EXAMPLES OF CELL-LIKE MAPS
THAT ARE NOT SHAPE EQUIVALENCES

R. J. Daverman and J. J. Walsh

1. Introduction. For the most part, cell-like maps behave in the expected
fashion by being hereditary homotopy equivalences in the setting of absolute
neighborhood retracts and by being hereditary shape equivalences in the general
setting of metric spaces; see [7], [9], [11], [14], [15]. An exception is an example
due to J. Taylor of a cell-like map F from a compactum 7" with nontrivial shape
onto the Hilbert cube Q [16]. In this paper, we verify a suspicion that a careful
analysis of this example would be beneficial by producing examples of:

(1) a cell-like map H from the compactum 7 onto Q such that the non-
degeneracy set Ny = {qEQ:H‘l(q)¢point} is a countable union of finite
dimensional compacta;

(2) a map from a compactum onto Q whose point-inverses are finite dimen-
sional absolute retracts and which is not a shape equivalence; and

(3) a locally contractible compactum Z which is not an ANR, compacta X and
Y which are ANR’s, and cell-like maps g: X = Z and f: Z — Y with the property
that N,Nf YNy = 2.

A central feature is an analysis which includes a verification that the map F
originally constructed by J. Taylor is a hereditary shape equivalence over its non-
degeneracy set Nr and, of course, is a homeomorphism dver Q — N.

A by-product of the techniques used to establish (3) is that if the compactum
TC Q is embedded as a Z-set, then the adjunction space QUrQ is locally con-
tractible. Moreover, the analysis in Section 7 produces a basis for QUg Q consist-
ing of contractible open sets. Since QUgQ is not an ANR, as the induced map
F: QO — QUEQ is cell-like but is not a hereditary shape equivalence ([9; Corol-
lary 2]), Question (ANR 1) in [6] has a negative answer.

2. Preliminaries. In order to facilitate coping with the abundance of notation
appearing as we simultaneously manipulate up to three inverse sequences, we
adopt the following conventions, which will be adhered to scrupulously through-
out the paper. The maps in an inverse sequence are denoted by lower case Greek
letters. The inverse limit of an inverse sequence {X,, «,,} is written (X,)» and
the compositions and induced maps are denoted, respectively, by «;;: X; = X;
for i 2j (where oy; =identity and «; ;_; = ;) and aw;: (X,;)o —> X;. Maps be-
tween inverse sequences are denoted by lower case Roman letters while the
induced map between the limits is denoted by the capital of the same letter; for
example, {g,]): {Xp,0p} 2 ¥y, B,) and G: (X)) = (¥) -
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Normally, the kth-suspension of a compactum C might be denoted by XX
and might be defined to be the quotient space obtained from 7* x X by identify-
ing each set {#} X X to be a point for ¢ € 3I* (where I =[—1, 1] is an interval). In
order to eliminate extraneous superscripting, we shall specify a positive integer r,
set I=[—1,1]" equal to an r-cell, and let £X denote the rth-suspension of X
(that is, the quotient space obtained from 7 X X by identifying each set {#} X X to
a point for £ € dI'). In turn, the (k- r)th-suspension of X, which will be denoted
2k X, is the quotient space obtained from I* X X by identifying each set {t} X X
to a point for ¢ € aIk.

Maintaining the notation just introduced, for a map f: X — Y between com-
pacta, we define the (k-r)th-suspension Z¥f: Z¥ X — XY of f as

Ekf([tl, t2" . ',tk’x])= [tls t2!' ) tkaf(x)]:

where generally the brackets ‘‘[...]”’ are interpreted to mean ‘‘the equivalence
class of ...”.

We adopt below and subsequently the terminology that a map f: X—> Y is
one-to-one over a subset C of Y to specify that the restriction of fto f~1(C) is
one-to-one.

LEMMA 2.1. Suppose the map F: (X,)w = (Y,)» is induced by a map of
inverse sequences {f,}: {X,,o,} = { Yy, B,} and suppose a subset CC (Y,)w
has the property that, for some k, f; is one-to-one over .;(C) whenever i Z k.
Then F is one-to-one over C.

For a map g: X — Y, we define sets N,=(y€Y: f~(y) #point} and H, =
g“(Ng) , both of which occur in the literature under the name ‘‘nondegeneracy
set of g”’. Both N; and Hg are Fj -subsets and, for X and Y compact, are
o-compacta.

A map between metric spaces f: X — Y is a shape equivalence provided, for
each polyhedron P, f*:[Y,P] = [X, P] is a bijection of sets (each of [Y, P]
and [X, P] denotes the set of homotopy classes of maps and f#([a]) = [aef*]).
A proper map between metric spaces f: X — Yis a hereditary shape equivalence
provided the restriction of f is a shape equivalence between f~1(A) and A4 for
each closed subset A C Y. For the most part, we shall be concerned with maps
between compacta. The exceptions are in the next two sections, in which we con-
sider the restriction, mapping Hy to Ny, of a particular map f: X — Y between
compacta. Even though f is not a shape equivalence, the restriction turns out to
be a hereditary shape equivalence, a property that can be detected in either of
two ways. The first uses a result implicit in [9; Corollary 8] that a map restricting
to yield a hereditary shape equivalence from f~!(A4;) to A4;, for each of count-
ably many compact sets, also restricts to yield a hereditary shape equivalence
from f~1(U 4;) to U A;. (While the statement in [9] requires each A; to be finite
dimensional, the proof uses only the facts that each restriction f |f—1( 4, is a
hereditary shape equivalence and that the induced map from the double mapping
cylinder of each restriction f | r-1(4;) to A; is a hereditary shape equivalence,
a proof of which can be found in the Appendix of [10].) The second relies on
[9; Corollary 4] that a hereditary shape equivalence restricts to yield a shape
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equivalence from f ~!(A) to A4 for an arbitrary subset A. The reader is referred
to [12], [9], and [5] for in-depth treatments of shape theory, while we permit our-
selves the freedom to use basic and standard results from shape theory.

The next result is useful for detecting that maps between inverse sequences
induce shape equivalences; the omitted proof consists of a straightforward veri-
fication of the above definition. We thank L. Husch for acquainting us with this
particular information.

LEMMA 2.2. Suppose the map F: (X,;)o = (Y,)w is induced by a map of
inverse sequences {f,}:{(X,,an} = {Y,,B8,}, where the X,’s and Y,’s are
ANR’s, and suppose for every k thereisani 2 k and amap g: Y; = X such that

the diagram
Xjk X,
% l
Y:

(
F; Fy

1
Bik

homotopy commutes; that is, gof; is homotopic to aj; and f;~g is homotopic to
Bix. Then F is a shape equivalence.

N— X

PROPOSITION 2.3. Suppose I = [—1,1]" is an r-cell, X is a compact ANR, and
a: I X X — X is a null-homotopic map, and let {p,}: (I"xX,a,} = {I",7,} be
the map of inverse sequences determined by specifying

(a) a1=aand,f0rk22, ak(t],.-.,tk,X)—_—(t],---,tk_],a(tk,X));
(b) m(I)=point and, for k=22, m(t;,...,t)=(t1,...,l_1); and
(©) po(X)=point and, for k=21, pi(t;,...,tk,xX)=(t1,..., k).

Then the induced map P: (I" X X) o — (I") is a hereditary shape equivalence.

Proof. Suppose that C is a closed subset of (I"). Set C, =7, (C) and use
n, 7y Du» and P to denote various restrictions. Then the map of inverse systems
{(Pn): (CyXX,&,) = (C,,#,) induces the map P:P~!(C)—> C. We shall
show that P is a shape equivalence by verifying that the hypothesis of Lemma 2.2
holds.

Specify a null-homotopy {/s}g<s<1: I XX = X with hy =« and (I X X) =
{xo}. Given an integer k, define g: C;,; = C; X X by specifying that

g((tly"°9tk+l))=(tl:"',tk!xO)'

We easily conclude that pyog =174, ;. Ahomotopy {@s}ocs<1: Crs1 XX > C X X
from &,y to geopir,; is determined by setting qo((f,...,l4+1,X)) =
(L1500 by Bs(Hr 41, X)) O

REMARK. The limit (/”), specified in the preceding proposition is canon-
ically homeomorphic to the Hilbert cube 7™ considered as a countable product
of r-cells. According to our description, 7° is a point, say ¢y, so a typical ele-
ment (g;) € (I")» has coordinates go=cy, q;=(¢), g2=(t1,62),..., g;i=
(t1,6,...,t),.... This allows us to split (/") . into a pseudo-boundary B which
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consists of points (g;) for which there is £ 21 such that g, has 1 or —1 as a
coordinate (i.e., g, € 3(I*¥x - - - x I®)) and a pseudo-interior s= (I")» — B.

3. Scrutinizing the Taylor example. The focus of this section is on an example
due to J. Taylor [16] of a cell-like map which is not a shape equivalence. At the
heart of this example is the existence of a map from the rth-suspension of a com-
pact polyhedron to itself, say 8: XL — L, such that every finite composition of
maps in the sequence

n—1
il E”‘IL-—>-~-—>)3Lf>L

cee = YL

is essential. Such examples have been constructed by Adams [1] and Toda [17],
[18]. For our purposes, we need specifics about neither the map 8 nor the poly-
hedron L. However, we shall need to have on hand a detailed description of the
example constructed by J. Taylor and such a description is contained in the
theorem below. It functions here as the central technical result.

THEOREM 3.1. Suppose 3:LL — L is a map from the rth-suspension of a
compact polyhedron to itself such that every finite composition of maps in the
sequence {L"L,L"f]} is essential and suppose the maps of inverse sequences
{g,}: (I"XL,a,} = {E"L,B,} and { f,}: {E"L,B,} = {I",n,]} are determined
by specifying

(@) go: L = L is the identity map and, for k=1, gi: I*x L — TXL is the nat-
ural quotient map;

(b) oy =B°gl and’ for k>2, ak((tls’ .. ,tk,X)) = (tls- oy tk_l,al(tk,X));

(c) B; =B and, for k =22, By =L*B, that is,

Bk([(tl""’tkﬁx)])= [(tls“',tk—lnB(tkax))];

(d) m(I) = point and, for k22, m(t;,..., )= (t1,...,4%—1); and
(e) fo(L) =point and, for k=21, fir([ti,..., L, X)]=(t1,..., ).
Then the induced maps G: (I" X L) = (E"L) o and F: (£"L) o = (I") » satisfy:

(1) both G and F are cell-like but neither is a shape equivalence;

(2) the composition F-G is a hereditary shape equivalence;

(3) G restricts to a hereditary shape equivalence from Hg to Ng;

(4) F restricts to a hereditary shape equivalence from Hf to Ng;

(5) NgNHp=@; in fact, Ng CF~Y(B) while Hr C F~(s), where B and s
are the pseudo-boundary and pseudo-interior of (I")«, respectively;

(6) G restricts to a hereditary shape equivalence from G~ ((£"L) — HF) to
(2"L)w — HF;

(7) Frestricts to a hereditary shape equivalence from F~'((I") o —F(Ng)) to
(I")e —F(Ng)-

Proof. Since the restriction of «; to {¢} XL is a constant map for ¢ € 9/, we
can conclude

*) the map «;: XL — L is null-homotopic.
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It should be evident that each f,, is one-to-one over d/” and that each g, is
one-to-one over f,,‘l((l "_—9Il")yx L). Lemma 2.1 can be used to conclude that

** F is one-to-one over B and G is one-to-one over F~!(s).

An immediate consequence of Property (**) is that Condition (5) holds. The
composition FoG is induced by the map of inverse sequences

{fnegn): I"XL,a,} = (1", m,}

and, in the presence of Property (*), Proposition 2.3 applies and establishes
Condition (2).
Observe that, for any subset K C (X”L) — Hf, in the commutative diagram

GH(K)

GlG—l(K)/ ¥°G|G—1(K)

K - F(K)
Flk

the restriction F|x is a homeomorphism and, consequently, Condition (6)
follows from Condition (2). Similarly, Condition (7) follows from Condition (2).
Conditions (3) and (4) follow from Conditions (6) and (7), respectively. O

The shape equivalence FoG establishes that (I"XL)» and (I"). have the
same shape and, since the latter is contractible, both have the shape of a point.
The assumption that finite compositions of suspensions of the map (3 are
essential assures that each Be;: ("L )w —> L'L represents a nonzero element of
[(E"L)w, L] and, consequently, (£”L), does not have trivial shape. As a
result, while both G and F are cell-like, neither is a shape equivalence.

REMARK. The map F: (E"L)» — (I") is exactly the example constructed by
J. Taylor in [16] and has the pleasant feature that its image is the Hilbert cube.
No doubt, the above proof obscures the reason that Fis cell-like. In Section 5,
we shall analyse the individual point-inverses of F and, in doing so, reproduce
the simple argument from [16] establishing that F'is cell-like.

4. Example with countable dimensional nondegeneracy set. Kozlowski in [9]
and Mogilski and Roslaniec in [14] have investigated conditions on the non-
degeneracy set of a cell-like map that force the map to be a hereditary shape
equivalence. The properties of the examples described in Theorem 3.1 impose
severe limitations on extending their results. The example presented in the next
theorem places further restrictions and answers negatively Question (sc2) posed
in [6]. The discussion in Section 2 points out that any cell-like mapping D
between compacta for which Np is a countable union of finite dimensional com-
pacta restricts to a hereditary shape equivalence from Hp to Np.

THEOREM 4.1. There is a cell-like map D from a compactum onto the Hilbert
cube which is not a shape equivalence and for which Np is the countable union of
finite dimensional compact subsets.
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The example is constructed by composing the map F: (X7°L)o —> (I") with a
map of the type described next.

PROPOSITION 4.2. Suppose that A is a s-compact subset of the pseudo-interior
s of the Hilbert cube [—1,1]1°. Then there is a map C:[—1,1]1" = [-1,1]%
such that each point inverse of C is convex, H-Cs, ACHc, and N¢ is the
countable union of finite dimensional compacta.

Proof. For a number 0 <e<1, we shall write Q[e] to denote the subset
[—1+€,1—€]” of [—1,1]% and (¢4,...,t,) X Ol€] to denote the subset

(t1,o b)) X [—1+e,1—€e] X [—14+e, 1—€]X -

of [—1,1]%. Choose numbers 1>¢;>¢,>--->0 and a homeomorphism
h:[—1,11° = [—1,1]1% with A(s)=s so that #(A)C U Qle¢]. The map C is
the composition of # with the map associated with the upper semicontinuous de-
composition G of [—1,1]% which we describe next.

Associate to each point (#,) € Q[e,] the subset R((#,,)) =Q[¢,]. Fori =22, as-
sociate to a point (#,) € Q[¢;]1—Ql[¢€; ;] the subset R((£,)) = (t,...,tn) X Ol¢i]1,
where m is chosen to be minimal with respect to

(@) m=i,

(b) R((£:))NQ[ei-1]1=9, and

(c) diamR((¢,)) <d(R((#,)),Qlei—1])-
Consequences of these conditions are

(1) R((2,))NR((s,)) # @ if and only if R((£,)) =R ((sn)),
(2) if a sequence (¢,); of points in Q[e;]—Q[e;_;] converges to a point of
Qlei—11, then the diameters of the sets R((#,);) converge to zero,
(3) for a sequence of points (#,); € Q[e;]1—Qle;_;]1, the diameters of the sets
R ((%,)j) converge to zero, and
(4) for each point (¢,) € Qle;]1—Qle—11, there is an integer M and a neigh-
borhood U of (¢,) such that if (s,) € UN(Q[e]1—Qlei—11) and R((s,)) =
(S15...,8- )X Qle;] while R((2,)) = (t1,...,tm) X QOf€;], then m<r <M.
It follows from these four conditions that the decomposition G whose elements
are the sets R ((¢,)) for (¢,) € U Qle;] and singletons from [—1,1]° —U Ol¢;]
is upper semicontinuous. Let C’: [—1,1]% = [—1,1]°/G be the associated map
and set C=C'-h.

Clearly, the point inverses of C are convex and AC U Q[¢;]CH-Cs. For a
neighborhood U as in Condition (4), we can write C(UN(Q[¢;]1—QClei_1 1)) =
F,U..-UF,, where the set F, consists of those points C((s,)) for which
R ((s,)) =(51,...,5,) X Ql¢;]. Since F, naturally embeds in the r-cell [—1,1],
dim F, < r and the Sum Theorem [8, p. 30] yields that

dim C(UN(Q[e]-Qlei—1])) <

(a more careful analysis shows that dimC(UN (Q[e;]1—Qlei—1]1)) <M). We
conclude that C(U QJe¢;]1), which is equal to C(H¢), is a countable union of
finite dimensional compacta.
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It remains to verify that [—1,1]°/G is homeomorphic to the Hilbert cube.
A possible approach would be to show directly that the decomposition G is
shrinkable. We choose to observe that the convexity of the elements of G permits
easy verification of the hypothesis of Theorem 5 in [9] whose conclusion is that
[—1,1]1%/G is an ANR, and, in turn, to appeal to Theorem 3 in [19] to conclude
that [—1,1]1%/G=[—-1,1]". ]

Proof of Theorem 4.1. Let F: (L"L)» — (I”)« be as in Theorem 3.1 and let
C: ("o = (I") & be as just described with NpC He. With regard to the
map D = C-F, we have Np C N¢c and, consequently, Np is a countable union
of finite dimensional compacta while D is not a shape equivalence since (L"L)
has nontrivial shape. However, D is a cell-like map since either y € No and
D '(y)=F 1 (C71(»)) is a cell-like set as F is a cell-like map or y € N and
D Y(yy=F~}{(C~!(»)) is a cell-like set as C~!(y) Csis a cell-like set and Condi-
tions (5) and (7) of Theorem 3.1 yield that F | F-1(c-1(y) is a (hereditary) shape
equivalence. a

5. An AR-map that is not a shape equivalence. We shall call a proper map
each of whose point-inverses is an absolute retract an AR-map. In [13], van Mill
solved a problem posed by Borsuk [3] by exhibiting an AR-map between com-
pacta which is not a shape equivalence. The original approach of van Mill relied
on specifics about the example constructed by J. Taylor (see Section 3) while its
extension in [10] showed that any cell-like map which is not a hereditary shape
equivalence gives rise to an AR-map which is not a hereditary shape equivalence.
Neither approach produced such an AR-map having finite dimensional point-
inverses, a feature which seemed plausible since the point-inverses of the map
F:(Z"L)o = (I")» have dimension < dim L. The example which we shall con-
struct realizes this expectation for it is an AR-map which is not a hereditary
shape equivalence and whose point-inverses have dimension <dim L +1.

Let {X,, 0,] be an inverse sequence of compacta and define

or: XpyX{n—-1} > X, x{n—1}
by requiring that ¢} (x,n—1) = (0,(x),n—1). Set Ty =Xy X {0}; set
T1=(X;x[0,1)U,;To

and define 7,: 7} = T, be requiring that 7; equals the identity on 7 and that
71(x,8) = (g,(x),0) for 0 <s <1; recursively set

T, = (Xp X [n_lsn])ua‘;Tn—]

and define 7,,: 7,, = T,_, by requiring that 7, equals the identity on 7,,_; and
that 7,(x,s)=(o,(x),n—1) for n—1<s <n. (T, is the compactum obtained
from 7,,_; by attaching the mapping cylinder of the map o, to 7,,_; along the
common subspace X,,_,, and the map 7, is the strong deformation retraction
obtained by ‘‘pushing down’’ the mapping cylinder.)

The limit of the inverse sequence {7,,7,} is denoted Jel({X,]}) and is an
““‘infinite mapping cylinder’’ with a copy of (X, ). attached at its end. More
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precisely, there is a natural projection p:Jel({X,}) = [0,] and canoni-
cal identifications p~'(n) = X, x {n}, p " ([n—1,n]) = X, x [n—1,n], and
p ()= (X,)«. These identifications “name’’ the points of Jel({X,}); that
is, (x,s) is considered an element of Jel({X,}) provided either s =oc0 and
XE€ (X,)o Or s€[n—1,n] and x € X,,.

We record for later use standard facts, proofs of which can be extracted from
the development of the theory of ANR’s found in [3].

LEMMA 5.1. Let { X, 0, )} be an inverse sequence of compact ANR’s.
(i) Jel({X,}) is an ANR.
(i) Jel({X,})Ux, x0) Cone(Xp) is an AR.

We shall also need the following result, which is implicitly contained in [10].

PROPOSITION 5.2. Let F': X = Y be a cell-like map between compacta, let W
be a compactum containing X, let F: W— Y be a hereditary shape equivalence
extending F, and let e denote the induced map from W to the adjunction space
WUgpY. Then the map Foe™': WUrY— Y is cell-like, and it is a hereditary
shape equivalence if and only if F is a hereditary shape equivalence.

THE EXAMPLE. The starting point is the map F: (X"L), = (/") con-
structed in Section 3 and the following description of its point-inverses.

For a point (g,) € /") w, F~'((g,)) is the limit of the inverse sequence
{g.(g,xL),B;} where 83, is the restriction of 3,. The set g,(qg, X L) is either a
point or a copy of L; consequently, dim F~!((g,)) <dim L and

dimJel({g,(g, XL)}) <dim L+1.

Since (3, is essentially the map 3 restricted to g,(¢; X L), where g, = (¢,,...,1,),
and this restriction is null-homotopic, we conclude that 3, is null-homotopic and
we have fulfilled an earlier promise to reproduce the original argument in [16]
establishing that F is cell-like.

Specify a set-valued function R from (/") to the compact subsets of

Jel({XZ"L}) Up« (o) Cone(L)
by requiring that
R((q,)) =3el({8n(gn X L)}) U« (o) Cone(L)

for (g,) € (I"). It is easily checked that R is upper semicontinuous. Denote the
graph of R by W; that is,

W={R((qn))*{(gx)}: (qn) € (I")}.
Identify (X¥"L). with the subspace
{(x,F(x)):x€(E"L), JCW
(that is, the graph of F) and define F: W— (I"). by setting
F(R((gn)) % {(gn)}) = (qn)-
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The map Fis an AR-map (see Lemma 5.1) extending F and is a hereditary shape
equivalence since, identifying (7/”), with (/") X {cone point of C(L)}, the
“natural push’’ down the “‘infinite mapping cylinder’’ structure establishes that
F'is a strong deformation retraction. Denoting the induced map from W to the
adjunction space WUr(I"), by e, Proposition 5.2 applies to show that the AR-
map Fee™ !t WUr(I™) — (I") is not a hereditary shape equivalence, and evi-
dently the point-inverses of Fee~! have dimension <dim L+1.

A careful inspection of the proof of Theorem 1.1 in [10] reveals that WUg(1")
has the same shape as the double mapping cylinder of F, which we denote by
DM(F) and which is the quotient space obtained from (X¥"L), X[—1,1] by
identifying each of the sets F~1((g,)) X {—1} and F~!((g,)) x {1} to points for
(@) € (I")w. The map from DM(F) to the first suspension of (X¥"L)., ob-
tained by identifying the copies of (/") at the —1 and 1 levels to points, is a
hereditary shape equivalence (by virtue of having only two nondegenerate point-
inverses), revealing that DM (F’) has the same shape as the first suspension of
(X"L) . This suspension has nontrivial shape since the rth-suspension Z(Z"L)
has nontrivial shape, being canonically homeomorphic to (£"”L).. We conclude
that WUgr(I")» has nontrivial shape, establishing:

THEOREM 5.3. There is an AR-map f from a compactum X onto the Hilbert
cube Q which is not a shape equivalence and for which

sup{dim f~'(g): g € Q} < 0.

6. A locally contractible compactum which is not an ANR. A finite dimen-
sional compactum is an ANR if and only if it is locally contractible; currently
there is no comparable characterization known for infinite dimensional ANR’s.
An example due to Borsuk [3] established that local contractibility does not suf-
fice, for it is a locally contractible compactum which has nonzero homology in
every dimension and, consequently, cannot be an ANR. We present another
example of a locally contractible compactum which is not an ANR: it possesses
properties not possible in Borsuk’s example.

THEOREM 6.1. There are compacta and maps

x5z5y

satisfying:

(i) gand f are cell-like and N,NHy = @;
(i) X and Y are ANR’s but Z is not an ANR;
(iii) Z is locally contractible.

The spaces, maps, and Conclusion (i). Starting with the spaces and maps
G F
(I"XL)o 2 (E"L)e = (I")

described in Section 3, we obtain
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M Jel({I"XL}) 3 Jel({1" X L}) Ug(E"L)w 5 Jel({I" X L}) Up.g(I") w,

where G agrees with G over (X"L). and is one-to-one over the complement of
(£"L), and where F agrees with F over (I") and is one-to-one over the com-
plement of (/") . We shall show that the spaces and maps of (}) satisfy the con-
clusion of Theorem 6.1. Condition (i) is an immediate consequence of F and G
being cell-like (see Condition (1) of Theorem 3.1) and N; N Hr being empty (see
Condition (5) of Theorem 3.1).

Conclusion (ii). Lemma 5.1 states that Jel({/"” X L}) is an ANR. In order to
proceed, we appeal to [9; Corollary 2] which states that the image of a cell-like
map defined on an ANR is an ANR if and only if the cell-like map is a heredi-
tary shape equivalence. The composition F-G is a hereditary shape equiva-
lence since it agrees with the hereditary shape equivalence FoG over (/") and
(I")« 1s a closed subset containing Ng.s (see [9; Lemma 8]). Consequently,
Jel({I" X L})Up.g (I")w is an ANR. Conversely, since G agrees with G over
(E"L)« and G is not a shape equivalence, Jel({/” X L })Ug (X"L) is not an ANR.

Conclusion (iii). We shall find it convenient to make the additional assumption
that the map 8: XYL — L, which forms the heart of the constructions in Section 3,
be “‘pointed’’; that is, there is a point w € L for which B(Xw) =w, where XwC
YL is an r-cell, being the rth-suspension of a point. For now we view ("), as a
subset of (/" X L) (respectively, (£"L)) by identifying a point (g,,) € (I")w,
where qy=c¢y, ¢1=(41),..., @gn=(41,,...,1,),..., with the point (q;) €
(/"X L) (respectively, ([g,]) € (£"L)«) determined by setting g3 =w, q{=
(H,wW),ooo, gi=(l,6,...,t;,W),.... With these identifications, both F-G
and F are retractions. There is an induced extension of F-G (respectively, F)
to a retraction of Jel({7"XL}) (respectively, Jel({/"XL}Ug(X"L)») onto
Jel({I"}); recalling that the s-coordinate parameterizes the ‘‘infinite mapping
cylinder”’, for n2s>n—1 we see that a point ((#,...,%,,/),s) (respectively,
([(tH,...,ty,1)],s)) is sent to the point ((¢,...,#,),s). The extension is denoted
by 3(F-G) (respectively, 3(F)).

For the most part, the space

Sel(fI"X L}) Ug (E"L)

is locally contractible since iE contains a ‘‘large’’ open set which is an ANR; spe-
cifically, the restriction of G yields a homeomorphism between
Jel({I"xXL})—Cl(Hg)
and
[Sel(fI"XL}) Ug(E"L) o] — (I") .
Consequently, it remains to exhibit local contractibility at points of (/”).
For an integer k and an open set U C I we set U(k) equal to the open subset of

Jel({I"}) consisting of points whose kth-coordinate lies in U and whose
““mapping cylinder’’ coordinate is > k— 1; specifically,
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Uk) =7k (I X - X Ly x U)X [k, k1)),

where Jel({7"}) is the limit of the inverse sequence {T,,7,} as described in
Section 5.

An integer k, an open set UC I, and amap h: U— Uwith h(UNJI) CcUNdI
determine a map

3(h): 3(F)~N(U(k)) = 3(F)"1(U(k))
by setting

S(h)((t],.--,tn,l),S))z((t],...,tk_l,h(tk),tk.}.],...,tn,l),S)

for points not in (X¥"L)., where n 25> n—1, and by setting

3(h)([g.1)) = ([gx])

for points in (X"L), where, for g, = (#1,...,t:, 1,),

q7;=(tla"°’tk-—l,h(tk)’tk+l’°'"tnsln)

for n 2 k and recursively, gi—1 = ax(qt), q—2=ox_1(qi-1),..., a6 =01(qy).
The map 3(4) leaves the subset (I”) N[3I(F) "1 (U(k))] invariant and, since
it changes only kth-coordinates of points in this subspace, the distance it moves
these points is limited by the choice of k. In contrast, 3(#) may move points of
(X"L) alarge distance regardless of the choice of k.
Guided by the next result we will shortly complete the verification that
Jel({I"X L})Ug(E"L) is locally contractible at points of (/") .

LEMMA 6.2. Suppose that a point x in a metric space X has the property
that, for each €>0, there is an open set U containing x and a homotopy
{h: U—> Xo<r<1 With hg=1dy, hi(U) contained in an ANR, and

Diam{#/,(x):0<t<1}<e.
Then X is locally contractible at x.
Proof. Choose a neighborhood V of x so that
Diam{A,(y):y€V and 0<t<1}<e

and so that A;(V) is contractible in the e-neighborhood of #;(x). Then V is con-
tractible in the 2e-neighborhood of x.

Given a point (g,) € (I")e» C(X"L)» and e>0, choose k so that points in
(I")« differing only in their kth-coordinates are e-close. Let U =1—{q} where
q is any point in d/—{q;} and let {#,: U— U} be any homotopy satisfying
h,(UNaI)ycUNoal for 0<t<1, hy=Idy, and h;(U) Cdl. The open set
3(F)~1(U(k)) and induced homotopy {J3(4,)} (as described previously) satisfy
the hypothesis of the Lemma 6.2 for the point (g,), since the image of 3(4;) is
contained in the ANR3el({/"}) C3el({/"XL})Ug(X"L) . a

7. A basis of contractible open sets for QUg Q. In this section, we provide a
negative answer to Question (ANR 1) in [6] by producing a compactum that has
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a basis of contractible open sets but is not an ANR. The space Z in Theorem 6.1
also has this property, the argument establishing this being slightly more compli-
cated than that given below.

THEOREM 7.1. If (¥"L), C Q is embedded as a Z-set, then the adjunction
space QUEQ has a basis of contractible open sets but QUgQ is not an ANR.

Proof. First, we appeal to [9; Corollary 2] in order to conclude that QUgQ is
not an ANR (for any embedding (X"L), C Q).

The Z-set unknotting result of R. D. Anderson [2] permits us to work with a
particular Z-embedding of (X”L), into a Hilbert cube, namely, its natural
embedding into the Hilbert cube that is the quotient space obtained from

[3el({Z"L}) UpLx (o) Cone(L)] X Q

by identifying each of the sets {x} X Q to a point for x€ (X"L),. The quo-
tient space is an AR and is a Q-manifold except possibly at points of the Z-set
(X¥"L), (we are identifying (X"L), with its image) and, consequently, is a
QO-manifold. Being contractible, it is homeomorphic to the Hilbert cube. The
reader is referred to [4] and [19] for further details.

The adjunction space QUrQ is a Q-manifold except at points of Q =
F((£"L) ) and, evidently, with the structure just described points of F((£"L) )
have “‘small’’ contractible open neighborhoods provided they have such neigh-
borhoods in the subspace

Jel({E"L})UrQ.

Before establishing the latter, we introduce additional notation.

The points of Jel({L"L})UrQ split into types.

First Type. Points (q,) € Q where qy=c¢g, q1=(cy, 1), ¢2=(co, t1,62) ..+,
q,=(co,t1,..-,1,),...; see the remark following Proposition 2.3.

Second Type. These are points not in Q and these have the form

([(4,...,8;),11,s) where n—1<s<n,

the brackets [...] denoting equivalence classes determined by the relation
(81,0 ey tn, 1)~ (ty,..., 15, 1") wWhenever (¢,...,t,) €0I".

As a result of mapping cylinder identifications, certain points of the Second
Type have another ‘‘name’’; specifically, ([#,...,,+1,/],n) is identified with
the point of the Second Type ([ ¢,,...,%:, B8(t,+1,1)]1, n). This observation assures
the “‘well-definedness’’ of maps described subsequently.

For an integer k> 1 and a subset CC I, we name a set C(k) that consists of
points of the First Type for which (#;,..., #) € C and points of the Second Type
for which (¢,...,#%)€Cand s> k—1.

It is not hard to show that U(k) is an open subset of

Jel({Z"L})UrQ

whenever U is an open subset of I* and that sets of this form can be used to form
neighborhood bases for points of Q. In fact, the latter remains true if we restrict
to those open subsets U satisfying:
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(@) UN (I*~'x 8I) is contractible and is a strong deformation retract of U; and

(b) the strong deformation retraction {H,: U— U} can be chosen so that
Ho(ty, ... te) = (oo te) = (21, b1, B (8)) and H.(UNBI*) c Unar*.
For example, sets of the form VX [—1,1) and VX (—1,1] for V a contractible
open subset of 77! are sufficient.

The final step is to show that U (k) is contractible whenever U satisfies (a) and
(b). A strong deformation retraction { H,: U — U} as in (b) induces a strong de-
formation retraction {3(H,): U(k) > U(k)} of U(k) to (UN (Ik‘1 x al)) (k)
by setting

3(H,)((gn)) = (gn)
for points of the First Type where g, =¢q, for n <k—1 and

qr,t = (C(],tl,"-’tk—lvhr(tk)atk+l"- -stn)
for n 2 k and by setting

3(I{I‘)([rl)"'’l‘nsl],s)‘: ([tl""’tk—l9hr(tk)stk+l"'-atn)l]9s)

for points of the Second Type. The contraction is completed by observing that
(UN(I*"'x aI)) (k) deforms down the “mapping cylinder lines’’ to a set home-
omorphic to the contractible set (UN (Ik_1 xadl))x (k—1,k]. a
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