y (1 —r)~P/P*PM_(r, f')P dr < «}. By the theorem
on the fractional derivative mentioned earlier, if 0 <p <gq,

e {f; S‘

h]

0(1 —r) PM (r, f)P dr < ooz.

THEOREM 6. (i) If p<q, H? € DP9,
(i) Ifg<p, DPICH”.
(iii) If g <2, D*9C HY, and H!C D?? [f2<q.

Proof. (i) That H? c D?'? for p < q is just the result of Hardy and Littlewood
(Theorem 5.11 in [5]) mentioned above.

(i1) If g < p then the inclusion D?9 C H? was proved by T. Flett (see [8]).

(iii) The last statement of the theorem is just a well-known result of Littlewood
and Paley (see [10]). O

We point out that the duality and multiplier results of the first and second sec-
tions could be applied to the spaces D?*9. We give some examples.

PROPOSITION 1.
(1) Ifl<p,(]<°°, then (Dp’q)*szl'q,.
(i) If0<p <1, then (DP)*={g: My(r,DVP+ /Dy = O((1—r)~H).

PROPOSITION 2. If 0 < p, s < oo, then
(DP, 1) = {{Ne}: ((k+ 1)Y=\ v e (1(2, p), [5) =1 (u, 1)}

where
1 1 1 . .
—=———1ifs<2, and u=oo if 2<s,
u S 2

and
1 1 1 . .
—=———ifs<p, and r=o if p<s.
r Ky p

COROLLARY 1 (Holland and Twomey, [11]). If f € D?, 0<p <2, then

5 (k+1)P 72| fi [P < oo,
k=0
If2<p<oo,and ¥ (k+1)P7?|fi|P < oo then f € D?.
PROPOSITION 3. If 0 < p, g < o, then
(D?, D7) = {{\e): ((k+1)P =D\ 3 e (12, p), 1(2,9))).

Next we show that the spaces D?*7 behave like H” as far as fractional integrals
are concerned and are much better for fractional derivatives.
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THEOREM 7. Suppose o > 0 and D*f € DP9, then f € DP9 where a =
(1/p)—(1/py). If f € DP9, then D*f € D>9 for all s< p.

Proof. We are assuming that

1
SO (1= r)—PID*PML (7, DAY dr < co.
Hence
1
SO (1=r)~PIO+PM_(r, D¥*fY? dr < C.
Since M, (r, D**!1f) is increasing we find that
q

M, (p, D+ f)P(1—p)~PIO+PH1I< C, ie. My(r,D**'f)<C(1—r)1/@D-P -1

By the theorem on the fractional derivative

1
S (1 —r)(_pl/‘“*leq(r,le)pl dr
]

1
<C| (A=r)-ni@+ptanp, (r, DY )P dr
0

<C SO (1 __r)(—P1/CI)+p| +apy(g __r)([l/tﬂ— [1/p]1-1)(py —p)Mq(r,Da"Hf)p dr

1
- cj (1= r)(=P/D+PM (r, D** )P dr < o,
0

because of the equation relating «, p, p;.
Now suppose that f € D?1°9, This means that

1
| A=n©Cm@te, (r, D) < o,
0

and hence that
1

| a=rymmrnranpg, (r, Dot < oo,
0
As in the first part of the proof, this implies that
Mq(r’D(x+lf) < C(l _r)(l/Q)—(l/p)—l,

and this estimate shows that

1
S (1=r)=SD+sM (r, DY) dr <o, for all s<p. O
0

We point out that if

1 1 \7Vp
—(1—-"Vp [
f(2)=(1-2) l(z log 1_z>
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then using estimates found in [14], pages 93-95, it can be seen that £ € D?1:9 but
Def ¢ DP1,

We finish with some remarks about pointwise multipliers for D#:9, It is clear
that if f€e DP9, p<qand g€ H* that fg € D7, When p > q the situation is
much different. Note that if f€ D7 then

My(r, f') S My(r, f') = O((1—r)/a= /P -1y

and hence

1 ,
S M, (r, f') dr < o.
0

However there are bounded functions, even functions, continuous in U, for which

1
[ Myr, 1y dr=co,
0

also there are inner functions ¢, for which

1
| My, 0 dr=oo
0

and hence ¢ & DP-9 for p> q. We point out that it follows from the results of [1],
that if ¢ is inner and has a non-constant singular factor then ¢ € D?9 for p > 2q.
On the other hand the results in [12] show that if ¢ is the atomic inner function
then ¢ € D?:9 for all p<2gq.
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