PEAK SETS FOR POLYDISC ALGEBRAS

Josip Globevnik

1. Introduction. Let Ay, N>1, be the polydisc algebra, i.e. the algebra of all
continuous functions on the closed polydisc AN C CV, analytic on the open polydisc
AN, with sup norm. We call a closed set FC A" a peak set for A4 if thereisa o €Ay
such that ¢| F=1, |¢(z)| <1 (z€ AN—F); we call any such ¢ a peaking function
for F. We call F a peak interpolation set for A if given any f€ C(F), f#0, there is
an extension f€ Ay of fsuch that |f(z)|<|f|| (z€AN-F).

Peak interpolation sets for Ay have been studied extensively—it is known that
they coincide with those peak sets for An which are contained in (8A)%, the
distinguished boundary of the polydisc {3, 4].

The simplest example of a peak set for Ay is AN. By the maximum modulus
theorem, every other peak set for 4, is contained in d(A"), the boundary of the
polydisc. If N=1 then every peak set for 4, different from A is a peak interpolation
set for A, [4]. If N>1 this is no longer true. To illustrate this, let N=2 and let
F={(1,%):¢€A}Cd(A?). It is easy to see that F is a peak set for 4, but not a peak
interpolation set for A,. However, as we show in this paper, one can describe peak
sets for Ay in terms of peak interpolation sets for Ay,, M< N.

Let SC{1,2,..., N} be a subset containing M elements. Define

T={(x,) €ECV:|x,|=1(yES), x,=0 (v ¢ 9)}

and m:AN— AN by w((x,)) = (y,) where y,=x, (YES), y,=0 (y¢S). We call
any such T a torus and = the projection associated with 7 and we denote by A the
restriction algebra A | 7(AM). A7 and T can be identified in a natural way with 4,,
and (dA)M, respectively, and consequently the peak interpolation sets for 4 can be
identified with the peak interpolation sets for 4,, (see Section 2 for the precise mean-
ing of this).

Let T be a torus, let w be the associated projection and suppose that FC T is a
peak interpolation set for Ay. There is a function ¢ € Ay such that ¢|F =1,
le(z)| <1 (z € 7(AN) —F). The function gom € Ay is a peaking function for
7~ 1(F) so #~1(F) is a peak set for A. It follows that if T;, 1 < i< m, are tori, =; the
associated projections and F; C T; peak interpolation sets for Ar, then

1) F= U =7 '(Fy
i=1

is a peak set for A,. We will show later by an example that there are other peak sets
for A . Suppose that in (1) each of the sets F; is the union of a sequence of peak sets
for Ar,. If Fis closed then F'is only a peak set for Ay. Our main result is that we get
all peak sets for Ay in this way:
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THEOREM. A compact set FC 3(A"N) is a peak set for Ay if and only if

m
@ F=U = \(F)
where for each i, 1< i< m, =;is the projection associated with a torus T; and F;C T,
is the union of a sequence of peak interpolation sets for A T,

2. Preliminaries. Throughout, A is the open unit disc in C and N>1 is a fixed
integer. We will write A for Ay. We denote by ey, 1<y< N, the standard basis in
CN. If Pis a subset of AN then we denote by P the closure of P. We denote by N the
set of all positive integers. If S is a nonempty subset of {1,2,..., N} then we call
T={x=(x,) € AN: lx,|=1 ('yES), =0 (y€S)} the torus w1th support S and
write S-—suppT The map =: 7\’ defined by =((x,))=(y,) where Yy=Xx,
(y€S) and y,=0 (vy€S) is called the projection assocaated with 7, or the pro-
jection with support S; we write S = supp 7. Any vector belonging to a torus is called
a toroidal vector. If x=(x,) €3(A") then y=(y,) where y,=x, if |x,|=1 and
Yy=0if |x,| <1, is called the toroidal part of x and the set {vy:|x,| =1} is called
the toroidal support of x. As usual, the support of x= (x,) € AV is the set suppx=
{v:x, #0}. If x=(x,) € 3(A") we define the face of x, F(x), as F(x) =
(y= (yy) €AV:y =x, for all those vy for which |x,|=1}.

Let 7 be a torus with support containing M elements and let « be the
associated projection. We denote by Ay the restriction algebra A|w(AN). Let
b:S—{1,2,..., M} be a bijection and define the map ¢ : 7(AV) — AM by

(3) ‘P(E xiei) = X X;ep(j)-
ieS ieS

By the map f~ feo (f€ Ay) the polydisc algebra A,; can be identified with A4. Call
a closed set F'C T a peak interpolation set for A if given any f€ C(F), f#0, there
is an extension fE€ Ay of fsuch that |f(z)| < ”f|| (z € 7(AN) — F); equivalently,
FCTisa peak interpolation set for Ay if ¢(F) is a peak interpolation set for 4,,.
By the properties of peak interpolation sets for A,, [3] a closed set FC T is a peak
interpolation set for A7 if and only if it is an interpolation set for Ay, i.e. if given
any f€ C(F) there is an f€ Ay which extends /.

Call a set FC AN a zero set for Ay if there is a ¢ € Ay such that | F=0, ¢(z) #0
(z€ AN—F). 1If FCa(AM) then AN—F is simply connected. Consequently a set
FCa(A") is a peak set for Ay if and only if it is a zero set for Ay [3, pp. 132-133].
Using an argument of Stout [5, p. 8] it is easy to see that any compact subset of AV
which is the union of a sequence of peak sets for Ay is itself a peak set for Au.

3. Peak sets and faces.
LEMMA 1. Let FC 3(AN) be a peak set for A. Then F(x) C F for every x € F.,

Proof. Let f€ A be a peaking function for F. Let x € F, let x, be the toroidal part
of x and let = be the projection with support {vy:|x,| <1}. The function y~ ¢(y) =
S(x,+y) is continuous on = (A"). Since fis analytic on A" it follows that for each «,
0<a <1, the function y~ ¢, (y) =f(ax,+y) is analytic on #(A"). By the uniform
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continuity of f the functions ¢, converge to ¢ uniformly on 7(AN) as a—1 and
consequently ¢ is analytic on w(A"). Since ¢ assumes its maximum modulus at the
point x—x, € w(A") it follows by the maximum modulus theorem that ¢(y) =
const (y € w(AY)). It follows that f(x,+y) =1 (¥ € m(AY)) and the assertion
follows. O

Let FC(A") be a peak set for A. Denote by x, the toroidal part of x €a(A").
Since x € F(x) = F(x,) for every x € d(A") it follows by Lemma | that

4) F=U F(x).
xX€EF

Call a face F(x,), x € F, maximal if there is no y € F such that F(x,) is properly
contained in F(y,). Further, if x= (x,) €AY, y=(y,) € A" then write x<y if

(a) suppx is properly contained in suppy

(b) x, =y, for each y € suppx.
It is easy to see that if x, y € 3(AN) then F(x) is properly contained in F(y) if and
only if y,<x,.

LEMMA 2. Let FC3(AY) be a peak set for A. Every face F(x;), x€F, is con-
tained in a maximal face.

Proof. Let x€F. If there is no y€F such that y,<x, then F(x,) is already
maximal. If there is some y € F such that y, <x, then F(x,) is properly contained in
F(y,)—in this case the number of indices in supp y, isstrictly smaller than the num-
ber of indices in supp x,. It is easy to see that there are m € N and y;,y5,...,¥,, € F
such that y,, ;<y,_1,,<---=<¥»,,,<x, and such that either ¥(y,, ,) is maximal or
supp ¥,,,, contains only one element which again implies that F(y,, ,) is maximal. In
either case we have F(x,) C F(y,, ). This completes the proof. ]

4. Proof of the theorem. Suppose that FC d(A”) is a compact set of the form (3)
where for each i, 1 <i< m, w;is the projection associated with a torus 7; and F; =
UjZ, F;; where Fj;, j€N, are peak interpolation sets for Ar,. Since for each i,/,
I<i<m, jEN, the set 7r,«"(F,-j) is a peak set for A it follows that for each j € N the
set Gj=UL, 1r,-“(F,-j) is a peak set for A. Since Fis compact and since F=U;2, G;
it follows that F'is a peak set for A. This proves the if part of the theorem.

The proof of the only if part of the theorem is more difficult. We divide it into
several parts.

PART 1. Let FC d(A") be a peak set for A. Put
G={x,:x€F and F(x,) is maximal}.
By Lemma 2
&) for each x € F there is a y € G such that F(x) C F(y).

Since x € F(x) (x€F) (5) implies that FC U e F(»¥). On the other hand, by (4)
Uyec F(¥) CUxer F(x,) =F which proves that
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(6 U F) =
YEG
In particular, GCF.
For each i, 1<i< N, let

G; =[x € G:suppx contains i elements}

H; =[x € G:suppx contains at most / elements}.

Clearly H;=U!_| G; (1< i< N). Further, for each i, 1<i< N, let L;= Usen, F(x).

We prove first that the set L; is compact for each i, 1< i< N. Fixi, 1<i< N, and
let x, € L;, x,—>x,. We will prove that xy € L;. By the definition of L; there is a
sequence y, € H; such that x, € F(y,) (n € N). Since the class of all subsets of
{1,2,..., N} containing at most i elements is finite it follows that there are m,
I<m<i, and a set PC(1,2,..., N} containing m elements such that suppy,=P
for infinitely many n. Passing to a subsequence if necessary we may assume that
suppy,=P (n€ N) and by compactness we may assume that there is y, such that
Yn—>Yo. Clearly supp yo=P. Since y, € F (n€ N) and since F is closed it follows
that y, € F. Further, since y, =y, X, — X, and since x, € F(y,) (n € N) it is easy
to see that x5 € F(y,). By (5) there is z; € G such that F(y,) C F(z,). Since both y,
and z, are toroidal vectors it follows that supp z, C supp y, which implies that supp z,
contains at most m elements. Since m < i it follows that F(z,) C L; and consequently
Xp € L;. This proves that L; is compact.

PART 2. For each i, 1< i< N, let I; be the class of all subets of {1,2,..., N}
containing i elements. If 1 < i< N and J € [; denote

G;;={x€ G:suppx=J}.

In what follows we assume that all sets G; ;, 1< i< N, J€I;, are nonempty. It is
easy to modify the proof in the case when some of these sets are empty.
We first prove that

(7) Gi;j—G,;CLi_, (1<i<N,J€EI).

Let 1<i< N, Je€l;and let x5 € (TJ— G, ;. There is a sequence x, € G; ;, X, = Xo.
Since G; ; C F and since F is closed it follows that xy € F. Note that x, is a toroidal
vector, supp xo=J. By the definition of G this implies that the face F(x,) is not
maximal (otherwise we would have xy € G which, together with supp x,=J, would
imply that xy € G; ;, contradicting the assumption). By (5) it follows that there is
Yo € G such that F(xy) is properly contained in F(y,). Since x; and y, are both
toroidal vectors this implies that suppy, is properly contained in suppx,. Conse-
quently suppy, contains at most i—1 elements which implies that F(yy,) CL;_;.
Since F(xy) C F(y,) it follows that xo € L;_ - ThlS proves (7).
Further, observe that .

(8) F(x)CL_, (x€L,_,, 1<i<N).

Namely, if x€ L;_, then x € F(y) for some y € H;_; which implies that F(x) CF(y).
Since F(y) C L;_, (8) follows.
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PART 3. Let f€ A be a peaking function for F. If 1 <i< N and J € I; denote by
T;, w; the torus and the projection with support J and write D= m( ANy. Observe
that G; ;C T,;C D;. We prove that :

if 1<i<N andif J€I; then

©) /(@) <1 (z€Dy:z¢Liy, 2¢ G ))
and /
(10) if JE€I, then |f(z)|]<1 (z€ Dy, z¢ G, j).

Fix i, 1 <i< N and let J € I;. Suppose that K € I; for some j 2 i, K#J. Then K—J is
not empty. Let y EK—J. If y € G; x and z € F(») then |z,|=1. Since y € J we have
z,=0 (z€Dy). It follows that D;NF(y) = @. Thus we have proved that

(11) Djﬂg(y)=® if yGG,-,K, K#J, or if yEGj,K, j>l
By (6) we have

F=L; U[ Uu U 5(y)]U[U_ U U 5’()’)]
and it follows by (11) that (D;—L;_|)NF= (DJ—L,-_,)ﬂUyeG” F(y). Further,
since G; ;C Ty it follows that $(y) ND,;={y} (¥ € G, ). Consequently

(Dyj—L; ) )OF=(D;—L;_})NG;,

which implies (9). In the same way we prove (10).
Since G, ;CF (J € I,), (10) implies that for each J € I}, G ;is a peak set for A,
and since G, ;C T it follows that G, , is a peak interpolation set for Ar,.

PART 4. Let 1 <i< N and let J€I;. We will prove that each compact subset of
G, ; disjoint from L;_, is a peak interpolation set for Ar,.

Let x€G;;, x¢L;_,. Since L;_, is compact there is a compact convex neigh-
bourhood UC D, of x disjoint from L;_,;. We will prove that G; ;N U is a peak
interpolation set for the algebra P(U), the uniform closure on U of polynomials in
zy, v €J. Since U is a compact convex subset of the subspace £C CN spanned by
ey, Y€J, Uis polynomially convex and it follows that UC E is the maximal ideal
space of P(U) [1, p. 67]. Note that f| D, belongs to A r, which implies that f| D; is a
uniform limit of polynomials in z., y € J. It follows that /| U€ P(U).

Write H=G; ;N U and ¢=f| U. Since ¢ € P(U) it follows by (9) that H is a peak
set for P(U) and that ¢ is a peaking function for H. Now we use the proof of Stout
[S, p. 7; 3, p. 133] to prove that H is an interpolation set for P(U). In the same way
as in [3, p. 133-134] we prove that P(U) | H is closed in C(H) and that H is the
maximal ideal space of P(U) | H. Since HC T} the coordinate functions z,, y € J,
have no zeros on H so they have inverses in P(U) | H. On H we have z.;‘ =2z,
(Y€J) and it follows that P(U) | H contains the algebra generated by z,|H,
zy | H (y €J). Since P(U) | H is closed in C(H) it follows by the Stone-Weierstrass
theorem that P(U) | H= C(H) [3, p. 134]. This proves that H is an interpolation set
for P(U). Since H is a peak set for P(U) it follows that H is a peak interpolation
set for P(U) [5].
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Now, the localization result of Stout [4, p. 224-225] implies that every
x€ G; j—L;_, has a closed neighbourhood U(x) C D, disjoint from L;_; such that
G;, ;N U(x) is a zero set for Ar,. It follows that every compact subset of G; ; disjoint
from L;_, is a subset of a zero set for A7, contained in 7}, hence a subset of a peak
interpolation set for Ar,. Consequently every compact subset of G; ; disjoint from
L;_, is a peak interpolation set for Ar,.

PART 5. PUtFJ=‘- Gl,J (JEII) andFJ= G,”J“'Lj_l (JE],', 1<i<g N) IfI<i<N
then L;—L; ; = Uyey, UxeG,.,, F(x)—L;_,. By (8) it follows that L;—L;_, =
User, Useg; -1, F(X) —L—y, which, by (6) gives

Lj—L,'_l C U U S(X) C F.
Jel; x€eFy;
Consequently

N N
F=UL;,=LU [ U (Lf—Li—n)]
i=2

=[Ml U m)]u[G U u ff(x)]

=U U =7'(F).
JE, .

=1

~

The proof of the theorem will be completed once we have shown that each F; is the
union of a sequence of peak interpolation sets for Ar,. This is clear for the sets
F;=Gy,y (J€I) since they are peak interpolation sets for Ar,, respectively. Let
1<i< N and let J€ ;. Recall that G; ;CT;. If D;NL;_, =@ then by (7) G, ; is
compact and disjoint from L;_, so by Part 4 F; = G; ; is a peak interpolation set for
Ar,. Suppose that D;NL;_,# @. For n €N, let

V,=1{z € Dy:dist(z, D;NL;_y) 2 1/n}.
Observe that for every n € N V, is a compact subset of D; disjoint from L;_,. By the
compactness of L;_; we have D;—L;_;=U,;-, V, which implies that

Fr=Gj—Li = Ul (VoG ).
n=

Let n € N. By (7) the set V,,NG; ; is compact. Since it is disjoint from L;_, it follows
by Part 4 that V,,N G, , is a peak interpolation set for Ar,. Consequently F; is the
union of a sequence of peak interpolation sets for Ar,. This completes the proof of
the theorem. ‘ O

5. An example. In this section we present an example which shows that not every
peak set for A has the form g

(12) F=U =7 \(F)
i=1

where 7;, 1< i< m, are tori, w; the associated projections and F; C T; peak interpo-
lation sets for Ar,.
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Let N=2. Let ¢,, ¢, <w/2, be a decreasing sequence of positive numbers con-
verging to 0 and let ,, 0< ¥, < 27, be a sequence dense in [0,27]. Let 7}, 7, be
the tori with supports supp 7y, ={ 1}, supp 7, = {1, 2} and let 7;, w, be the associated
projections. Let F;={(1,0)}, F,= {(e'», e"¥") :n€N]) and put

F=aii(F)Ur; (F).

Since F is compact and since it is the union of a sequence of peak sets for A it
follows that F is a peak set for 4. F; is a peak interpolation set for A7, but F, is not
a peak interpolation set for A7, since it is not closed. By the properties of ¢, and ¥,
we have F, =F,U{(1, ¢): {€0A} and consequently F= = ! (F)Ury \(Fy). It is
easy to see that F, is not a peak interpolation set for Ar,=A. It follows that the
set F above cannot be written in the form (12) with F; being peak interpolation sets
for Ar.

REFERENCES

. T. W. Gamelin, Uniform algebras, Prentice Hall, Englewood Cliffs, N.J., 1969.

. J. Globevnik, Norm preserving interpolation sets for polydisc algebras, to appear.

. W. Rudin, Function theory in polydiscs, Benjamin, New York, 1969.

. E. L. Stout, The theory of uniform algebras, Bogden and Quigley, Tarrytown-on-Hudson,
N.Y., 1971.

, On some restriction algebras. Function Algebras (Proc. Internat. Sympos. on Func-

tion Algebras, Tulane Univ., New Orleans, La., 1965), pp. 6-11. Scott-Foresman, Chicago,

I11., 1966.

AW N -

w

Institute of Mathematics, Physics and Mechanics
E. K. University of Ljubljana
Ljubljana, Yugoslavia






