REMARKS ON SUBSPACES OF H_p WHEN 0

N. J. Kalton and D. A. Trautman

1. Introduction. Let **T** be the unit circle in the complex plane and let Δ be the open unit disc. As usual H_p , $0 denotes the quasi-Banach space of all functions <math>f: \Delta \to C$ analytic in Δ such that

$$||f||_p^p = \sup_{0 < r \le 1} \int_{\mathcal{T}} |f(rw)|^p dm(w) < \infty$$

where m is normalized Lebesgue measure on the circle. By considering boundary values H_p can be identified with a closed subspace of $L_p(\mathbf{T})$.

In this paper we give a number of results on the closed subspaces of H_p . Our first result is to show that H_p can have no complemented locally convex subspaces; this answers a question of Shapiro (see [7]). Indeed, we show that H_p cannot have any locally convex subspaces with the Hahn-Banach Extension Property (HBEP). A closed subspace M of a quasi-Banach space X has HBEP if every continuous linear functional on M can be extended to a continuous linear functional on X.

Next we consider special subspaces of the type $H_p(M)$ where M is a set of non-negative integers. Then $H_p(M)$ is the closed linear span of $\{z^m : m \in M\}$. We show that $H_p(M)$ can only have HBEP if it is thick in the sense that if

$$M = \{m_n : n = 1, 2...\}$$
 where $m_1 < m_2 < m_3...$

then $m_n \le cn$ for some constant c. This again answers a question raised by Shapiro; Duren, Romberg and Shields [3] observed that $H_p(M)$ fails to have HBEP when M is a Hadamard gap sequence.

We also show that $H_p(M)$ is the range of a translation-invariant projection if and only if M is a finite union of arithmetic progressions modulo a finite set.

In the last section we discuss the nature of Banach subspaces of H_p . We conjecture that every Banach subspace of H_p has the Radon-Nikodym Property and show this is true for translation-invariant subspaces.

2. Preliminaries. We recall that a complex quasi-normed linear space X is called a quasi-Banach space and that if for some p, 0 , the quasi-norm obeys the law

$$||x_1 + x_2||^p \le ||x_1||^p + ||x_2||^p \quad x_1, x_2 \in X$$

then X is called a p-Banach space. The dual space of X will be denoted by X^* . If X^* separates the points of X, then the Mackey topology on X is the finest locally convex topology on X with the same dual space. This topology is a norm topology generated by co(U) where $U = \{x : ||x|| \le 1\}$ is the unit ball of X. Let $||\cdot||$ be the associated

Received September 24, 1980. Revision received June 24, 1981.

The first author's research was supported in part by NSF grant MCS-8001852.

Some of this work will form a part of the second author's Ph.D. Thesis under preparation at the University of Missouri-Columbia.

Michigan Math. J. 29 (1982).

norm, i.e. $||x|| = \inf(\lambda : \lambda^{-1}x \in \text{co } U)$. Then the completion of X with respect to $||\cdot||$ is denoted by \hat{X} and is called the containing Banach space of X.

One result we shall need later is the following lemma due to N. T. Peck [12].

LEMMA 2.1. Suppose X is a real n-dimensional p-Banach space; then $||x|| \le n^{1/p-1} ||x||$ for $x \in X$.

The containing Banach space of H_p was determined by Duren, Romberg and Shields [3]. Let λ be normalized planar measure on the open unit disc Δ in the complex plane and for $0 define <math>B_{p,q}$ to be the space of analytic functions $f: \Delta \to C$ such that $||f||_{p,q}^q = \int_{\Delta} |f(z)|^q (1-|z|)^{q/p-2} d\lambda(z) < \infty$. Then $(B_{p,q}||\cdot||_{p,q})$ is a q-Banach space.

The following inclusion results are due to Hardy and Littlewood [5] and Shapiro [14]. Theorem 2.3 is due to Duren, Romberg and Shields [3].

THEOREM 2.2. If $0 then <math>H_p \subset B_{p,q} \subset B_{p,r}$ and the inclusion maps are continuous.

THEOREM 2.3. $B_{p,1}$ is the containing Banach space of H_p .

Here the identification is not an isometry (i.e. the norm of $B_{p,1}$ is not the containing Banach space norm for H_p).

THEOREM 2.4. $B_{p,1}$ is isomorphic to l_1 .

This result is due to Lindenstrauss and Pelczynski [10]. Following this Kwapien and Pelczynski [9] note a result of Shapiro that any complemented subspace of H_p which is locally convex must be isomorphic to l_1 , and conjecture that there is no such complemented subspace. This will be a deduction from our first results in the next section.

3. Subspaces of H_p with HBEP. In order to prove our main result it will be necessary to show that $B_{p,q}$ is isomorphic to a subspace of l_q for p < q < 1. We first give a simple proof of this fact and then show how recent deeper results of Coifmann and Rochberg [1] show that $B_{p,q} \cong l_q$. The proof of this proposition is similar to Theorem 6.2 of [10].

PROPOSITION 3.1. Suppose (Ω, Σ, μ) is a probability measure space and 0 .Let <math>X be a closed subspace of $L_p(\Omega, \Sigma, \mu)$ with the property that given $\epsilon > 0$ there exists $B \in \Omega$ with $\mu(\Omega \setminus B) < \epsilon$ and such that the set of functions $\{f \cdot 1_B; \|f\|_p \leq 1, f \in X\}$ is a relatively compact subset of $L_1(\Omega, \Sigma, \mu)$. Then X is isomorphic to a subspace of l_p .

REMARK. Here 1_B is the indicator function of $B \in \Sigma$.

Proof. Partition Ω into countably many disjoint sets Ω_n such that if $K_n = \{f \cdot 1_{\Omega_n}; f \in X, \|f\|_p \le 1\}$ then K_n is relatively compact. Fix ϵ , $0 < \epsilon < 1$ and choose $\epsilon_n > 0$ so that $\sum_{n=1}^{\infty} \epsilon_n^p < (\epsilon/4)^p$. For each n choose $g_{1,n}, \ldots, g_{m(n),n} \in X$ with $\|g_{i,n}\| \le 1$ and such that if $f \in X$ with $\|f\|_p \le 1$ then for some i, $1 \le i \le m(n)$, $\int_{\Omega_n} |g_{i,n} - f| d\mu \le \epsilon_n$. Then choose simple functions $h_{i,n}$ supported on Ω_n so that

 $\int_{\Omega_n} |g_{i,n} - h_{i,n}| d\mu \le \epsilon_n$. There is a sub- σ -algebra Σ_0 of Σ generated by countably many atoms such that each $(h_{i,n}: 1 \le i \le m(n), 1 \le n < \infty)$ is Σ_0 -measurable. Let E be the natural projection of $L_1(\Omega, \Sigma, \mu)$ onto $L_1(\Omega, \Sigma_0, \mu)$ i.e.

$$Ef = \sum_{n=1}^{\infty} \frac{1}{\mu(A_n)} \left(\int_{A_n} f \, d\mu \right) 1_{A_n}$$

where $(A_n)_{n=1}^{\infty}$ are the atoms of Σ_0 . Then for $f \in X$ with $||f|| \le 1$, and $n \in \mathbb{N}$, choose $h_{i,n}$ with $\int_{\Omega_n} |f - h_{i,n}| d\mu \le 2\epsilon_n$ so $\int_{\Omega_n} |Ef - h_{i,n}| d\mu \le 2\epsilon_n$ i.e. $\int_{\Omega_n} |f - Ef| d\mu \le 4\epsilon_n$. Hence $\int_{\Omega_n} |f - Ef|^p d\mu \le (4\epsilon_n)^p$ and so if we define $T: X \to L_p(\Omega, \Sigma_0, \mu)$ by $Tf = \sum_{n=1}^{\infty} E(f \cdot 1_{\Omega_n})$, then $||Tf - f||^p \le \sum_{n=1}^{\infty} (4\epsilon_n)^p < \epsilon^p$ and T is an isomorphic embedding. As $L_p(\Omega, \Sigma_0, \mu) \cong I_p$, the result is proved.

COROLLARY 3.2. For p < q < 1, $B_{p,q}$ is isomorphic to a subspace of l_q .

Proof. If $\Delta_r = \{z : |z| \le r\}$, then the set $(f \cdot 1_{\Delta_r}; ||f||_{p,q} \le 1)$ is compact in $C(\Delta_r)$ (it is a normal family) and thus also in $L_1(\Delta_r, \lambda)$.

Now we sketch the deeper result obtainable from the work of Coifman and Rochberg [1].

THEOREM 3.3. $B_{p,q} \cong l_q$.

Proof. Coifman and Rochberg show the existence of bounded linear operators $T: l_q \to B_{p,q}; \ V: B_{p,q} \to l_q$ so that $||TVf - f|| < \epsilon ||f||$ where $\epsilon < 1$. Thus TV is an automorphism of $B_{p,q}$ and if $T_1 = (TV)^{-1}T$ then $T_1V = I$ on $B_{p,q}$. Thus $B_{p,q}$ is isomorphic to a complemented subspace of l_q , and a theorem of Stiles [15] gives the result.

THEOREM 3.4. Let X be a closed infinite dimensional subspace of H_p with HBEP. Then X cannot be q-convex for any q > p.

REMARK. By definition X is q-convex if it can be equivalently quasi-normed to be a q-Banach space.

Proof. Suppose X is q-convex where q > p and choose r so that p < r < q. We consider the inclusion map $J: X \to B_{p,r}$. By the preceding results $B_{p,r}$ is isomorphic at least to a subspace of l_r , but X is q-convex where q > r. Thus J is compact (see [15] and [16]). Hence the inclusion map $J: X \to B_{p,1}$ is compact (use Theorem 2.2). Clearly this means the induced map $J: \hat{X} \to B_{p,1}$ is compact and so the adjoint $J^*: B_{p,1}^* \to X^*$ is compact. However J^* is a surjection since X has HBEP in H_p , and $B_{p,1}$ is the containing Banach space of H_p . Thus dim $X^* < \infty$ and we have a contradiction.

COROLLARY 3.5. If $0 , <math>H_p$ has no complemented locally convex subspace (or even a locally convex subspace with HBEP).

The proof of our next corollary would take us too far afield. We merely note that it is possible to prove that a closed subspace of L_p which is not q-convex for any q > p contains a copy of l_p . (A proof can be obtained from [8] and certain ultraproduct arguments.)

COROLLARY 3.6. If X is a complemented subspace of H_p , $(0 then X contains a copy of <math>l_p$.

PROBLEM. Does every complemented subspace of H_p contain a complemented copy of l_p for 0 ?

4. HBEP and complementation for translation-invariant subspaces. Let

$$\mathbf{Z}_{+} = \{n : n \geq 0\} \subset \mathbf{Z}.$$

If $M \subset \mathbb{Z}_+$ we denote by $H_p(M)$ the closed linear span of $(e_m : m \in M)$ where $e_m(z) = z^m$. Note that $H_p(M) = \{ f \in H_p : \hat{f}(n) = 0 \text{ for } n \notin M \}$ where $f(z) = \sum_{n=0}^{\infty} \hat{f}(n)z^n$ is the Taylor series expansion of f.

We shall require first a lemma which has some independent interest.

LEMMA 4.1. Suppose X is a p-Banach space and Y is a closed subspace of codimension n. Suppose ϕ is a continuous linear functional on Y. Then

- (i) If X is real, ϕ has a linear extension ψ with $\|\psi\| \leq (n+1)^{1/p-1} \|\phi\|$.
- (ii) If X is complex, ϕ has a linear extension ψ with $\|\psi\| \leq (2n+1)^{1/p-1} \|\phi\|$.
- *Proof.* (i) Let N be the kernel of ϕ . Thus dim X/N=n+1. ϕ then factors to a linear functional ϕ_1 on Y/N with $\|\phi_1\| = \|\phi\|$. Since dim Y/N=1 we can choose $\xi \in Y/N$ with $\|\xi\| = 1$ and $|\phi_1(\xi)| = \|\phi\|$. There is by the Hahn-Banach theorem an extension ψ_1 of ϕ_1 to X/N with $\|\psi\| = \|\phi\|/\|\xi\|$ where $\|\cdot\|$ is the containing Banach space norm in X/N. Thus by Peck's lemma 2.1, $\|\psi_1\| \le (n+1)^{1/p-1} \|\phi\|$ and the result follows by inducing ψ on X.
- (ii) Let $X_{\mathbf{R}}$ be the associated real space of X. Applying (i) to the linear functional Re ϕ we can produce a real-linear functional θ on $X_{\mathbf{R}}$ with

$$\theta(y) = \operatorname{Re} \phi(y) \quad y \in Y$$

$$\|\theta\| \le (2n+1)^{1/p-1} \|\phi\|.$$

Define $\psi(\chi) = \theta(\chi) - i\theta(i\chi)$, and proceed as in the complex Hahn-Banach theorem.

The next theorem answers a question of J. H. Shapiro. It shows for example that $H_p(M)$ fails HBEP if $M = \{m^2 : m \in \mathbb{N}\}$.

THEOREM 4.2. Suppose $M = \{m_n : n = 1, 2...\}$ whose $m_1 < m_2 < m_3...$ Then if $H_p(M)$ has the Hahn-Banach Extension Property there exists $c < \infty$ such that $m_n \le cn$.

Proof. We first observe that if $\phi_n: H_p \to \mathbb{C}$ is given by $\phi_n(f) = \hat{f}(n)$, then $\|\phi_n\| \ge \alpha n^{1/p-1}$ for some $\alpha > 0$. This follows from the Corollary to Theorem 6.5 of Duren [4] p. 100.

Now fix n and consider the linear functional $\psi_n: H_p\{m_n, m_{n+1}, \dots\} \to \mathbb{C}$ given by $\psi_n(f) = \hat{f}(m_n)$. Then $\|\psi_n\| = 1$. By the preceding result, ψ_n has an extension ψ'_n to $H^p(M)$ with $\|\psi'_n\| \le (2n-1)^{1/p-1}$.

Since $H_p(M)$ has HBEP there is a constant k independent of n such that ψ'_n has an extension ψ''_n to H_p with $\|\psi''_n\| \le k \|\psi'_n\| \le k (2n-1)^{1/p-1}$. Now define

$$\theta_n(f) = \int_{\mathbb{T}} w^{-m_n} \psi_n''(f_w) \ dm(w)$$

where $f_w(z) = f(wz)$. Then $\theta_n = \phi_{m_n}$ and $\|\phi_{m_n}\| = \|\theta_n\| \le k(2n-1)^{1/p-1}$. Thus $\alpha m_n^{1/p-1} \le k(2n-1)^{1/p-1}$ and the theorem follows.

Let us say that a sequence $(a_n: n=0,1,2...)$ or a double sequence $(a_n: n \in \mathbb{Z})$ is *periodic* with period q if $a_{n+q}=a_n$ for all n. We shall say that (a_n) is nearly periodic if it differs from a periodic sequence only in a finite set of indices. For a sequence (a_n) this is equivalent to the existence of N, q such that $a_{n+q}=a_n$ for all $n \ge N$. We shall say that a subset M of \mathbb{Z}_+ or \mathbb{Z} is a periodic or nearly periodic subset of \mathbb{Z}_+ or \mathbb{Z} according as its indicator function

$$1_M(n) = 1 \quad n \in M$$
$$= 0 \quad n \notin M$$

is periodic or nearly periodic as a sequence.

If μ is a regular Borel measure on **T** then its Fourier transform $\hat{\mu}: \mathbb{Z} \to \mathbb{C}$ is given by

$$\hat{\mu}(n) = \int_{\mathbf{T}} w^n d\mu(w^{-1}) \quad n \in \mathbf{Z}.$$

 μ is idempotent with respect to the convolution algebra M(T) if and only if $\hat{\mu} = 1_M$ for some subset M of \mathbb{Z} . In [6] Helson showed that 1_M is the Fourier transform of some measure μ if and only if M is nearly periodic; 1_M is the transform of a measure μ of the form $\mu = \sum_{j=1}^{\infty} c_j \delta(w_j)$ (where $\delta(w_j)$ is the point mass at $w_j \in T$ and $\sum |c_j| < \infty$) if and only if M is periodic (i.e. a finite union of arithmetic progressions).

For $0 , denote by <math>L_p(M)$ the closed linear span of $\{e_n : n \in M\}$ in $L_p = L_p(T, m)$; if $M \subset \mathbb{Z}_+$ we use the alternative notation $H_p(M)$. If $0 we shall say <math>L_p(M)$ is full if $z^n \in L_p(M)$ implies $n \in M$; for $1 \le p < \infty$ every $L_p(M)$ is full.

In [13] Rudin showed that Helson's results imply that $L_1(M)$ is complemented in L_1 if and only if M is a nearly periodic subset of \mathbb{Z} . Unfortunately Rudin's argument depends on an averaging technique which fails for p < 1. However there is a substitute for complementation by a translation-invariant projection P. $P: L_p \to L_p$ or $P: H_p \to H_p$ is said to be translation-invariant if $(Pf)_w = Pf_w$, $w \in \mathbb{T}$.

THEOREM 4.3. Suppose 0 and that <math>M is an infinite subset of \mathbb{Z} . Then $L_p(M)$ is full and complemented in L_p by a translation-invariant projection if and only if M is a periodic subset of \mathbb{Z} .

Proof. A theorem of Oberlin [11] asserts that any translation-invariant operator $P: L_p \to L_p$ takes the form $Pf = \mu * f$, $f \in L_p$ where μ is a measure of finite p-variation, i.e. $\mu = \sum_{i=1}^{\infty} c_i \delta(w_i)$ where $\sum |c_i|^p < \infty$.

If p is a projection, μ is an idempotent and hence by Helson's results $\hat{\mu} = 1_M$ is periodic, i.e. M is periodic.

For the converse note that M is an arithmetic progression i.e. $M = (an + b : n \in \mathbb{N})$; then a projection P_M onto $L_p(M)$ is given by $P_M f = a^{-1} \sum_{j=1}^a \omega^{-jb} f(\omega^j z)$, where ω is a primitive ath root of unity. It is then easily seen that if M is a periodic set it is a finite disjoint union of arithmetic progressions with the same common difference; a projection can then be built up in the obvious way.

We now turn to the problem of the existence of translation-invariant projections on subspace of H_p of the form $H_p(M)$. We shall need the following preliminary lemma.

LEMMA 4.4. Let Γ be the Cantor set $\{0,1\}^{\mathbb{Z}_+}$. Suppose $a \in \Gamma$ and let C be the closure of $(a^{(n)}: n \in \mathbb{Z}_+) \subset \Gamma$ where $a_k^{(n)} = a_{n+k}$ for $k \in \mathbb{Z}_+$. Suppose every accumulation point of C is periodic. Then a is nearly periodic.

Proof. Let C' be the derived set of C (i.e. the set of accumulation points). Then C' is closed in Γ and so is each of the sets $C'_q = \{b \in C'; b \text{ is periodic with period } q\}$. By the Baire Category Theorem there exists $q, b \in C'$ and $m \in \mathbb{N}$ such that if $b' \in C'$ and $b'_i = b_i$, $0 \le i \le m-1$, then b' has period q. We may clearly suppose m is a multiple of q and then that m = q.

Choose $u(n) \to \infty$ so that $a_{u(n)+i} = b_i$, $0 \le i \le q-1$ (possible since $b \in C'$).

If a is not nearly periodic there is for each n a largest r(n) so that $a_{u(n)+i}=b_i$, $0 \le i \le qr(n)-1$. Clearly $r(n) \to \infty$. By passing to a subsequence we may suppose $r(n) \ge 1$ for all n and $\lim_{n\to\infty} a_{u(n)+qr(n)-q+i}=d_i$ exists for $i \in \mathcal{I}_+$. Now $d_i=b_i$ for $0 \le i \le q-1$ and so $d \in C_q'$. Hence for large enough n, $a_{u(n)+qr(n)-q+i}=d_i$, $0 \le i \le 2q-1$ and so $a_{u(n)+i}=b_i$, $0 \le i \le qr(n)+q-1$, contradicting the choice of r(n).

THEOREM 4.5. Suppose 0 and that <math>M is an infinite subset of \mathbb{Z}_+ . Then there is a translation-invariant projection of H_p onto $H_p(M)$ if and only if M is a nearly periodic subset of \mathbb{Z}_+ .

Proof. As in the proof of Theorem 4.3 we see that if $M \subset \mathbb{Z}_+$ is periodic then there is a translation-invariant projection onto $H_p(M)$; the same is clearly true if M is finite. As any two translation-invariant projections commute it quickly follows that $H_p(M)$ is complemented in H_p by a translation-invariant projection if M is nearly periodic.

Conversely suppose $H_p(M)$ is complemented by the projection $P_M: H_p \to H_p(M)$ given by $P_M(e_n) = a_n e_n$, $n \in \mathbb{Z}_+$ where $a_n = 1_M(n)$. It is clear that this is the form of a translation-invariant projection.

We apply Lemma 4.4 to the point $a = (a_n) \in \Gamma$. Let b be an accumulation point of the set C so that for some $m(n) \to \infty$, $\lim_{n \to \infty} a_{m(n)+i} = b_i$, $i \in \mathbb{Z}_+$. By passing to a subsequence we may suppose that these limits exist for $i \in \mathbb{Z}$, when of course the sequences are defined only eventually. For $\gamma_j \in \mathbb{C}$, $-N \le j \le N$,

$$\int_{\mathbf{T}} \left| \sum_{j=-N}^{N} \gamma_{j} b_{j} z^{j} \right|^{p} dm(z) = \lim_{n \to \infty} \int_{\mathbf{T}} \left| \sum_{j=-N}^{N} \gamma_{j} a_{m(n)+j} z^{j} \right|^{p} dm(z)$$

$$= \lim_{n \to \infty} \int_{\mathbf{T}} \left| \sum_{j=m(n)-N}^{m(n)+N} \gamma_{j-m(n)} a_{j} z^{j} \right|^{p} dm(z)$$

$$\leq \|P_{M}\|^{p} \int_{\mathbf{T}} \left| \sum_{j=-N}^{N} \gamma_{j} z^{j} \right|^{p} dm(z).$$

Hence there is a bounded linear operator $Q: L_p \to L_p$ so that $Q(e_n) = b_n e_n$ $(n \in \mathbb{Z})$. Q is a translation-invariant projection and so by Theorem 4.3, b is periodic. Now by Lemma 4.4, a is nearly periodic, and the result is proved.

5. Locally convex subspaces of H_p . The main theorem of this section (Theorem 5.2) represents an attempt to use the topology of uniform convergence on compact subsets (τ) . As noted in [14], any bounded subset B of H_p is relatively τ -compact.

Recall that a Banach space X has the Radon-Nikodym Property (RNP) if and only if for each continuous linear operator $T: L_1(0,1) \to X$ there is a $g \in L_{\infty}((0,1),X)$ so that $T(f) = \int_0^1 f(s)g(s) \, ds$ holds for each $f \in L_1(0,1)$. In Banach space theory, a weaker topology on X in which norm-bounded sets are relatively compact plays a large role in determining that X has RNP (see Chapter III of [2]). Thus we conjecture that each locally convex subspace X of H_p has RNP. Theorem 5.2 represents a partial answer. (In an earlier proof of 5.2 we made more use of the properties of τ . Note that $g_n(s) \to g(s)$ in τ .) We first note

THEOREM 5.1. L_1 does not embed into H_p when 0 .

Proof. The argument given in [7] can easily be modified to show that L_1 does not embed into any separable quasi-Banach space admitting a Hausdorff vector topology in which the unit ball is compact (e.g. H_p).

THEOREM 5.2. Suppose X is a locally convex subspace of H_p which is weakly closed. Then X has the Radon-Nikodym Property.

Proof. Let $T: L_1(0,1) \to X$ be a bounded linear operator. Note that $H_p \hookrightarrow B_{p,1}$ and $B_{p,1} \cong l_1$ has the Radon-Nikodym Property. Hence T takes the form $Tf = \int_0^1 f(s)g(s) ds$ where $g: (0,1) \to B_{p,1}$ is an essentially bounded measurable map.

If for $0 \le k < 2^n$, $\chi_{n,k}$ is the indicator function of the interval $(k \cdot 2^{-n}, (k+1) \cdot 2^{-n})$ then we define

$$g_n(s) = 2^n T \chi_{n,k} \quad k \cdot 2^{-n} \le s < (k+1) \cdot 2^{-n}.$$

Then in $B_{p,1}$, $g_n(s) \to g(s)$ a.e. However, in H_p , $||g_n(s)|| \le ||T||$ for all n, s. Let $A = \{s: g_n(s) \to g(s) \text{ in } B_{p,1}\}$. For $s \in A$, $g_n(s; rw) \to g(s; rw)$, $0 \le r < 1$, $w \in T$, and so

$$\int_{\mathbb{T}} |g(s;rw)|^p dm(w) \leq \limsup_{n \to \infty} \int_{\mathbb{T}} |g_n(s;rw)|^p dm(w) \leq ||T||^p.$$

Hence for $s \in A$, $g(s) \in H_p$. However $g_n(s) \to g(s)$ weakly in H_p for $s \in A$ and so $g(s) \in X$.

Since $s \mapsto x^*(g(s))$ is measurable for $x^* \in H_p^*$, $s \mapsto x^*(g(s))$ is measurable for all $x^* \in X^*$ (X is separable) and by the Pettis measurability theorem, $g: A \to X$ is measurable. Clearly g can be extended arbitrarily to (0,1) to be essentially bounded in X and then $Tf = \int_0^1 f(s)g(s) \, ds$ in X. Thus X has the Radon-Nikodym Property.

COROLLARY 5.3. A locally convex translation-invariant subspace of H_p has the Radon-Nikodym Property.

Proof. If X is translation-invariant and locally convex, let $M = \{m : e_m \in X\}$. Thus $H_p(M) \subset X$. If $H_p(M) \neq X$ there exists $\phi \in X^*$ with $\phi(e_m) = 0$, $m \in M$ and $\phi(f) \neq 0$ for some $f \in X$. Now for some $m \in \mathbb{Z}$, $\int_T w^{-m} \phi(f_w) dm(w) \neq 0$. Since X is locally convex, $\int_T w^{-m} f_w dm(w) = \hat{f}(m) e_m$, and so $m \in M$ and $\phi(e_m) \neq 0$.

Thus $H_p(M) = X$ and hence X is weakly closed.

REFERENCES

- 1. R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in L_p , to appear.
- 2. J. Diestel and J. J. Uhl, Vector measures, Amer. Math. Soc., Providence, R.I., 1977.
- 3. P. L. Duren, B. W. Romberg and A. L. Shields, *Linear functionals on H_p spaces with* 0 . J. Reine Angew. Math. 238 (1969), 32-60.
- 4. P. L. Duren, *Theorem of H_p-spaces*, Academic Press, New York, 1970.
- 5. G. H. Hardy and J. E. Littlewood, *Some properties of fractional integrals*, II. Math. Z. 34 (1932), 403-439.
- 6. H. Helson, Note on harmonic functions. Proc. Amer. Math. Soc. 4 (1953), 686-691.
- 7. N. J. Kalton, A note on the spaces L_p for 0 . Proc. Amer. Math. Soc. 56 (1976), 199-202.
- 8. ——, The convexity type of a quasi-Banach space, unpublished manuscript, 1977.
- 9. S. Kwapien and A. Pelczynski, Some linear topological properties of the Hardy space H_p . Compositio Math. 33 (1976), 261-288.
- 10. J. Lindenstrauss and A. Pelczynski, Contributions to the theory of the classical Banach spaces. J. Funct. Anal. 8 (1971), 225-249.
- 11. D. M. Oberlin, Translation-invariant operators on $L_p(G)$, 0 . Michigan Math. J. 23 (1976), 119–122.
- 12. N. T. Peck, Banach-Mazur distances and projections on p-convex spaces. Math. Z. 177 (1981), 131-142.
- 13. W. Rudin, *Projections on invariant subspaces*. Proc. Amer. Math. Soc. 13 (1962), 429-432.
- 14. J. H. Shapiro, Mackey topologies, reproducting kernels and diagonal maps on the Hardy and Bergman spaces. Duke Math J. 43 (1976), 187-202.
- 15. W. J. Stiles, Some properties of l_p , 0 . Studia Math. 42 (1972), 109–119.
- 16. P. Turpin, Convexités dans les espaces vectoriels topologiques généraux. Diss. Math. 131 (1976).

Department of Mathematics University of Missouri Columbia, Missouri 65211