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1. Introduction. Let I" be a dense subgroup of the real line R, endowed with the
discrete topology, and let K be the dual group of I'. For each ¢ in R, ¢, denotes the
element of K defined by e,(\) = ™ for any X in I. The mapping from ¢ to e, embeds
R continuously into K, and it is well known that the translation by e, defines
a strictly ergodic flow. Fix a positive v in T', and let K, be the compact subgroup
consisting of all x such that x(y)=1. If we put B8(x,¢) =x+e,, then 8 carries
K, x[0,2n/v) continuously onto K. Furthermore, 3 is one to one and its inverse,
B~1, is continuous except at points on K, . It follows that Borel sets are taken-to
Borel sets in both directions. Thus KX is represented measure theoretically, and almost
topologically, as a product space K, x[0,27/v). Also it can be easily seen that the
above flow, x+e,, on K can be characterized by the homeomorphism S on K,
defined by S(y)=y+e;,/,. This local product decomposition is very useful for
understanding the structure of K, and is also highly important in the study of
analyticity on compact abelian groups (cf. [6; Chapter II], and [5, Chapter VII, Sec-
tion 6]). Especially, we notice that, by using this decomposition, a representation of
quasi-invariant measures on K was shown by deLeeuw and Glicksberg [2].

Our principal objective in this article is to extend the local product decomposition
in quotients of the Bohr group to minimal flows, and particular attention is given to
representing quasi-invariant measures on minimal flows. Moreover, as an application
of this representation, we investigate the maximality of algebras of analytic functions
associated with a minimal flow. Conceivably, our proof enables us to make clearer
the relation between Forelli’s generalization [4] of Wermer’s maximality theorem and
Muhly’s result [7; Corollary 3.1] concerning maximal weak-* Dirichlet algebras.

On the other hand, a famous theorem of Ambrose [1] showed that any measurable
ergodic flow can be represented as a flow built under a function. Our main result
may be regarded as a refinement of this theorem concerning continuous flows.

In the next section, we present some preliminary material which we shall need. In
Section 3, our representation of a minimal flow, Theorem 3.3, is obtained, and we
also give a representation of quasi-invariant measures. We deal with analytic
measures and provide simpler proofs of two known theorems concerning maximal
algebras in Section 4. We close with some remarks in Section 5.
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2. Preliminaries. Let Q be a locally compact Hausdorff space, and let B, be the
Borel field on £, i.e., the smallest g-algebra of subsets of @ which contains every
compact set. A one to one mapping S of Q onto itself is called a Borel isomorphism if
S carries g onto itself. Let {S,},eg be a one-parameter group of one to one
mappings of Q onto itself. The pair (Q, {S,},;er) is called a continuous flow (resp.,
Borel flow) if each S, is a homeomorphism (resp., Borel isomorphism) and the
mapping of (w, ), S,(w), is a continuous mapping on £ xR (resp., Borel mapping
with respect to Bgxgr). A continuous flow (Q, {S,},egr) is said to be minimal if, for
each w in (), the orbit of w is dense in ©. Let Cy(©2) denote the space of all con-
tinuous complex-valued functions which vanish at infinity. The dual of Cy(Q) is the
space of all bounded regular Borel measures on € and it will be denoted by M(9).
When (2 is compact C(Q) denotes the space of all continuous complex-valued func-
tions. A measure is called quasi-invariant on (Q, {S,},egr) if its null sets are pre-
served under the translation by {S;},eg. A quasi-invariant measure is said to be
ergodic in case the only invariant sets in B¢ are null or have null complement.

Throughout this paper, we shall always assume that the flow (X, {7T,},eg) is a
minimal continuous flow defined on a fixed compact Hausdorff space X. The
assumption that the flow is minimal will not be necessary in some of our arguments,
however there is no essential loss of generality from assuming it throughout. When it
is convenient, we will often write x+¢ for the translate of x in X by 7;. Similarly, if
E is a subset of X and if J is a subset of R, then E+J denotes the set of all x+¢ for
any x in E and ¢ in J. Using {7})},egr, one may convolve a function ¢ in C(X) or a
measure g in M(X) with a function fin L!(R) in the following way. The convolu-
tion ¢ * f is defined by setting

s/ =" s+ ar,

— o0

and the convolution u *fis defined to be the measure such that, for all ¥ in C(X),
[ v den = | yxfde
X X

where f(t) = f(—t). The spectrum of a function ¢ in C(X) (resp., a measure u
in M(X)), in the sense of spectral synthesis, is then defined to be the hull of
its annihilator and will be denoted by sp(¢) (resp., sp(p)). A function ¢ in
C(X) (resp., a measure pu in M (X)) is said to be analytic if sp(¢) (resp., sp(p))
is nonnegative. Let @ be the space of all analytic functions in C(X). Then Q is
a uniform algebra on X. Let m be a representing measure for @, and let 1 < p < .
Then we shall denote the abstract Hardy space associated with @, m, and p by
HP(m). Recall that if n is not a point mass then m is quasi-invariant on (X, { 7;},er)
([7; Theorem III]), and also recall that if u is an invariant ergodic probability
measure in M(X), then p is a representing measure for @ and @ is a weak-=*
Dirichlet algebra in L= (u) ([7; Theorem I]). Our references for the basic facts about
spectra are [3] and [7].

The following lemma is a direct consequence from the definition of continuous
flows, so the proof is omitted.
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LEMMA 2.1. Let U be an open subset of X, and let I be a compact subset of R. If
x+1 is contained in U for some x in X, then there is a neighborhood V(x) of x such
that U contains V(x)+ 1.

For a given E in By, we define

_ o dt
@.1) E= {xeX, S_wxE(x—t) oo >0},

where xgz(x) denotes the characteristic function of E. Then E is invariant, and it
follows from Fubini’s theorem that E is measurable with respect to each u in M (X)
(cf. [11; Chapter 7]). It is useful in the next section to characterize the null sets of
quasi-invariant measures.

LEMMA 2.2. Let p be a positive quasi-invariant measure in (X, {T;},er). Then
p(E)=0if and only if u(E)=0 for an E in G x.

Proof. By Fubini’s theorem, we have

dt
141%°

@2) SX[ " xet-0 -2 ] du(x) = |~ [SXXE(x— ) du(X)]

If we assume p(E) =0, then ixE(x—t) du(x) =0 for each ¢ in R, since p is~quasi-
invariant. We thus have u(E) =0 by (2.2). Conversely, assume that u(E) = 0.
Then, from (2.2), we may choose a ¢ in R such that u(E+¢) =0. This implies that
uw(E)=0. O

3. Representation of minimal flows. In this section, we represent a minimal flow
by an analogue of [1], and provide a representation of quasi-invariant measures on
it. This representation will be useful for studying the uniform algebras of analytic
functions. We begin with some lemmas.

LEMMA 3.1. There exist a positive function ¢ in C(X), a neighborhood V(x,) of
some point xqo in X, and a positive ty in R which have the following properties:
(i) $(x) < 1/4 for each x in V(x,),
(i) @(x) =3/4 for each x in V(xy) + 1o, and
(iii) if y belongs to V(x,), then the function of t, (y+1), is strictly increasing on
[0,2,].

Proof. Let ¢ be any real-valued function in C(X) that is not constant. Since
(X, {T;};er) is minimal, we may choose an x; in X and a positive #; in R such that

Y(x;) <¢(x;+1¢1). Let P,(s) =

the convolution

—— > for any positive # in R, and consider
7(Us+s°)

o u
* Py(x) = | +5) ————s—ds.
v *Pu(x) —w v(x+s) w(u?+s?) g
Then it is easy to see that, for each x in X, the function of ¢, ¥ * P,(x+¢), is continu-
ously differentiable in . Moreover we obtain lim,_,q y * P,(x) =y(x) for each x in
X, since P,(s) is the Poisson kernel for the upper half-plane. This implies that
V¥ P.(x)) <y*P.(x;+1t;) for some positive r in R. It therefore follows from the
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mean value theorem that there exist an x; in x; + [0, £,], and two positive numbers ¢,
and « in R such that %‘//*P,(xo-i-t) > a for each ¢ in [0, ¢;]. On the other hand,
for any x in X, we see that

y*P(x+1)—y*P(x)
t

d ]
o VP = lim

® —2rs
— S_Oo v(x+s) m ds.
Since the function of s s belongs to L!(R) d * P (x) i ti
* T (r s’ ongs to i Y * P.(x) is continuous

on X. So, by Lemma 2.1, we may find a neighborhood V’(x;) of x, which satisfies
—%—¢*P,(x+t) >a for each ¢in [0, ] and x in V’(Xx,). Since there exist a positive
bin R, and a c in R such that b-y * P,(x) +c is positive on X, b-y * P.(xp) +c <1,
and b-y * P.(xy+1p) +c 21, we may choose a positive integ~er n and a neighborhood
V(xe) of xo with V(xy) € V'(xo) for which the function ¢(x) ={b-¢¥ *P.(x) +c}”
has the desired properties. O

Let ¢(x), x5, V(x), and ¢, be as in Lemma 3.1, and let W(x,) be a compact
neighborhood of x; with W(x,) € V(x,). Then we put

H={x€X; ¢(x)=1}, and

(3.1) Y = HN (W(xp) + [0, 10]).

Since Y is closed in the compact subspace H of X, we denote by bd Y the topological
boundary of Y with respect to A. Notice that bd Y may be empty in some cases. We
also denote by int Y the interior of Y with respect to H. It will be helpful to note that
an orbit starting at y in Y must return to Y in finite time. In fact, by construction of
W(x,) and Lemma 3.1, it can be seen that, for each x in W(x,), there exists unique
u in (0, ty) such that x+u belongs to Y. On the other hand, since X is compact, the
minimality of (X, {7,},er) implies that W(xy) — [0, a] =X for some positive a in
R. Then we see that if y belongs to Y, then y+¢ must return to Y for some ¢ in
(0, a+ty) (see Figure). A bounded function Fon Y and a transformation S on Y are
defined as follows:

3.2)
( S(y) =y+F(y),

for each y in Y. It follows easily from (iii) of Lemma 3.1 and the above remark that
F'is well defined.

LEMMA 3.2. Let Y, F, and S be as above. The we have:
(i) F is lower semi-continuous on Y. In particular, F is continuous on Y\S~!(bd Y),
(i) F is bounded and bounded away from zero, i.e., there exist two positive
numbers m and M such that m <F(y) <M for each y in Y, and
(iii) S is a one to one Borel isomorphism of Y onto itself.

{F(y) =min{¢; y+t€ Y, and ¢t > 0}, and
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),

y

W(xo) + t()

"",J/ //’
\

Proof. (i) Suppose that S(yo) =yo+ F(yy) belongs to int Y. Then there is an open
neighborhood U(S(,)) of S(ye) in X such that U(S(y,)) NH<int Y. Let ¢ be the
function defined in Lemma 3.1. Then, for a given positive ¢ in R, we may find a
positive § with § <e and an open neighborhood Q(S(yy) —8) of S(¥g) —é in X such
that the function of ¢, ¢(S(yy) —6+1¢), is strictly increasing on [0, 28], q~5<% on
Q(S(¥9) —8), >3 on O(S(yo)—8)+25, and Q(S(ye) —8) +[0,28] € U(S(¥o))
by Lemma 2.1 and Lemma 3.1. Since yg+ F(yy) — 6 belongs to Q(S(yy) —6) and
Yo+ (0,F(yy) —6]NY is empty, we may easily choose a neighborhood V(y,) of y,
in Y such that, for any y in V(y4), y+F(yy)—6 belongs to Q(S(y,)—6), and
Y+I[0,F(yy)—61NY={y}. So it follows from (3.2) F(ye) —6<F(y) <F'(y0)+6.
We thus have |F(y) —F(y,)| <e for each y in V(y,). By an argument similar to one
above, it may be seen that if S(y,) belongs to bd Y, then, for each positive ¢ in R,
there is a neighborhood V(y,) of yy in Y such that F(y,) —e <F(y) for any y in
V(yp). Thus we have the property (i).

(i) We have seen that F is bounded, so it suffices to show that F has a positive
lower bound m:. If y belongs to Y, then there is a positive é such that the function of
t, (y+1t), is strictly increasing on [0, 8]. This shows that F(y) is positive for each y
in Y. Since Fis lower semicontinuous on compact space Y, we may choose a positive
m such that F(y) >m for any y in Y, so the property (ii) holds.

(iii) It follows easily from (3.2) that S is one to one. As above, we see that
X=W(xy)+[0,a] for some positive a. Hence if y belongs to Y, then there is a
positive u for which y—u belongs to Y. This implies that S”(y—u) =y for some

Figure



204 JUN-ICHI TANAKA

positive integer s, so S is an onto mapping. We next show that S~! is a Borel map-
ping. It suffices to show that S(E) belongs to By for every compact subset £ of Y.
Let m and M be as in (ii), and let & be the positive integer satisfying km <M <
(k+1)m. We notice that E+ [m, (j+1)m] is compact in X for j=1,2,..., k, since
Y is a compact subset of X. We set

E;=(E+[m,(+1)m])NY.
Then it is easy to see that
S(E) =E|U(E)\E)U(E;\E,))U---U(E\E;_;).

This shows that S(E) is a Borel set in Y. On the other hand, since S is the compo-
sition of Borel functions, it is a Borel mapping. So the proof is complete. a

Let Y, F, and S be as above. Then by (iii) of Lemma 3.2, the pair (Y, S) defines a
(Borel) dynamical system, so we say that a measure in M(Y) is quasi-invariant on
(Y, S) if its null sets are preserved under the translation by {S"},c~. In order to
state our result, we need some notation. Define a subset @ of Y X R as follows:

Q={(y,u); ye€Y, and 0< u <F(y)}.

Since F'is lower semi-continuous, we observe that Q is locally compact as a subspace
of YX R and that © belongs to By, g. Let 7 be the function on Y X Z defined by the
formula

LIV F(S*(y)) if n>0,
3.3) 7(y,n) = 0 if n=0,
—7(S"(y), —n) if n<O.

By using (3.3), a one-parameter group {S,};cg of mappings of @ onto itself is
defined by the formula

(3.4) Si(y,u) = (S"(y), u+t—1(y,n))

if 7(y,n)<u+t<7(y,n+1) (cf. [10; Section 2]). This is an analogue of the one
which was introduced in [1]. We also define a mapping 8 of @ onto X by the formula

(3.5) B(y,u) =y+u

for each (y,u) in Q. Then § is a Borel isomorphism of 2 onto X, i.e., B carries B
onto B x. In fact, we see easily that 3 is a one to one continuous mapping of Q onto
X, so B is a Borel mapping. On the other hand, for any compact subset K of 2, 8(K)
is also compact in X. This implies that 3~ ! is also a Borel mapping. If y is a measure
in M(X), then p°B denotes the measure in M(£2) defined by uB(E) = u(B(E)) for
Ein (BQ

We may now give the statement of our theorem which provides a representation of
quasi-invariant measures on minimal flows.

THEOREM 3.3. Let (X, {T,},er) be a minimal flow, and let S, Q, {S,},cr, and 3
be as above. Then we have:
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(i) (R, {S;),er) is a Borel flow, and it is (Borel) isomorphic to (X, {T,},;er) via
the Borel isomorphism 3 of Q onto X, i.e.,

(3.6) Si(w) =B e T;oB(w)

for each w in Q and t in R, and

(ii) suppose that a measure p in M(X) is quasi-invariant on (X,{T,},er). Then
there exists a measure ji in M(Y) which is quasi-invariant on (Y, S) so that u-f8 and
(X mg)q are mutually absolutely continuous, where (i X mg)q denotes the restric-
tion to Q of the product j with Lebesgue measure my on R. In particular, if p is
invariant on (X, {T,),er), then u may be represented as p-3= (¥X mg) for some
invariant measure v on (Y, S).

Proof. (i) It follows easily from (3.4) and (3.5) that the equation (3.6) holds. So
{S;},er is a one-parameter group of Borel isomorphisms of Q onto itself, since 3 is a
Borel isomorphism. We have to show that the mapping of (w, #), S;(w), is a Borel
mapping with respect to ®Bgyg. Recall that 8 is continuous on . So if we set
¢(w, t) =(B(w), t), then & is a Borel mapping of 2 X R onto XX R. For any E in
®g, it follows from (3.6) that

®~{(x,0); Ti(x) € BE} = {(w, 1); Si(w) € E}.

Therefore, since BE belongs to By, we see that the mapping of (w, ), S;(w), is a
Borel mapping. Thus (£, {S,;);er) is a Borel flow.

(ii) Let p be a quasi-invariant measure on (X, { 7;},er) . By considering the total
variation measure of u, we may assume that p is positive. Let m be the positive
number in (ii) of Lemma 3.2, and let & be the measure defined by the equation

(3.7) i(A) = p°B(AX[0,m])

for each A in ®y. Notice that 8 is a homeomorphism of Y X [0, m] onto
B(Yx [0, m]). This implies that g is a regular Borel measure. For a given B in By,
suppose‘that a(B) =0. If we set E=BX [0, m], then u(BE) =0 by (3.7). Let t BE be
the invariant set defined by (2.1). Then it follows from Lemma 2.2 that ,u(BE)
Since it is easy to see that BE B(S(B) x [0, m]) we obtain that

peB(S(B) X [0,m]) =0,

so fi(S(B))=0. Similarly it may be shown that p(S~!(B)) =0, thus i is quasi-
invariant on (Y, S). Next we show that g8 is mutually absolutely continuous with
respect to (m X mpg)q. We first note that

F(y)
(X mg)g(E) = E [S xe(y, u) du] dp(y)
(3.8) YLTo

F(y)
= | [S xﬁE(y+u)du] di(»),
Y| Jo
for an E in ®g. Suppose that p°B(E) = 0. Then it follows from Lemma 2.2

that ,u,(BE) = 0. Since (BENY) X [0,m] is contained in 8~ (BE), we see that
lu(BEﬂ Y) =0. Together with the equation (3.8), this shows that (g X mg)g(E) =
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On the other hand, suppose that (i X mg)g(E) =0. Then there exists a p-null set N
such that the inner integral of (3.8) equals to O for each y in Y\N. If we set N=
U,ez S"(N), then Nis also a g-null set, since ji is quasi-invariant on (Y, S). Let
7(y, n) be the function defined by (3.3). Then since S”(y) does not belong to N for
any y in Y\N, it is easy to verify that

n T()’."‘*‘l}
[ X (S") +a0) du = [ (-4 w) du = 0.
0 7(y,n)
Since U, ez[7(y,n), 7(y,n+1)] =R, we have
du
1+ u?

S wXﬁE(J"*‘U) =0,

for each y in Y\N. Since uoB(Nx [0,m]) =0, it follows that u(;éE) =0, so by
Lemma 2.2 we obtain p°B(E) =0. When y is invariant on (X, {7, };er), We may see
that f is also invariant on (Y, S). In fact, let F(y,u) =F(y) for any (y,u) in Q.
Then there is an increasing sequence F,(w) of step functions which converges to
F(w) for pe—a.e.w in Q. If A belongs to By, then it can be easily seen that

Xa+10,m (Xx—FeB7Hx)) = lim x44[0,m (Xx—F,°871(x))
n—>oo

for p—a.e.x in X. Since u is invariant, we see that

peBAX10,m]) = | xari0,m(x=FpeB™(x)) du(x)

for n=1,2,.... It follows from (3.2) and the bounded convergence theorem that
peB(AX[0,m]) =puB(S(A) x[0,m]). This shows that z is invariant on (Y, S), so
we can find a positive a in R for which pef= ((ag) X mg)q. This completes the
proof. O

There are, of course, many possibilities to choose such a compact subspace Y and
a function F for a fixed minimal flow (X, {7;},er)- So it is natural to raise the
following question connected with Theorem 3.3:

Is it possible to make F to be continuous on Y?

It follows from (3.2) that if F'is continuous, then S is a homeomorphism of Y onto
itself. Hence, in these cases, (Y, S) defines a topological dynamical system. So many
results and concepts associated with (X, { T;},er) can be reduced to those of (Y, S).
We however content ourselves in treating the case where F is constant.

For ¢ in C(X), we say that ¢ is a continuous eigenfunction if there is a A in R such
that y(x+¢) = e™y(x) for each x in X and ¢ in R. This \ is called an eigenvalue for
the flow.

PROPOSITION 3.4. The function F for a minimal flow (X, { T;},er) can be chosen
to be constant if and only if there exists a continuous eigenfunction which is not
constant.

Proof. If 4 is a non-constant continuous eigenfunction with eigenvalue A, then we
may assume that A is positive and |y (x)| =1 for any xin X. Let Y={x€X;y(x) =1},
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and let F(y)=2w/N. We notice that Y is a compact subspace of X, and that Q=
Yx[0,27/N). Let 8 and {S,;},er be as in (3.5) and (3.4), respectively. Then it fol-
lows easily that (Q, {S,},er) is isomorphic to (X, {T;},er) via the Borel isomor-
phism (. Conversely, suppose that F(y) =a for some positive a in R. We define
v(y,u) =e'®D¥ for any (y,u) in YXR. Then it is easy to see that veS,(y,u) =
ety (y, u) for each (y,u) in Q. Therefore if we put Y(x) =v-B~!(x), then

V1) = veB e T(x) = veB~ o T, B(B~1(x))
— vost(B——l(x)) — ei(Zw/a)tvoﬁ—l(x) — ei(21r/a)t‘b(x)

for each x in X and ¢ in R. We next show that y is continuous on X. Let Q be the
quotient topological space of Y X [0, a] by identifying (y,a) and (S(»),0) for each
y in Y. Then B is a homeomorphism of Q onto X. Since we see that v(y,a) =
v(S(y),0) for any y in Y, v may be considered as a continuous function on Q. Thus
Y(x) =veB~!(x) is a continuous eigenfunction with eigenvalue 27/a which is not

constant, so the proof is complete. a

By considering Q as above, we can always construct a new continuous flow from a
given topological dynamical system (Y, S).

4. Maximality of uniform algebras. In this section, by using Theorem 3.3, we pro-
vide elementary proofs to some fundamental theorems concerning the maximality of
algebras of analytic functions. Our proofs rest on some techniques which were used
in [2] and [10]. We begin to study some properties of quasi-invariant measures.

Let Y, F, S, @, and 3 be as in Section 3, and define

@.1) {U(y’ u) = (S(»),u—F(»), and

U(y,u) = (y,u+t)
for each (y,u) in YXR and ¢ in R. Then it is easy to see that the hypotheses of Fimply
that Y X R is the disjoint union U,cz ¢"(2). We also notice that (YXR, (U, };ecr)
defines a continuous flow. Let « be the mapping of Y X R onto © defined by the
formula

4.2) w(y,u) = (S"(y),u—7(y,n))

if 7(y,n) <u<7(y,n+1), where 7(y, n) denotes the function defined in (3.3). For a
p in M(X), we define a o-finite regular Borel measure on Y X R by the formula

(4.3) p'(E) = gzwﬁﬂr(Eﬂa"(Q))

for each E in By, . Let u be a quasi-invariant measure on (X, {7;}),er). Then
there exists a quasi-invariant measure g on (Y, S) such that pxeg is mutually abso-
lutely continuous with respect to (i X mg)q by (ii) of Theorem 3.3. We denote by
|ii| the total variation measure of fi, and a function v in L!(|]| X mg) is said to be
nonvanishing if |y(y,u)| >0 for |i| Xmg—a.e.(y,u) in YXR. We now point out
that

4.4 dp'(y,u) =v(y,u)d(ip X mg)(y, u)
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for some nonvanishing Borel function y(y, #) in L'(|ii| X mg). In fact, since there is
a nonvanishing v(y, #) in L'((|t| X mg)q) such that du-B=v(y, u) d(pXmg)g, we
have

p'(E) = v(y,u)d(p X mg)o(y,u)

nez Sw(Eﬂo"(Q))

[ wem(y,w) d(ix mr)gew(y,u)
n€Z YENg"(Q)

= X

| vem(y,u) pa(y) d(E X M) ()
n€Z YENo"(Q)

for some nonvanishing p,(y) in L'(|i|). By setting y(y, u) = vew(y,u)p,(y) for
any (y,u) in ¢"(Q), we thus obtain (4.4).

Next we let #(u) be a nonvanishing continuous function on R which has the fol-
lowing properties:

|h(w)] < 1/(1+u?)
4.5) h(s) =0 if s<0, and

lh(s)] >0 if s>0,
where A (s) denotes the Fourier transform of # in L'(R). We may observe that if pis
analytic on (X, {7;},er), then hdn’ is orthogonal to any bounded analytic function
G(y,u) on (YXR, {U,},er), so especially Adu’ is also an analytic measure. In

fact, let G'(y,u)=G(y,u)h(u). Then G’'(y,u) is analytic and satisfies that
supye y|G'(y, u)| = O(u?) as |u| — . So it can be seen that

S G'(y,u)dp'(y,u) = Y
YXR

| . G'Gw dpeBeniy,u)
n€ezZ Jo"(Q)

= L | G'o™"(5,u) duoB(r,)

nezZ v
- S G'o™"(y,u) du-B(y,u)
Qnez
- S G'o~ "B (x) du(x).
X neZ

We set ¢(x) =X,ecz G0~ "8~ 1(x). Then it is easy to see that ¢(x) is a bounded
analytic Borel function on X, whose spectrum, Sp(¢), is positive. Since p is analytic,
we conclude that {y ¢(x) du(x) =0 (cf. [3; Section 4. (24) and (25)]).

We now set p(u) =1/7(1+u?), and denote by H?(pdu), 1< p< o, the Hardy
space on R associated with the representing measure pdu.

PROPOSITION 4.1. Let p be a quasi-invariant measure on (X, {T,};er), and
let Y be a nonvanishing function in L®(|u|). Suppose that y"du is analytic for
n=1,2,.... Then the function of u, y(x+u), belongs to H”(pdu) for p—a.e.x
in X.
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Proof. Let dp’=+v(y,u)d(ppX mg) be as in (4.4), and let #(u) be a continuous
function on R with the properties in (4.5). If we define U(y, u) = yeBen(y,u) for
any (y,u) in YXR, then (y"du)’ =U"(y,u)y(y,u)d(ppxX mg). For any p(y) in
C(Y) and any positive rational r, it follows from the above remark that

jyp(y)“"_" e h(u) U"(y, u)y(y, u) du] di(y) = 0,

because the function of (y,u), p(y)e™, is bounded analytic on (YXR, {U,},cRr).
Since p(y) is arbitrary, there is a i-null set N(r, n) such that

4.6) |7 ey Unty, wr(y,w) (1+ uD)p(u) du = 0

for each y in Y\N(r,n). Let N=U, , N(r,n). Then it follows from (4.6) that the
function of u, U"(y, u)vy(y, u) h(u)(1+u?), belongs to H'(pdu) for each y in Y\N
and for n=1,2,.... Therefore, by [5; Chapter VII, Lemma 8.1], we see that the
function of u, U(y, u), belongs to H(pdu). Notice that U(y, u) =y (y+u) for any
(y,u) in YXR. For the definition (3.7) of f, it can be easily seen that the function
of u, y(x+u), belongs to H”(pdu) for p—a.e.x in X. O

The following lemma is a weak version of [9; Theorem I].

LEMMA 4.2. Let v be a ergodic representing measure for @. Then Q is a weak-
* Dirichlet algebra in L™ (v), and the following assertions are equivalent for a func-
tion ¢ in L™ (v):

(i) ¢ belongs to H* (v), and

(ii) for v—a.e.x in X, the function of u, ¢{x+u), belongs to H” (pdu).

Proof. It was shown in [13; Theorem 3] that if » is an ergodic representing
measure for @, then @ is a weak- * Dirichlet algebra in L= (»). So it suffices to
show the equivalence of (i) and (ii). Since » and »*p are mutually absolutely con-
tinuous and »*p is a representing measure for &, » and v * p lie in the same Gleason
part ([5; Chapter VI, Section 2]). Hence there is a positive & with b>1 such that

_1_ dv¥p dv*p
b= < dv dv
by 3C the family of all ¢ in L= (») which satisfy the property (ii). We now claim that
H?(v) is the closure 3C2 of 3C in L?(»). It is easy to see that 3C? contains H%(»). On
the other hand, suppose that ¢ in JC? is orthogonal to H?(»). Since there is a
sequence ¢, in JC such that || ¢,—¢|,—0, we have

< b, where

denotes the Radon-Nikodym derivative. We denote

SX[Sfm|¢n(x+ u) — p(x+u)|?p(u) du] dv(x) = SXM’"(X) — $(x)|2dv * p(x)
<bllo,—¢l3 >0

Therefore there is a subsequence {¢;} of (¢,} such that

Sc_o |pj(x+u) —d(x+u)|*p(u)du — 0, as j—>oo,
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for v—a.e.x in X. So the function of u, ¢(x+u), belongs to H*(pdu). Recall that
L*(v)=H*(v) ® H3(v) where H(v) = (¢ € H*(v); [ pdv=0]}. Since ¢ belongs to
HE(v), and 3? contains HZ(v), the function of u, ¢(x+u), also belongs to
H?(pdu). Hence ¢ is invariant, because every real-valued function in H?(pdu) is
constant. Since v is ergodic, this implies that ¢ =0, thus we have H2(») = 3C2. By the
same argument as above, we may see easily that JC contains JC2NL®(»). We there-
fore obtain JC=H*(»), so the equivalence of (i) and (ii) is established. O

THEOREM 4.3. Let Q@ be the uniform algebra of all continuous analytic functions
induced by a minimal flow (X, {T,),er). Then we have:

(i) Q@ is a maximal closed subalgebra of C(X), and

(i1) if v is an ergodic representing measure for Q, then H” (v) is a weak- * maxi-
mal closed subalgebra of L (v).

Proof. (i) Let C be any subalgebra of C(X) that contains &@. Suppose that C is not
uniformly dense in C(X). Then there is a non-zero measure g in M(X) such that p
is orthogonal to C. For any non-zero ¢ in C and n=0,1,2,..., ¢"du is orthogonal
to &. This shows that ¢"dp is analytic, so it is quasi-invariant on (X, { T;},er) by [3;
Theorem 3]. It can be observed that ¢ is non-vanishing as a function in LZ®(|ul|).
Therefore we may find an x in X such that the function of u#, ¢(x+ u), belongs to
H®(pdu) by Proposition 4.1. Since ¢ is continuous, it follows from the minimality
that ¢ * f=0 for any fin L'(R) with f(s) =0 on [0, «). This shows that ¢ belongs
to @, thus we have @ = C,

(ii)) Let D be any subalgebra of L*(») that contains H*(»). Suppose that D is not
weak- * dense in L®(»). Then we can find a nonzero function y in L'(») such that
vdv is orthogonal to . In the same fashion as above, it can be seen that ¢"ydv
is analytic for any nonzero ¢ in ® and for n=0,1,2,.... Since » is ergodic,
we observe that ¢"ydyv and » are mutually absolutely continuous. So it follows
from Proposition 4.1 that the function of u, ¢(x+u), belongs to H® (pdu) for
v—a.e.x in X. Hence ¢ belongs to H*(») by Lemma 4.2, and we have H*(») = D.
This completes the proof. 0O

5. Remarks. (a) Recall that the main theorem in [3] is an extension of F. and
M. Riesz theorem, which states that every analytic measure is quasi-invariant. We
remark that Theorem 3.3 enables us to provide another proof of this result. In fact,
suppose that u is analytic on (X, {7;},er). Let p” and A be as in (4.3) and (4.5)
respectively. Then we have already seen that hdu’ is analytic on (Y XR, [U,},er)-
By the argument in [2], we may verify without difficulty that Ady’ is quasi-invariant
on (YXR, {U,},er). However it is easy to see that this fact implies that p is quasi-
invariant on (X, {T,},eRr)-

(b) We do not know whether @ is a Dirichlet algebra without the assumption that
(X, [T;},er) is strictly ergodic (cf. [7] and [8; Section 6]). However it is easy to
verify that this problem may be reduced to the following one:

Does Q separate the probability invariant measures on (X,{T,},er)?

Since Theorem 3.3 provides a representation of invariant measures, it may be
useful for dealing with this problem.
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