REMARKS ON SUBSPACES OF H, WHEN 0<p<1

N. J. Kalton and D. A. Trautman

1. Introduction. Let T be the unit circle in the complex plane and let A be the open
unit disc. As usual H,, 0<p<1 denotes the quasi-Banach space of all functions
f:A— C analytic in A such that

1715 = sup { |fGrw)lPdm(w) < e
0<r<1 VT

where m is normalized Lebesgue measure on the circle. By considering boundary
values H), can be identified with a closed subspace of L,(T).

In this paper we give a number of results on the closed subspaces of H),. Our first
result is to show that H, can have no complemented locally convex subspaces; this
answers a question of Shapiro (see [7]). Indeed, we show that H, cannot have any
locally convex subspaces with the Hahn-Banach Extension Property (HBEP). A
closed subspace M of a quasi-Banach space X has HBEP if every continuous linear
functional on M can be extended to a continuous linear functional on X.

Next we consider special subspaces of the type H,(M) where M is a set of non-
negative integers. Then H,(M) is the closed linear span of (z™:m € M}. We show
that H,(M) can only have HBEP if it is thick in the sense that if

M={m,:n=1,2...} where m; <m, <ms...

then m, < cn for some constant ¢. This again answers a question raised by Shapiro;
Duren, Romberg and Shields [3] observed that H,(M) fails to have HBEP when M
is a Hadamard gap sequence.

We also show that H,(M) is the range of a translation-invariant projection if and
only if M is a finite union of arithmetic progressions modulo a finite set.

In the last section we discuss the nature of Banach subspaces of H,. We conjecture
that every Banach subspace of H, has the Radon-Nikodym Property and show this
is true for translation-invariant subspaces.

2. Preliminaries. We recall that a complex quasi-normed linear space X is called a
quasi-Banach space and that if for some p, 0 <p <1, the quasi-norm obeys the law

X +x017 < | 1P+ |x%)” x1,x €X

then X is called a p-Banach space. The dual space of X will be denoted by X*. If X*
separates the points of X, then the Mackey topology on X is the finest locally convex
topology on X with the same dual space. This topology is a norm topology generated
by co(U) where U={x:| x| <1} is the unit ball of X. Let ||-|| be the associated
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norm, i.e. x|} =inf(A:\"'x € co U). Then the completion of X with respect to ||-||
is denoted by X and is called the containing Banach space of X.

One result we shall need later is the following lemma due to N. T. Peck [12].

LEMMA 2.1. Suppose X is a real n-dimensional p-Banach space; then | x| <
n'P=Yx|| for x€ X.

The containing Banach space of H, was determined by Duren, Romberg and
Shields [3]. Let A be normalized planar measure on the open unit disc A in the
complex plane and for 0 <p <g <1 define B, , to be the space of analytic functions
f:A— Csuch that || f]|2 ,=1a|f(2)]7(1—|2])9P~2d\(z) < 0. Then (B, 4| |l,.4) is
a g-Banach space.

The following inclusion results are due to Hardy and Littlewood [5] and Shapiro
[14]. Theorem 2.3 is due to Duren, Romberg and Shields [3].

THEOREM 2.2. If 0<p<g<r<|1 then H,CB, ,CB, , and the inclusion maps
are continuous.

THEOREM 2.3. B, ; is the containing Banach space of H,.

Here the identification is not an isometry (i.e. the norm of B, ; is not the con-
taining Banach space norm for H),).

THEOREM 2.4. B, | is isomorphic to [,.

This result is due to Lindenstrauss and Pelczynski [10]. Following this Kwapien
and Pelczynski [9] note a result of Shapiro that any complemented subspace of H),
which is locally convex must be isomorphic to /;, and conjecture that there is no such
complemented subspace. This will be a deduction from our first results in the next
section.

3. Subspaces of H, with HBEP. In order to prove our main result it will be
necessary to show that B, , is isomorphic to a subspace of /, for p <g<1. We first
give a simple proof of this fact and then show how recent deeper results of Coifmann
and Rochberg [1] show that B, ,=/,. The proof of this proposition is similar to
Theorem 6.2 of [10].

PROPOSITION 3.1. Suppose (X, L, p) is a probability measure space and 0 <p <1.
Let X be a closed subspace of L,(, L, p) with the property that given e >0 there exists
B € Q with pn(Q\B) <e and such that the set of functions { f-1p; | fl,<1,f€X} isa
relatively compact subset of L,(, E, u). Then X is isomorphic to a subspace of I,.

REMARK. Here 13 is the indicator function of B € L.

Proof. Partition @ into countably many disjoint sets @, such that if K, =
{f-1g; fEX, | fll,< 1)} then K, is relatively compact. Fix ¢, 0 <e<1 and choose
€x > 0 so that X2, e < (e/4)?. For each n choose g .-+, &my,n € X with
l|lgi,n)l <1 and such that if f€ X with [|f||,<1 then for some i, 1<i<m(n),
fa,l&i,n—f|dn < €,. Then choose simple functions #;, supported on Q, so that
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]Qn |&i,n—hi,n| dp < €,. There is a sub-g-algebra L, of L generated by countably many
atoms such that each (h; ,:1<i<m(n),1<n<oo) is Ly-measurable. Let E be the
natural projection of L;({Q, E, ) onto L,(Q, Z, ) i.e.

1

2= L iy (U, fd’“>1”"

where (A,),~, are the atoms of ;. Then for f € X with |]f|| 1, and n € N, choose

hi,n With fo |f=h; 5| dp < 2€¢, 0 fo |Ef—hi |l dp < 2¢, ie. fo |f—Ef|dp < 4e,.

Hence o, |f—Ef|pdp,< (4e,)? and so if we define T: X —>L, (, o, pu) by Tf=
IE(f lg ), then || Tf fIP< E7-1(4€,)? <eP and T is an 1som0rph1c embed-

dlng As Ly( Q Yo, n) =1,, the result is proved. O

COROLLARY 3.2. For p<q<1, B, , is isomorphic to a subspace of l,.

Proof. If A,={z:|z| <r}, then the set (f-14; || flp,q<1) is compact in C(A,)
(it is a normal family) and thus also in L,(A,, \). O

Now we sketch the deeper result obtainable from the work of Coifman and Roch-
berg [1].

THEOREM 3.3. B, ,=1,.

Proof. Coifman and Rochberg show the existence of bounded linear operators
T:l;—>B, 4; V:B, ,—1, so that |TVf—f|| <e|f| where e<1. Thus TV is an
automorphlsm of B, , and if T\=(TV)~'T then T, V=1 on B, ,. Thus B, , is
isomorphic to a complemented subspace of /,, and a theorem of Stlles [15] gives the
result. O

THEOREM 3.4. Let X be a closed infinite dimensional subspace of H,, with HBEP.
Then X cannot be g-convex for any q > p.

REMARK. By definition X is g-convex if it can be equivalently quasi-normed to be
a g-Banach space.

Proof. Suppose X is g-convex where g>p and choose r so that p<r<gqg. We
consider the inclusion map J: X — B, .. By the preceding results B, , is isomorphic
at least to a subspace of /,, but X is g-convex where ¢ > r. Thus J is compact (see [15]
and [16]). Hence the inclusion map J:X-> B, is compact (use Theorem 2.2).
Clearly this means the induced map J:X —-)B .1 is compact and so the adjoint
J*:Bj —>X* is compact. However J* is a sur]ectlon since X has HBEP in H),
and B, ; is the containing Banach space of H,. Thus dimX* <o and we have a
contradiction. a

COROLLARY 3.5. If 0<p <1, H, has no complemented locally convex subspace
(or even a locally convex subspace with HBEP).

The proof of our next corollary would take us too far afield. We merely note that
it is possible to prove that a closed subspace of L, which is not g-convex for any
q > p contains a copy of /,. (A proof can be obtained from [8] and certain ultra-
product arguments.)
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COROLLARY 3.6. If X is a complemented subspace of H,, (0<p<l1) then X
contains a copy of ,. '

PROBLEM. Does every complemented subspace of H, contain a complemented
copy of /, for 0<p<1?

4. HBEP and complementation for translation-invariant subspaces. Let
Z, ={n:n20}CZ.

If MC ZJr we denote by H,(M) the closed linear span of (e, :m €M) where
em(z) = z". Note that H, (M) (f€ H, :f(n) =0 for n ¢ M} where f(z) =
~0 f(n)z is the Taylor series expansion of /.

We shall require first a lemma which has some independent interest.

LEMMA 4.1. Suppose X is a p-Banach space and Y is a closed subspace of co-
dimension n. Suppose ¢ is a continuous linear functional on Y. Then

() If X is real, ¢ has a linear extension y with ||y | < (n+1)P71|¢|.

(i) If X is complex, ¢ has a linear extension ¥ with ||¢| < (2n+1)771|¢].

Proof. (i) Let N be the kernel of ¢. Thus dim X/N=n+1. ¢ then factors to a
linear functional ¢, on Y/N with ||¢;| =] ¢|l. Since dim Y/N=1 we can choose
£ €Y/Nwith ||[£] =1and |¢;(£)| =] . There is by the Hahn-Banach theorem an
extension v, of ¢, to X/N with ||¢| = | ||/ é| where ||-|| is the containing Banach
space norm in X/N. Thus by Peck’s lemma 2.1, |¢,] < (n+1)"?7!||¢| and the
result follows by inducing  on X.

(i1) Let Xy be the associated real space of X. Applying (i) to the linear functional
Re ¢ we can produce a real-linear functional # on Xg with

0(y) =Red(y) y€Y
16l < 2n+ 1771 o|.

Define y(x) = 0(x) —i6(ix), and proceed as in the complex Hahn-Banach theorem.
O

The next theorem answers a question of J. H. Shapiro. It shows for example that
H,(M) fails HBEP if M={m?: m € N}.

THEOREM 4.2, Suppose M={m,:n=1,2...} whose my<m,<msy.... Then if
H,(M) has the Hahn-Banach Extension Property there exists c¢<oo such that
m,<cn.

Proof. We first observe that if ¢, : H, — C is given by ¢, (f) =f”(n) , then |¢,|| =
an'/P~1 for some a>0. This follows from the Corollary to Theorem 6.5 of Duren
[4] p. 100.

Now fix n and consider the linear functional ¢, : H,{m,,m,,,, ... } = C given
by ¢, (f) =f(m,). Then ¥, |l = 1. By the preceding result ¥, has an extension v,
to HP(M) with ||y, || < (2n—1)1/P71,
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Since Hp(M ) has HBEP there is a constant k independent of n such that ¢, has an
extension v, to H, with ||y, || < k|[¢, || < k(2n—1)"P~1. Now define

0n() = |_wmni(A,) dm(w)

where f,,(z)-= f(wz). Then 6, = ¢,, and [, || = [|6,]] < k(2n—1)"?~1. Thus
aml/’P~'< k(2n—1)"7~! and the theorem follows. O

Let us say that a sequence (a,:n=0,1,2...) or a double sequence (a,:n € Z) is
periodic with period q if a,, , = a,, for all n. We shall say that (a,) is nearly periodic
if it differs from a periodic sequence only in a finite set of indices. For a sequence
(a,) this is equivalent to the existence of N, g such that a,,,=a, for all n 2 N. We
shall say that a subset M of Z_ or Z is a periodic or nearly periodic subset of Z, or
Z according as its indicator function

Ly(n)=1 neM
=0 n¢M

is periodic or nearly periodic as a sequence.
If p is a regular Borel measure on T then its Fourier transform p: Z — C is given
by

a(n) = ST widy(w™') nez.

p is idempotent with respect to the convolution algebra M(T) if and only if =1,,
for some subset M of Z. In [6] Helson showed that 1,, is the Fourier transform of
some measure y if and only if M is nearly periodic; 1, is the transform of a measure
p of the form p=Y;Z, c;6(w;) (where 6(w;) is the point mass at w; €T and
X|cj] <o0) if and only if M is periodic (i.e. a finite union of arithmetic progressions).

For 0 <p <o, denote by L,(M) the closed linear span of {e,:n€M} in L, =
L,(T,m); if MCZ, we use the alternative notation H,(M). If 0<p<1 we shall
say L,(M) is full if z" € L,(M) implies n € M; for 1< p<oo every L,(M) is full.

In [13] Rudin showed that Helson’s results imply that L;(M) is complemented in
L, if and only if M is a nearly periodic subset of Z. Unfortunately Rudin’s argument
depends on an averaging technique which fails for p <1. However there is a substi-
tute for complementation by a translation-invariant projection P. P:L,— L, or
P:H,— H,, is said to be translation-invariant if (Pf), = Pf,,, weT.

THEOREM 4.3. Suppose 0<p<1 and that M is an infinite subset of Z. Then
L,(M) is full and complemented in L, by a translation-invariant projection if and
only if M is a periodic subset of Z.

Proof. A theorem of Oberlin [11] asserts that any translation-invariant operator
P:L,—L, takes the form Pf=pu*f, f€L, where p is a measure of finite p-
varlatlon ie. p=%X72, ¢;8(w;) where E|cj|p<oo

If p is a projection, p is an idempotent and hence by Helson’s results =1, is
periodic, i.e. M is periodic.
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For the converse note that M is an arithmetic progression i.e. M= (an+ b :n € N);
then a projection Pys onto L,(M) is given by Py f=a ' L% o °f(w'z), where w
is a primitive ath root of unity. It is then easily seen that if M is a periodic set it is a
finite disjoint union of arithmetic progressions with the same common difference; a
projection can then be built up in the obvious way. O

We now turn to the problem of the existence of translation-invariant projections
on subspace of H, of the form H,(M). We shall need the following preliminary
lemma.

LEMMA 4.4. Let T' be the Cantor set (0,1)%+. Suppose a €T and let C be the
closure of (a'™ :n€Z, ) CT where ai™ =a, for k € Z . Suppose every accumu-
lation point of C is periodic. Then a is nearly periodic.

Proof. Let C’ be the derived set of C (i.e. the set of accumulation points). Then C’
is closed in I" and so is each of the sets C; = {b € C’; b is periodic with period g}. By
the Baire Category Theorem there exists g, b € C’ and m € N such that if b’ € C’ and
b/=b;, 0<i<m—1, then b’ has period q. We may clearly suppose m is a multiple
of g and then that m=gq.

Choose u(n) — o so that a,(,)+;=b;, 0<i< g—1 (possible since b € C’).

If a is not nearly periodic there is for each n a largest r(n) so that a,,+; = b;,
0<i< gr(n)—1. Clearly r(n) — oo. By passing to a subsequence we may suppose
r(n) 21 for all n and lim, o @y(y)+gr(n)-q+i = d; €xists for i€” .. Now d;=D;
for 0 < i< g—1 and so d € C;. Hence for large enough n, @,y +qr(ny—q+i = di
0<i<2g-1 and so a,,+;=b;, 0<i< qr(n)+q—1, contradicting the choice of
rin). O

THEOREM 4.5. Suppose 0<p <1 and that M is an infinite subset of Z., . Then
there is a translation-invariant projection of H, onto H,(M) if and only if M is a
nearly periodic subset of Z.,. .

Proof. As in the proof of Theorem 4.3 we see that if M C Z, is periodic then there
is a translation-invariant projection onto H,(M); the same is clearly true if M is
finite. As any two translation-invariant projections commute it quickly follows that
H,(M) is complemented in H), by a translation-invariant projection if M is nearly
periodic.

Conversely suppose H,(M) is complemented by the projection Py, : H, — H,(M)
given by Py(e,) =a,e,, n € Z, where a, = 1,,(n). It is clear that this is the form of
a translation-invariant projection.

We apply Lemma 4.4 to the point a= (a,) € I'. Let b be an accumulation point of
the set C so that for some m(n) — o, lim, w0 @y +i=b;, i €Z, . By passing to a
subsequence we may suppose that these limits exist for i € Z, when of course the
sequences are defined only eventually. For y;€C, —N<j< N,

l

p N

m(n)+N .
'Y._ a.z-/
jemGy—N j—m(n) Y
N .
Y vz’
j=-N"

14
dm(z)

N .

L ybzl| dm(z) = lim |
j=—N n—o VT
p

dm(z)

= lim g
n—oo YT

p
< 1Pwl” |
T

dm(z).
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Hence there is a bounded linear operator Q: L, — L, so that Q(e,) =b,e, (n€Z).
Q is a translation-invariant projection and so by Theorem 4.3, b is periodic. Now by
Lemma 4.4, a is nearly periodic, and the result is proved. O

5. Locally convex subspaces of H,. The main theorem of this section (Theorem
5.2) represents an attempt to use the topology of uniform convergence on compact
subsets (7). As noted in [14], any bounded subset B of H,, is relatively 7-compact.

Recall that a Banach space X has the Radon-Nikodym Property (RNP) if and only
if for each continuous linear operator 7: L;(0,1) = X there is a g € L ((0,1), X)
so that T(f) = [} f(s)g(s) ds holds for each f€ L,(0,1). In Banach space theory, a
weaker topology on X in which norm-bounded sets are relatively compact plays a
large role in determining that X has RNP (see Chapter III of [2]). Thus we con-
jecture that each locally convex subspace X of H), has RNP. Theorem 5.2 represents
a partial answer. (In an earlier proof of 5.2 we made more use of the properties of 7.
Note that g, (s} = g(s) in 7.) We first note

THEOREM 5.1. L, does not embed into H, when 0<p <1.

Proof. The argument given in [7] can easily be modified to show that L; does not
embed into any separable quasi-Banach space admitting a Hausdorff vector topology
in which the unit ball is compact (e.g. H)).

THEOREM 5.2. Suppose X is a locally convex subspace of H, which is weakly
closed. Then X has the Radon-Nikodym Property.

Proof. Let T:L,(0,1) —> X be a bounded linear operator. Note that H,- B, ;
and B, ;=/; has the Radon-Nikodym Property. Hence T takes the form 7f=
§8 f(s)g(s) ds where g: (0, 1) — B, | is an essentially bounded measurable map.

If for 0< k<2", x,, « is the indicator function of the interval (k-27", (k+1)-27")
then we define

n(8) =2"Txp k-27"<s<(k+1)-277

Then in B, ;, g,(s) —=>g(s) a.e. However, in H,, | g,(s)| < | T| for all n, s.
Let A={s:g,(s) —>g(s) in B, ,}. For s€A, g,(s;rw) —>g(s;rw), 0<r<l1,
w€T, and so

S lg(s; rw)|? dm(w) < limsupS lgn(s; rw)|Pdm(w) < | T|?.
T T

n—oo

Hence for s€ A, g(s) € H,. However g,(s) —g(s) weakly in H), for s€ A and so
g(s)eXx.

Since s~ x*(g(s)) is measurable for x* € Hj, s~ x*(g(s)) is measurable for all
x*€X* (X is separable) and by the Pettis measurability theorem, g: 4 —>X is
measurable. Clearly g can be extended arbitrarily to (0, 1) to be essentially bounded
in X and then Tf={} f(s)g(s) ds in X. Thus X has the Radon-Nikodym Property.

O

COROLLARY 5.3. A locally convex translation-invariant subspace of H, has the
Radon-Nikodym Property.
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Proof. If X is translation-invariant and locally convex, let M={m:e,, € X}. Thus

H,(M) CX. If H,(M) # X there exists ¢ € X* with ¢(e,,) =0, mE€ M and ¢(f) #0
for some f€ X. Now for some m € Z, It w™m¢(f,,) dm(w) #0. Since X is locally
convex, fr w™"f,, dm(w) f(m)em, and so m € M and ¢(e,,) #0.

w N

(=)}

(o]

10.

11.

12.

13.
14.

15.
16.

Thus H, (M ) = X and hence X is weakly closed. O
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