LINEAR EXTENSION OPERATORS FOR ENTIRE FUNCTIONS

B. A. Taylor

Dedicated to the memory of David L. Williams

1. Introduction. Let {4;} be an infinite, discrete sequence of distinct points in the
complex plane C. It is well-known that given any other sequence {A;} of complex
numbers, there exists an entire function N(z) such that A(a;) =N;, j=1,2,... (cf.
[1], ex. 1, p. 197 or [13], Th. 15.13, p. 237). It is also well-known that there can exist
no one ‘‘formula’’ for A(z) in terms of the A\; which works for all choices of the
sequence A;. To say this precisely, let A(C) denote the space of entire functions,
with the usual topology of uniform convergence on compact sets, and let A({a;})
denote the space of all sequences of complex numbers {\;}, with the usual topology
of pointwise convergence in each slot. Let p : A(C) — A({ a;}) denote the restriction
map, p(AN) =(N(a;)}, determined by the sequence {a;}. Then p is a linear,
continuous, onto map, but p has no linear, continuous right inverse. There is no
“‘extension map”’, E: A({a;]) — A(C) such that E is linear, continuous, and p-E=
identity (cf. [12], p. 162).

On the other hand, 'if we formulate the corresponding problems with growth
conditions, the answers may be different. For example, if we let the sequence {a;} be
the integers, Z=1{..., -2, —1,0,1,2,...}, the analytic functions be those of
exponential growth,

(1.1) Aexp(C) = {f € A(C) : | f(2)| < Aexp(B|z]), some A, B> 0],
and the space of sequences {\;} be those of exponential growth,
Aep(Z) = {(N) 1 [Nj] S Aexp(Blz|), j=0,%1,...)

then again the restriction map p : Aey, (C) = Aeyp(Z) is onto but this time there is a
continuous, linear right inverse for p. For example,

+o0 -1 J o3 1l

The results presented here grew out of an attempt to understand the difference
between these two situations. The difference is not simply one of growth restrictions.
If the exponential type growth condition is replaced by order 1 growth condition,
then again no right inverse exists. (See Section 4.) It is also not simply that one space
is a Fréchet space (A(C), A({a;})) and the others are duals of Fréchet spaces (see
Sections 3, 35).

For some special varieties, like algebraic varieties or sub-submanifolds (of strictly
pseudoconvex domains) in general position, linear extension operators are known to
exist ([6], [8]). However, it may be that the existence of general ‘‘extension
formulas’’ for all zero sets is closely related to the existence of a right inverse for the
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d operator. To see this, one need only recall the standard method of constructing
extensions of functions defined on analytic varieties. For the simple cases discussed
above, there are two main steps. As a preliminary, find an entire function F€ A(C)
(or A¢,, (C)) with simple zeros of the points {a;}.

STEP 1. Construct a ‘‘good’’ C* extension (with exponential bounds, in the
second case) ¢ of [A;}. For example, let ¢ € C(C) have the form

0= P(*5%)

€j

where 0< x< 1, x=1 for |z| <1, and x=0 for |z| > 2, and the ¢; are so small that
the discs |z—a;| < 2¢; are disjoint. '

STEP 2. Construct the analytic extension A(z) in the form A(z) = ¢(2) —u(z)F(z),
where u € Cc” (with exp_onential bounds, ig the second case). This amounts to solving
0= d\N= dp—Fdu, or du= w, where w= d¢/Fis a C*(0,1) form.

For the cases outlined above, Step 1 can clearly be done in a continuous linear
way. Thus, the obstruction to finding a continuous linear right inverse for the restric-
tion map p is in finding a continuous linear right inverse for the d-operator. It is
well-known that no such inverse exists for 9, as a map from C*® to C®(0,1) forms
(see e.g. [8], p. 154). However, we will prove here that with exponential type bounds,
there is a continuous linear right inverse for 3 (Theorem 4.2).

We know of no examples where continuous, linear extension operators exist for all
‘“‘reasonable’’ analytic subvarieties, and where the d-operator fails to have a con-
tinuous linear right inverse.

Let us mention that in the space C®, it is known that many linear partial differ-
ential operators have no right inverses ([18], Appendix C). On the other hand,
Palamodov has shown [10] that, while the d-operator from functions to (0, 1) forms
has no right inverse, it does have a continuous linear right inverse as an operator
from (p, q) forms to (p,qg+1) forms, g = 1. He has also given some general criteria
for existence of projections in Fréchet spaces, but they do not seem to apply in the
cases studied here.

Our main results are given in Sections 2 and 3, where we discuss, in the framework
of analytically uniform spaces, criterion for the existence of right inverses for over-
determined systems of partial differential operators. The point of applying this
theory is to allow a reduction to a finite dimensional problem by studying the action
of the right inverse on exponential functions. The question of existence then reduces
to a question of the existence of entire functions satisfying certain growth and
compatibility properties. In simple cases, such as for the d-operator, it can then be
decided whether the appropriate entire functions exist. We carry out the general
outline in Section 2, and in Section 3 give the specific growth conditions for the
special case of the d-operator. In Section 4, the construction of the required entire
function is made, and in Section 5, applications to the interpolation problem are
discussed.
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2. Projections in analytically uniform spaces. It is convenient to use the theory of
analytically uniform spaces to discuss existence of right inverses. These spaces were
first systematically studied by L. Ehrenpreis and are discussed extensively in [7]. A
more systematic study was given by Berenstein and Dostal in [2]. We recall some of
the definitions and notations. Let W be a reflexive locally convex topological vector
space which contains, for some n > 1, the exponential functions x — e,(x) given by

2.1 e,(x) =exp(iz-x), z€C", x€R",

(z-x=zyx,+ -+ - +2,x,). We further suppose that the linear span of these expo-
nential functions is dense in W. If L € W', the space of continuous linear functionals
on W, then the Fourier transform of L is defined by

(2.2) L(z) = L(e,).

Since the span of {e,:z€C"} is dense in W, L uniquely determines L. Thus, the
space

(2.3) W ={(L:Lew)

is isomorphic to W’. It is also assumed that the map z — ¢, is analytic; equivalently,
the functions £(z) are entire functions on C”. And, the main assumption is that
there exists a class X of continuous functions, k:C"— [0, +] such that for
each k€ X,

(2.4) LIk = sup{|L(2)|/k(z) :z € C"}

defines a continuous seminorm on W’ and, further, that the topology determined by
these seminorms W’ coincides with the strong topology on W'’ (carried over
to W’).

Let P;(D) = Y a,; D denote linear, constant coefficient partial differential opera-
tors on R" and let P;j(z) = X a,;z“ be the corresponding polynomials, 1< j< N. Here
we are following the usual notations, z*=z{'1...zy", D*=Df1...Dgn, where D;=
(1/i) 8/ 0x;. We will denote by A, the null space of the system of equations { P;(D)].

(2.5) A={ue W:P(D)u=0, 1<j< Nj
and let V denote the algebraic variety
V=[(z€C":Pi(z) =0, 1<j< N}={z:e, € A}.

We will formulate our results for operators and a.u. spaces satisfying the following
condition.

() Every u € A has a representation in the form u(x) ={, e?*du(z)/k(z)
for some finite Borel measure p with support in ¥ and some k€ X.

Actually, every a.u. space known to us has property (*) provided that derivatives
of finite measures are allowed, instead of only the measures p. Our resuits can be
improved to cover these cases, and also the vector valued cases, when the { P;(D)}
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are replaced by a matrix of operators. However, this introduces extra technical
complications so we won’t discuss them here. The cases covered by (*) will suffice
for our applications.

The existence of a continuous linear right inverse for a linear map is equivalent to
the existence of a continuous linear projection onto its null space. We will study the
latter condition.

Let w: W— A be a continuous linear projection onto A; i.e. 7*=m and n(u) =u
for all u € A. We can then consider the characteristic function of the projection,

(2.6) G(z,x) = w(e;) (x).

This function G completely determines the projection .

2

THEOREM 2.1. Let W be an a.u. space and w: W — A a projection onto the space
of solutions of Pi(D)u=0, 1<j< N. Then
(i) x—>G(z,x) €A for each z€ C";
(ii) z—> L,(G(z,x)) belongs to W’ for each L€ W’
(iii) G(z,x) =e,(x)=exp(iz-x) ifz€V;

(iv) for each continuous seminorm | || on W and each k € X, there exists a
constant C> 0 such that
2.7) |G(z,x)|| < Ck(z), z€ C.

Conversely, if there exists a mapping G satisfying (1)-(iv) and if (*) holds, then there
exists a unique projection which induces G by the formula (2.6).

Proof. First suppose w:W—>A exists. Then assertion (i) follows from the
definition of G. If L € W’, then Lew € W’ so (ii) follows from the analyticity of the
map z—e, of C” into W. Property (iii) is exactly the condition #(f) =f for f=
e, €A. And (iv) is a consequence of the continuity of w. For, if kK € ¥, then the set
B={e,/k(z):2€ C"}C W is a bounded subset of W, since for each L € W’,

sup{|L(f)|:f € B} = sup{|L(z)|/k(z) :z € C"} < +co.

Thus, w(B) is also a bounded subset of W. Consequently, given any continuous
seminorm || || on W, there is a constant C> 0 such that || f]| < C for all f€ =(B),
and this is exactly assertion (iv).

To prove the converse part of the Theorem, recall the representation theorem for
a.u. spaces ([7], Theorem 1.5). For each f€ W, there exists a finite Borel measure u
on C" and k € X such that f(x) = | e%*du(z)/k(z). Convergence of the integral is
in the topology of W; p and k are not unique. Define 7: W—>A by w(f)(x) =
§ G(z-x) du(z)/k(z). Because of (iv), the integral converges (in W). Also, « is well-
defined, because the exponentials z— exp(iz-x), x € R”, have dense linear span in
W' (cf. [2], Chapter 1). Thus, if u, k are such that § e, du(z)/k(z) =0, then

0= SL(G(z,x)) dr(z)7k(z) = L(S G(z,x) du(z)/k(z)>

for all L€ W', so [ G(z,x)d(z)/k(z) =0. Because of (iii) and (*), = is the identity
on A. And, again by (iv), 7 is a bounded linear operator, hence continuous, because
W is reflexive. This completes the proof. O
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3. Case of the d-operator. We want to specialize Theorem 2.1 to the cases of
interest for our problem. First, for the a.u. space W it will be convenient to choose a
space of infinitely differentiable functions on R” determined as follows. Let ® denote
a family of nonnegative functions ¢:R"— [0, +00]}. For each ¢ € ® and each
integer m = 0, let

| fllm, s = sup{ | D’f(x)| exp(—¢(x)) :x € R", |j| < m}

(where the D/ = alfl/ax{ L., ax{;" are the usual partial derivatives), let &(¢, m) =
(fECT(R") : || fllm e <+o0} and let

+00
3.1) 8@ = N ( U &(s, m)).
m=0 pED

Under suitable conditions on ® (such as ®1-®3, listed later), the space &(®) is an
analytically uniform space. (See [7], Chapter 5, [2], or [16] for the proofs of such
results.) We note four interesting examples, which are the only ones we will treat
explicitly. The last example, (3.5), is somewhat different from the first three.

(3.2) & = all functions which are 4 outside a compact set,
&(®) =C"(R")

(3.3) e={jlx|:j=1,2,...}
&E(®) =C (R", exp) =all C* functions f on R”", each of whose partial
derivatives is of exponential type. That is, for each j= (j,,...,j,) there

exist constants 4, B; such that |D/f(x)| < Ajexp(Bj|x|), x€R",

(3.4) ®={¢ convex on R":¢(x) = O(|x|'*¢), |x| > +oo, for each ¢>0].
&(®) =all C* functions on R”, each of whose partial derivatives is of
order < 1.

(3.5) R'=R¥=CP={w=u+iv:u,v€RP}.
= (j(|v]+log(l+|w|)):j=1,2,...}
&(®) =all C® functions on R??, each of whose derivatives is of expo-
nential type and of polynomial growth in the real directions.

Some technical conditions we impose on ¢ which are sufficient that &(®) be an
a.u. space are the following (see e.g. [16]).

(®1) if ¢, ¢, € P, there exists ¢p3; € P, ¢; convex on the set { p; < +0} and such

that ¢3 2 max(¢,;, ¢,).

(®2) for each A >0, there exists ¢ € P such that 4|x| < ¢(x).

(®3) If ¢ €P, then there exists >0 and ¢; € such that &(x+y)+n|x| <

¢1(x) for all x,y€R", |y|< 1.

Note that the last example (3.5) does not satisfy properties 2 or ®3. Strictly
speaking, it is not an a.u. space, since it contains the exponentials e** only for
z=(zy,2,) pure real (i.e. 7;, 2, € R?). Its analysis, therefore, will have to be carried
out outside the general framework.
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In case ® satisfies (®1), ($2), ($3) above it is easy to write down the class X
which gives the a.u. structure for &§(®). Namely, recall that if ¢ is a convex function
on R”, then the conjugate convex-function of ¢ is

(3.6) ¢*(y) = sup(x-y—¢(x) :x € R"}.

The class X consists of all functions k(z) = (1+ |z])* 12D exp(¢*(Imz)) where
Im z € R” denotes the imaginary part of z, and w(|z]) is any function which increases
to +o as |z| > 4.

Thus, we have determined the space W= &(®) in which Theorem 2.1 will be
applied. To consider the case of analytic functions we must restrict the underlying R”
on which the functions f€ &(®) are defined to be even dimensional, R"=R* =CP =
{w=u+iv:u,v€RP}, and the differential operators to be the 3-operator, a/ow;=
1(3/3u;+ 3/ v;). Then the space A of Section 2 is

A=AP) = (f€8(2):=0)
= {f € &(®) :f is analytic on C”}.

The cases corresponding to (3.2)-(3.5) are

(3.2") A: all entire functions

(3.3")  A: all entire functions of exponential type
(3.4’)  A: all entire functions of order <1

(3.5) A: all entire functions of exponential type with polynomial
growth on the real subspace of C?”.

The analytic variety V'={z€ C?’:¢, € A} is the same in all cases:
V=1{z=(2,2) € C¥:z = iz])

i.e. e W=¢/ 214+ 229 j5 an analytic function of w= u+ jv if and only if z, = iz;.
Thus, the characteristic function of the projection =, if it exists, is

(3.8) G(21,22, W) = m,(e a4+ 2y - yw—y4jy € CP.
The direct translation of Theorem 2.1 to this case is as follows.

THEOREM 3.1. Suppose W= &(®), P;=3/0w;, and A=A(P), where ® satisfies
the conditions ®1, ®2, ®3. Then there exists a continuous linear projection of &(®)
onto A(®) if and only if there exists an entire function G: C*? — C such that

() G(z(,z5, W) =e"" for z,=iz,; and
(i) given Y € ®, there exists ¢ € &, C> 0, m > 0 such that |G(z,,22,w)| <
C(1+|z])"exp(p(w) +¢*(Imzy,Imz,)).

Proof. The conditions of Theorem 2.1 have only to be written in this context. We
omit the direct verification. O

To apply Theorem 3.1 we then have to analyze the growth condition to find out
when G exists. The simplest case is Example (3.2) where, as we have already
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remarked, it is known that no such projection exists. We won’t give the details of the
analysis for this case, but they proceed as follows. First, the growth condition of
Theorem 3.1 is equivalent to

|G (21,22, )| < (1+ [2])" expla(|w]) (|Imz, | + [Im 25 |) + B(|w])].
This then implies a stronger estimate
|G (21,22, w)| < C(1+ |z])" exp[ C(|Im 2| + |[Im 25]) + B(|w|)]

for some C>0 and some function 8(|w|). However, the latter estimate is incom-
patible with G(z, iz, w) = exp(iz-w), so G cannot exist. O

4. We will consider two special cases in this section, the cases (3.3) and (3.4) of
Section 3. After treating these cases we will discuss some more general examples in
which similar arguments can be given. The only differences between the special cases
and the general cases is technical, so we won’t give the proofs in the general cases.

We first take up the case (3.3), of functions of exponential type. To interpret the
growth condition (ii) in this case, recall that = {j|w|:j=1,2,... } so the functions
v*, Y€, are equal to +oo outside some large compact set. Therefore, the con-
dition (ii) is equivalent to:

“.1) for each compact set K in R??, there exists C> 0, m> 0 such that
|G (21,22, Ww)| < C(1+ |z}])™exp(c|w]|) for all w € CP and all z
with Imz € XK. :

THEOREM 4.1. There exists an entire function G on C3? such that G(zy,2,, W) =
e for z, =iz, and such that for some m=0, ¢>0

|G (21,22, w)| < C(1+ |z| + |w]))™ exp(C|w| exp(C|Imz])).

Such a function c_learly satisfies (4.1). Thus, Theorem 3.1 implies the existence of
a right inverse for 0.

THEOREM 4.2. Let ®={j|w|:j=1,2,...}. Then there is a continuous linear
projection w:&6(P) > A(P).

Proof of Theorem 4.1. We have the function G(z;, z,, w) defined on the variety
((zy,iz;, w)} C C* and wish to extend it to all of C? so that the estimate of the
Theorem holds. To this end consider the plurisubharmonic function on C” 8(z, w) =
(14 |w|) exp(|Imz,| + |Imz,|) . Note that if z, =iz, then |e””| < exp(|w]||z;]) <
exp(B(z, w)). Hence, by Theorem 2.3 of [5], or by following directly the extension
technique of [9], Theorem 4.4.3, such an extension exists.

Consider next the case (3.2) of functions of order 1. To interpret the growth
condition (ii) in this case, recall that ® is the set of all convex increasing functions on
C? which satisfy ¢(w) =o(|w|'*€) for each e¢> 0. Thus, the functions y*, € ®
range over the class of all convex functions on C? which satisfy for each N> 0. |w|V=
O(Y*(w)) (see e.g. [15]). Consequently, the growth condition (ii) of Theorem (3.1)
implies:
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4.2) Given any €>0 and any convex function « on f20 such that
tN=0(a(t)) for all N> 0, there exists C, m> 0 such that

|G(z, w)| < C(1+ |z])" exp(|w|' ¢+ a(|Imz])).

However, this implies an apparently stronger inequality. a

LEMMA 4.3. Given any ¢>0, there exists C, m, D, N such that |G(z, w)| <
C(1+ |z])™exp(|w|'* ¢+ D|Im z|V).

Proof. This is a standard argument (cf. {15] or [17]). Assume not. Then there exist
points (z;, w;) € C*? and > 0 such that

(4.3) |G(z;, w))| = j(1+ |z;]) exp(|w;]'T"+ j|Imz;)).
Now, the set {Imz;} cannot be bounded. Otherwise, the set of functions
e, (W)/(1+ |z])!

is bounded in &(®) and therefore so is the set of functions G(z;, w)/(1+ |zj|)’—
w(e, /(1+ |z;[)7) which forces |G(z;, w)| < C(1+ |zj|)’ exp(¢(w)) for some ¢ € P,
all we C?, and thus violates (4.3). Similarly, we must have |w;| — +, because
otherwise, the functions z—exp(iz-w;)/(1+ Izjl)’ form a bounded set in W’ =
&(®)’. Thus, |G(z,w;)| < C(1+|z;|)’ exp(D|Imz|N) for some C, D, N> 0, which
violates (4.3) for z= % and large j. Thus, we may assume |w;| = +, |Imz;| — +o0.
Choose a convex increasing function «(?), ¢ >0, such that a(|Imz;|) < |Imz;|//
for infinitely many j, but tN=0(a(t)), t— +, for every N> 0. Then let e=7/2
and choose C,m>0 as in (4.2). This contradicts (4.3) for infinitely many large ;.
Hence, the Proposition must hold. a

We can now make a significant improvement of the estimate.

LEMMA 4.4. Let G(z,w) be an entire function which satisfies the estimates of
Lemma 4.3. Then there exists a constant N> 0 such that for each ¢> 0, there exist
constants C, D, m such that

|G(z,w)| < C(1+ |z])™ exp(|w|'*€) exp(D|Imz|V).
That is, the constant N can be chosen independent of ¢> 0.

Proof. The factors (1+ |z|)™ present an annoying technical problem which must
be circumvented. Otherwise, the argument is straightforward. To eliminate the fac-
tors (1+|z|)™, note that G(z, w) can be written as a sum of terms of the form
P(z)G(z, w) where P(z) is a polynomial of degree < g, and G satisfies the estimates
of Lemma 4.3 with m replaced by max(m—q, 0) . For example (in case p=1, g=1),
the decomposition G(z,,2;, w) = 7:[(G(z,2, W) — G (0,25, w)) /211 + G(0, 25, w)
reduces the power of (1+|z;|) in the estimate by at least 1. A tedious induction
argument, which we omit, shows the procedure can always be carried out. Thus, if it
were not for the possibility that m = m(e) — + as e >0, we could directly reduce
to the case m=20.



LINEAR EXTENSION OPERATORS FOR ENTIRE FUNCTIONS 193

Choose constants C, m, D, N so that the inequality of Lemma 4.3 holds for e=1.
Then choose C,, m;, D, N so that the estimate of Lemma 4.3 holds with another,
fixed (small) value of ¢ > 0. Make the decomposition outlined in the preceding para-
graph with g = max(m, m;). Thus, we have G(z, w) = ¥ P;(z, w)G;(z, w) where
(possibly different constants)

“4.4) |Gi(z, w)| < Cexp(|w]?) exp(D|Im z|™)
4.5) |Gi(z, w)| < C| exp(|w|'*¢) exp(D;|Imz|™)
Dropping the index i, set
u(z, w) = supflog|G(z+x,Tw)|:x € R??, T an orthogonal map of C?)
= y(Imz, w).

The function u is plurisubharmonic, so if |w| =e*, y=Imz, h(y,x) =u(z, w) then
the function 4 is convex on R?” X R. Therefore, if > 1 is given, then from (y,x) =
(1-1/7)(ny/(n—1),0) +1/9(0,qy), we have

h(y,x) < (1=1/n)h(ny/(n—1),0) + h(0,ny) /7
But, by (4.4), h(ay,0) < a¥D|y|N+1log(eC) and, by (4.5),
h(0,7x) < |w|"'*9 +1og C,.
We conclude that
|Gi(z, w)| < C’exp(|w|"*) exp(D’|Im z|V).
Since p>1, >0 are arbitrary, we see that the original function G must satisfy
|G(z,w)| < Cle)(1+ |z])™ exp(|w|'*¢) exp(D(e) | Im z|V).

In other words, N can be chosen to be independent of e> 0. This completes the
proof. O

THEOREM 4.5. There exists no entire function G(z, w) satisfying the conditions of
Lemma 4.3 and G(z;,iz;,w) = e'*t'"", Consequently, there exists no continuous
linear projection w:&6(®) > A(P) where ® is given in (3.4).

Proof. Suppose G exists. Choose N as in Lemma 4.4 and then take ¢> 0 so small
that

(4.6) 1+e<N/(N—-1).

The function f(y) = Dy”", where D= D(e¢), is convex, and for x> 0, there is a
unique y = y(x) > 0 such that f(y) —xy is minimized at y(x). Namely, the solution
of f’(y)=x or NDyM~!=x. And, for this value of y, we have f(y) =xy— Bx?
where B is a constant and g = N/N—1 is the conjugate index to N. Into the equation
G(zy,iz;, w) =e?1'%, substitute w= (x,0,...,0), z;=(iy(x),0,...,0) so that G
takes the value

4.7) e = exp(Dy" + Bx9)
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by construction of x and y. If we now apply the estimate of Lemma 4.4 we obtain
exp(DyN+Bx9) < C(1+ |y|)™ exp(DyN+x!*¢) or exp(Bx9—x!'+¢) < C(1+ |x|)™.
But g=N/N—1>1+¢, so we obtain a contradiction by letting x— +o. This
completes the proof. a

Let us now mention some other examples where these methods apply, with almost
no change. The two cases we discussed involved entire functions of order 1. An
arbitrary order p 21 can be considered with the same results. In the case of functions
of order p>1, finite type, i.e. [(D’/f)(w)|< Cexp(D|w|?), there does exist a
continuous projection onto the analytic functions. And, for the case of functions of
order p, i.e. |[D/f(w)| = O(exp(|w|°*¢)) for each ¢> 0, there is no projection. It is
quite likely true that similar results hold for more general growth conditions which
are functions of |w]|.

In general, we know of no natural Fréchet spaces of smooth functions on C?
where there exist projections onto the entire functions in the space.

As the referee has kindly pointed out, the Fréchet space condition by itself cannot
rule out the existence of projections—a finite dimensional subspace of C*® can
always be added to a space of analytic functions. However, it would be interesting to
know if some general easily recognizable structural property of the space is enough
to rule out the existence of projections.

5. Applications to the interpolation problem. Let &(®), A(®P) be the spaces of
functions of exponential type given in (3.3). Let 9 be a closed ideal in A(®) and let

(5.1) p:A(®) —> A(®)/9

be the quotient map. The space A(®)/9J can be interpreted as a space of analytic
functions analytic on the zero set of 9. For functions of one variable, the range of
the maps can be explicitly described as a sequence space (see e.g. [4], Theorem 8).

THEOREM 5.1. The map p of (5.1) has a continuous linear right inverse when
n=1.

Proof. For functions of one variable, the method of proof outlined in the intro-
duction carries through directly. See, for example, Theorem 8 and Theorem 7 of [4].
Further, an explicit formula shows that the local problem (Step 1 of the intro-
duction) always has a right inverse (see pp. 133, 134 of [4]). Hence a continuous
linear right inverse exists if the d-operator has a continuous linear right inverse,
which it does by Theorem 4.2. O

REMARK 5.1. The same argument applies to all spaces Ap(Cz and ideals 9 which
are generated by slowly decreasing functions, and for which 3:&(®) = &g 1) (P)
has a right inverse. In particular, to the spaces of functions of order <p, finite type
in C. See [5] for details, including the definition of slowly decreasing.

REMARK 5.2. The ‘‘local”’ part of the problem (Step 1 in the introduction) also
has a linear solution for discrete, slowly decreasing varieties in C”. For such ideals,
and for the spaces of functions of order < p, finite type, the analogue of Theorem 5.1
also holds. We refer to [5] for details.
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Next, consider the Fréchet space example &(®), A(®P) given by (3.4). We already
saw in Section 4 that there is no projection onto 4(®); hence the d operator on
&(P) has no continuous, linear right inverse. It is also the case that the restriction
map f— f(z;) of A(®) onto any discrete infinite sequence {z;} has no continuous
linear right inverse. For, suppose it does have such a right inverse, £, and let
Jr € A(®) be the image under E of the sequence equal to 1 at z; and 0 at the other
points of the sequence. We will derive two bounds for the f; which show such f;
cannot exist. First, because E is continuous, the f; form a bounded set in A(®).
Thus, there exists w(|z|) — +o such that

(5.2) Ife(2)] < ewllzD
and
(5.3) w(|z]) = O(Jz['*¢), each e>0.

Next, because E is continuous for each e > 0, there exists > 0 such that
|E crfi(2)] < exp(|zx|'T€) whenever |cx| < nexp(|zx|'*"). In particular, if |z|<1,
then there exists y >0, C> 0 such that

(5.9 |fe(2)| € Cexp(—|zx|'*).

From the 3-circles theorem applied on the circles r; =1, r, = |z|, r3=|z|'*7, and the
bounds (5.2), (5.4), we have

T
1+7

! |ze| 7+

(5.5) |fe(2)] < exp[— 147 147

w(|z)'*7) + logC].

If we choose 7< 7, set z=z;, and apply (5.3) with e chosen so small that
(1+7)(1+e€) <14,

then we see that f;(z;) — 0 as k— +oo. But this is a contradiction since f;(z;) =1.
Thus, no such map E exists.

The same argument applies with only trivial modifications to the spaces of analytic
functions of order <p, p#1.

The argument sketched in the introduction relating interpolation and right inverses
for 9 then gives another proof of the nonexistence of continuous linear projections
onto the analytic functions in these spaces.

Finally, we discuss the example given in (3.5). Let [z} be a discrete sequence of
points in C". We will say that {z,} is an interpolating sequence if the restriction map
S—f(zx) maps A(®P) onto the space I' of all sequences {v;} such that |vyx|<
B(1+ |z¢|)€ exp(D|Im z;|) for some B, C, D> 0.

THEOREM 5.2. Let &(®), A(®) be as in (3.5) Let p: A(®) > T be the restriction
map for an interpolating sequence {z;}. Then there exists a continuous linear right
inverse for p if and only if

{Im 2|

lim su < 4o
k_mp log(1+ |z¢|)

There is no continuous linear projection of &(®) onto A(P).



196 B. A. TAYLOR

Proof. Suppose such a right inverse E exists. As usual, set f; = E(8;), where &y is
the sequence equal to 1 at z; and zero at all other z;. Then {f;} is a bounded
sequence in A(®), so

(5.6) [fe(2)| < B(1+|2)€exp(D|Imz])

for some B, C, D independent of k. Also, Y ¢, fx(z) converges for all C= (¢;) €T.

Therefore, given C,, D, > 0, there exists B,, C,, D, > 0 such that

By(1+ |z)€
(1+ |z)

5.7 |fx(2)] < exp(D,|Imz| — D, |Im zx|)

(compare with (5.4)). Thus, from (5.7) we obtain a bound on the real axis, while
(5.6) gives a bound on the imaginary axis. From the Phragmen-Lindelof theorem,
we conclude:

(5.8) there exists D> 0 such that, for all C,, D, > 0, constants B,, C,
exist such that

By(1+ |z|)<2
(1+ |z

Thus, we can choose D; = 2D and deduce that f;(z;) — 0 provided that

[fe(2)] < exp(D|Imz| — Dy |Imz;|).

|Im z|

5.9 lim su =
5:9) P Tog(1+ |z])

Thus, since f;(zx) =1, this proves £ cannot exist.
On the other hand, if the upper limit in (5.9) is finite, then we can write down the
Jx(2) . The estimate of (5.8) becomes simply

B, (1+z])“2
(1+ IZkl)C‘

(5.10) /(2] < exp(D|Imz|)
because the term D, |Im z;| can be absorbed into the term (1+ |z, |)1. Since we have
assumed the sequence {z; ]} is an interpolating sequence, there exists f; with fz(z) =1,
Si(z;) =0 for i#k, and |fi(z)| < B(1+|z|)Cexp(D|Imz|). See e.g. [4] or [14].
Choose a function ¢ € A(®P) such that ¢(0) =1 and
Bexp(D|Imz|)

w(|z|)
where (1+ |z|)C= O(w(|z])) for each C> 0. (See e.g. [11], Ch. 1.) Then set fi(z) =
Jie(2)p(z—zx). It is routine to verify that f; satisfies the required estimates so that
E:T'— A(®) given by E({cr}) = L crfr(2) is the right inverse.

To complete the proof of the Theorem, we sketch how the argument of the intro-
duction can be carried out. Let the interpolating sequence be of the form

{xiye) U {x}

where y, =2% and x; is a subset of the integers which is the zero set of a function
¢ in A(®) with the property that F(z) = ¢(z) [I7=1(1— (2/iyx)*) € A(®) (in one

|p(2)] <
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variable). Such a ¢ always exists. Then the sequence is an interpolating sequence in
A(P) (see e.g. [14]). For this sequence, Step 1 of the introduction is easily carried
out, so the only obstruction to the existence of a continuous, linear right inverse for
p is the existence of a continuous linear right inverse for d. By part (1), no such
inverse exists for p. Consequently, no such inverse exists for 3. 0O

N =

10.
11.
12.
13.
14.

15.

16.

17.

18.
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