LOWER BOUNDS FOR THE EIGENVALUES
OF RIEMANNIAN MANIFOLDS

Harold Donnelly and Peter Li

1. Introduction. Let M be a compact Riemannian manifold with boundary oM.
Denote A to be the Laplacian of M for functions.

Under the assumption that M was negatively curved [6], we gave lower bounds for
the eigenvalues of Ay, subject to Dirichlet boundary conditions when oM #¢. A
main device employed was to obtain an upper bound for the trace of the heat kernel
of M.

The present paper extends the work of [6] in several directions. First of all, we
improve and simplify the elementary lemmas showing that an upper bound on the
heat kernel gives lower bounds for the eigenvalues. The restriction of negative curva-
ture is removed, giving lower bounds for the eigenvalues of A, on arbitrary M,
assuming Dirichlet boundary conditions if M # ¢.

In Section 4, we consider Laplacians A acting on Riemannian vector bundles
V— M. Upper bounds are obtained for the associated heat kernels. This implies
upper bounds for the number of non-positive eigenvalues and also lower bounds for
the positive eigenvalues of A. Interesting special cases include the Laplacian on
Differential Forms and the Second Variation Operator of Minimal Submanifold
Theory. In particular, if M is minimally imbedded, upper bounds are given for the
nullity and index of M. One also obtains upper bounds for the betti numbers of M.

2. Heat kernels and eigenvalues. Let M be a compact Riemannian manifold with
boundary dM. A Riemannian vector bundle V¥— M is a smooth vector bundle with
metric and connection V preserving that metric. The Bochner Laplacian of V is an
invariantly defined second order differential operator D:T'(V) = I'( V), obtained by
D=Tr(v-V). Here I'(V) denotes the smooth sections of V. More explicitly, D is
given by the composition:

I'(V) > T(VRT*M) > T(VRT*M® T*M) — I'(V)

where the last map is a contraction.

Suppose that £ is a selfadjoint endomorphism of V and set A=—D+E. If oM is
empty, then A defines a unique selfadjoint operator in L2V. Otherwise, one must
impose suitable boundary conditions. It is most typical to use either Dirichlet,
w(p) =0 for p€dM, or Neumann V,w(p) =0 for p € dM, boundary conditions.
Here weTI'(V) and » denotes a unit normal vector field along dM.

Since M is compact, the operator A has a finite number of non-positive
eigenvalues p; < py € ... < 0 and an infinite collection of positive eigenvalues
O0<A <A;<.... The A, satisfy the asymptotic estimate of Minakshisundaram-
Pleijel [11]:

Received September 25, 1980.
Michigan Math. J. 29 (1982).

149



150 HAROLD DONNELLY AND PETER LI

2.1) M ~ e, vol M dim Vk/"

as kK — oo, Here vol M is the volume of M, dim V is the dimension of ¥V, and ¢, is a
universal constant depending only on the dimension » of M.
The heat equation problem for A is:

J
<—5;—+A)w(x,t):0 XEM, t>0

w(x, 0) = wy(x)

with suitable boundary conditions on w at dM. There is a good fundamental solution
K(t,x,y) €End(V,, V,) so that w(x,t) = [ K(t,x,y)we(y) dy.

Let ¢; be the normalized eigenfunctions corresponding to the u; and y; the
normalized eigenfunctions corresponding to the A;. Then one has

{ )
K(t,x,y) = X e™"igi(x)$(») + L e~ Ny (xX) ().
= J=
Consequently,

(2.2) TrK(t) = Le i+ Y e ™.
! J

The formula (2.2) provides a most useful device for studying the eigenvalues of A.
We show in this section how upper bounds for Tr K(¢) give lower bounds for the ;.
The remaining sections are devoted to obtaining upper bounds for Tr K(¢) in some
interesting geometric situations. These bounds for Tr K(¢) will be of the form

(2.3) TrK(t) < e (Cyt "2+ Cyt)

with C;>0; C,,C; 20 and the inequality holding for all £>0. Even though the
right-hand side of (2.3) need not decay properly as ¢t — o, the inequality (2.3) still
gives interesting information about the eigenvalues of A.

Clearly one has

LEMMA 2.4. If K(t) satisfies (2.3), then the number | of non-positive eigenvalues
for A is bounded above by 1< e®3(C,+C5).

Proof. Using (2.2), we see that for any t >0, /< TrK(¢). Now set r=1.
A similar argument yields

LEMMA 2.5. Suppose that (2.3) is satisfied. Then the k’th positive eigenvalue N\, is
bounded below by N\, 2log k—log(C, + C,) — C;.

Proof. For any t> 0, ke ™M!< Tr K(¢). Now substitute ¢=1.

The lower bound of Lemma 2.5 is deficient in two respects. Since the right-hand
side may be less than zero for small &, the inequality is trivial until k is sufficiently
large. Secondly, the quantity log k grows too slowly as k increases. A good lower
bound should be compatible with the asymptotic formula (2.1) of Minakshi-
sundaram-Pleijel when kK — .
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Proceeding more carefully, one obtains a lower bound with the correct asymptotic
growth as k— co:

LEMMA 2.6. Suppose that \,, 2 C4> 0, for some m> 0. If (2.3) is satisfied, then
one has for k2 m, A, = Csk*", where Cs depends only on C,;, C,, C;, C,, and n.

Proof. 1t follows from (2.3) that for all > O:
ke ™! < TrK(t) < eS3H(Cyt~"2 4 Cyt).
Set t=A/N,, where A is a constant to be chosen later:
ke < eACM(CNI2A2 + CLAIN) .

Since Ay = \,,> 0, ke ™ < eAGMm(CNF2A2 4+ CLA/N,,).

Using \,, = C;> 0, ke 4 < eAG/C4(C\N}2A~"2 4+ C,A/Cy).

Choose A > 0 sufficiently small to satisfy (1/2)e~4 > e4C3/Ca(CLA/Cy).

Since k/2 > 1/2, we may combine the last two inequalities, yielding (k/2)e 4 <
e4C3/Ca(CyNF*A~?) from which Lemma 2.6 follows immediately.

If C,=C;=01in (2.3), then a stronger conclusion holds:

LEMMA 2.7. If Tr K(t) < Cit ™2 then N\, 2 CT2"k¥™" for all k> 0.

Proof. As above, ke " M!'< TrK(t) < Ct~"?, for all t. Now set 1=1/\.
Lemma 2.7 was given in the authors’ earlier paper [6]. However, the proof pre-
sented there is unnecessarily complicated.

3. Laplacian for functions. Let D be a relatively compact domain in a complete
Riemannian manifold X. Of course, any compact Riemannian manifold with
boundary can be realized as a domain in some complete X. We will derive an upper
bound for the heat kernel of » with Dirichlet boundary conditions.

Denote K (¢, x, y) to be the heat kernel for the sphere S$” with constant curvature
o. Here n is the dimension of X. Since S” is a two point homogeneous space and K,
is invariant under isometries, one has K (¢, x,y) =K, (¢, r(x,y)), where r is the
geodesic distance from x to y.

The following lemma is standard [3]:

LEMMA 3.1. For each fixed t>0, K (t,r) is a decreasing function of its argu-
ment r.

Let Ig be a finite positive number so that, for each p € D, the exponential map
exp B(p, Iy)) = X is a diffeomorphism. Here B(p, Iy,) is the ball of radius Iy, in the
tangent space to X dt p. Denote D’'=U,ecp expB(p,Ip). Then D’ is a relatively
compact open set containing 9.

Choose ¢ to be an upper bound for the sectional curvature of X at points in D’.
Without loss of generality, we may assume that ¢> 0. For sharper estimates on nega-
tively curved manifolds, the reader may refer to [6]. Set /=min([g,27/Vo).

If p: R—>Ris a smooth function, we may require p to satisfy: p(a) =1 for |a| <
172, p(a) =0 for || =1, and p is a decreasing function of |a|. Define a cut-off
function p: XX X —> R by p(x, y) =p(r(x, y)/1).
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We will compare the heat kernel K of O, for Dirichlet boundary conditions, with a
transplanted kernel L(¢,x,y) =K, (t,r(x,y))p(x,y)+tB. Here B>0 is as yet an
undetermined constant. The basic technical lemma required is:

LEMMA 3.2. If A denotes the Laplacian of X acting on functions, then

d
—+ A, |L 2
(ar + X) (t,x,J’) 0

Jor B sufficiently large. The choice of B depends only on o, I, and the dimension n
of X.

Proof. Fix y€ X and let 6(x,y) be the volume element in spherical coordinates
centered at y. Denote 0, to be the analogous volume element on the sphere of con-
stant sectional curvature ¢. Since S” is two point homogeneous, 6, is a function of
the geodesic distance alone. This allows one to transplant 6, to a function on a
neighborhood of the diagonal in X X X, 8,(x,y)=0,(r(x,»)), for (x,») near the
diagonal.

Using the standard formula for the Laplacian applied to a function of the geodesic
distance [6, p. 32]:

9 0. 0\ 0K, _ 3K, dp
2 - _ ) K,Ap+B.
<6t +A>L(”x’y) "( 0, 9> ar or ar " lefP¥

Here the prime denotes a radial derivative.
Since the sectional curvatures in ' are bounded above by ¢, a basic comparison
theorem [2, p. 253] gives 8'/0—46,/0, 2 0. Using Lemma 3.1, we see that:

K
(—a——+A>L > 29K 9 |k pp+B.

ot ar or
__n2 v
Now Ap = aazp — % 3,0 . Since dp/dr < 0, we may apply the basic comparison
r r

theorem again to write:

9 0K, dp p 6. dp
—+4A)L 2 —2—2 -K -2 K, +B.
(at M ) or ar " ar* 0, or

)+

The quantity max(K,, |dK,/dr|) is bounded above if r> g/2 since one stays uni-
formly away from the diagonal. Choosing B sufficiently large, we obtain

(5r+a)L >0

Since dp/dr, 3%p/dr? are supported in {1/2,1]:

K,

(—a—+A)L 2 B, sup max(Ka, o

Jt I2<r<I
>0

at

It is now easy to deduce:
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THEOREM 3.3. Let D be a relatively compact domain in a complete Riemannian
manifold X. The heat kernel K(t,x,y) of » with Dirichlet boundary conditions
satisfies K(t, x,y) < C;t 2+ C,t where C,, C, depend only on I, o, and n.

In particular, if =X is a compact manifold without boundary then C,, C,
depend only on a lower bound for the injectivity radius of X, an upper bound for the
sectional curvature of X, and n.

Proof. One employs Lemma 3.2 and Duhamel’s principle to write:

d
Litxy) =Ktxy) = | 2| Lis.x2K(=s5,2,) dzds

oL
= YS —— (5, x,2)K(t—s,2,y)dzds
0'n ds

+ [ Lis,x, 008K (1 =5,2,y) dzds.
0D

Since Dirichlet boundary conditions are imposed for K, integration by parts gives

Lx) -Kexn > [ ] (6—1+A>L(S,x,z)1<(t—s,z,y) dz ds.

From Lemma 3.2: K(¢,x,y) < L(¢,x,y) which proves Theorem 3.3. O

The trace of the heat kernel K, on L2D, is given by Tr K(¢) = |5 K(¢,x,x).
So

(3.4) TrK(t) < (Cyt ™2+ Cyt) vol(D)

where vol(D) is the volume of D and C,, C, are from Theorem 3.3.
Consequently, from (3.4) and Lemmas 2.5, 2.6, one has

COROLLARY 3.5. Let 0 <A; < \,... denote the positive eigenvalues of A acting on
L2D with Dirichlet boundary conditions. Then for some m> 0 and all k 2m, A\, >
C; k%" where n'is the dimension of D. Here m, Cy depend upon n, I, g, and an upper
bound for the volume of D.

In particular, if =X is compact without boundary, the m, Cy depend upon
upper bounds for the sectional curvature and volume of X, a lower bound for the
injectivity radius of X, and n.

In the case that the sectional curvatures of X are non-positive, Theorem 3.3 was
obtained in the authors’ earlier paper [6]. The proof was by comparison with the
Euclidean heat kernel, using an argument similar to the one employed above. For
negative sectional curvatures, a better upper bound is found by comparison with the
heat kernel of a suitable hyperbolic space [6].

The second author and S. Y. Cheng {4] used a quite different approach to find an
upper bound for K(¢,x,y):

THEOREM 3.6 (Cheng-Li). Let K(t,x,y) denote the heat kernel of a compact
Riemannian manifold with boundary. If oM # ¢ and one imposes Dirichlet boundary
conditions, then K(t,x,x) < Cqt "2
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When dM = ¢ or for Neumann boundary conditions,
K(t,x,x) < (VvOIM) ™'+ Cst =72,
Here C,, Cs depend on certain Sobolev constants for M.

If M = ¢, then C. Croke [5] estimated the relevant Sobolev constant in terms of an
upper bound for the diameter and lower bounds for the Ricci curvature and volume
of M. Thus one obtains an upper bound for the heat kernel using these quantities.

The eigenvalue estimates following from Theorem 3.6 are detailed in [4]. Cheng
and Li employ the observation which appears as Lemma 2.7 in the present paper.

4. Semigroup domination. We return to the setting of Section 2. Let M be a
compact Riemannian manifold with boundary and ¥ a Riemannian vector bundle
over M. For a given endomorphism E, set A= —D+E, where D is the Bochner
Laplacian. Suppose that —b is a lower bound for E in the sense that (Ev,v) >
—b{v,v), where b is a real number and v € V.

One may study A with either Dirichlet or Neumann boundary conditions. A sec-
tion w of V is said to satisfy Dirichlet boundary conditions if w(p) =0 for p € oM,
and w is said to satisfy Neumann boundary conditions if V,w(p) =0 for p € dM.
Here » is a unit normal vector along dM. Denote K, K,, to be the heat kernels asso-
ciated to A with Dirichlet, Neumann boundary conditions. Of course,

Kd(t,X,J’),Kn(t,x,y) € End(Vya Vx)a

for each fixed 7. In the special case where V is the trivial line bundle and E=0, A is
the standard Laplacian acting on functions. Let K o, K,, o be the heat kernels asso-
ciated to the Laplacian for functions.

Set |K,|, |K4| to be the pointwise norm of the endomorphisms K,,, K;. A basic
technical lemma is:

LEMMA 4.1. Suppose that E = 0. Considered as distributions, one has both

i) (—a—+AO)|K,,| <0

ot
and
. ad
(i) (-a—t‘-l-Ao)lel < 0.

Proof. Let K be either K, or K;. To finesse the singularity of derivatives when X
vanishes, set |K|.= (|K|*+¢)"/% Later, we will let ¢ — 0.
The Bochner formulas read

1A0|K)? = (AK,K)— |VK|?

4.2) 1 2 _ 1 2 2
380]|K|* = 380|K]|7 = |K| A|K]|.— | VK]

where the differential operators act on the variable x in K(¢,x,y).
Since K, = —AK, one has for each ¢ >0,

1 d _14d

K = —— =
IKIEI 'e,t 2 dt 2 dt

(1K].)? |K|? = (K,,K) = (—~AK,K).
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Using (4.2) yields,
[K!e IKIE,!' = - IVKIZ_ %AO|K|2
and so for each €> 0,
IKlelKle,t = —|VK|2_ %AOIKIeZ
Employing (4.2) again, |K|,|K|. ,=|V|K|.]*—|VK|*—|K|.A¢|K|.. By definition
a
of |K],, it follows that |V|K|.,| < |VK| and thus (E‘+A0>|K|e< 0.

Now let ¢ >0 to prove Lemma 4.1.
The main result of the present section is

THEOREM 4.3. Let V—> M be a Riemannian vector bundle over the compact
Riemannian manifold M. Suppose that A= —D+FE acts on T'(V), smooth sections
of V. Let E be bounded below by —b in the sense that (Ev,v) 2 —b(v,v). Denote
K,, K; to be the heat kernels associated to A with Neumann, Dirichlet boundary
conditions.

The following inequalities hold for pointwise norms of heat kernels:

() |K.(t,x,9)| <e”K, o(t,x,y)

(ll) le(t,x)y” < ebIKd,O(t’x’y) .

Here K, o, K; ¢ are the analogous heat kernels for the Laplacian acting on functions.

If OM = ¢, then it is not necessary to specify boundary conditions.

Proof. (i) First suppose that £=0, so that A= —D. For either type of boundary
conditions one may apply Duhamel’s principle as follows:

t d .
|K|(t,x,y) — Ko(t,x,y) = Sogs— SMIKI(S,X,Z)KOU—S,Z,}’) dz ds

t J
IK|(t,x,y) — Ko(t,x,y) = SO SM¥ |K|(s,%,2)Ko(t—5,2,y) dzds

t
+ L] 1K1, %, ) 80Ko(t 5,2, ) dzds.
0M

So that integrating by parts

K| (1%, ) =Kot x,9) = || SM<aiS+AO)|K|(s,x,z)K0(t—s,z,y) dz ds
where one uses that either Dirichlet or Neumann boundary conditions are imposed
on both K and K.

Lemma 4.1 completes the proof in case £=0.

(i) The general case follows from Part (i) and the Trotter product formula [14,
p. 297]: e 7' =limy_, (eP’*e ~!E/k)k where D is Bochner’s Laplacian.

One just observes that for the pointwise norm of heat kernels:

|e’D/ke_’E/kf < ,etD/k”e—tE/kl < e'b/kg—1tho/k

via Part (i) and the definition of b.
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Therefore, for all k, |(eP/%e~1E/kyk| < (e/ke=120/k)k < otPe="%0 from the semi-
group property of e ~/*0, Now let kK — o and use the Trotter product formula.
This completes the proof of Theorem 4.3. a

In the case E=0, Theorem 4.3 was proved in {7]. The method there relied on
general semigroup domination theory and proceeded by establishing Kato’s in-
equality. The alternative approach here using Duhamel’s principle is somewhat more
direct. '

An immediate consequence of the above results is:

COROLLARY 4.4. In the notation of Theorem 4.3
(i) TrK,(:) < (dim V)e? Tr K, o(¢)

and
(i) TrKy(¢) < (dim V)e® Tr K  o(¢)

where Tt denotes the global trace on L? sections. Here dim V is the dimension of the
vector bundle V.

Proof. For either case,

TrK(¢) = SMTrK(t,x,x) < dim VSM\K(t,x,xn

< dim VS e Ko(t,x,x) = dim Ve Tr Ky(£)
M

where Tr K(¢,x,x) denotes the pointwise trace.
Combining Corollary 4.4 with Theorems 3.3 and 3.6 gives

COROLLARY 4.5. (i) One has for Neumann boundary conditions or if oM =¢:
Tr K,(¢) < (dim V)e?(1+ Cst =2 vol M)
(1) For Dirichlet boundary conditions or if oM = ¢:
Tr K;(¢) < (dim V)e? vol M(Ct "%+ C,t)
(ii) Finally, for Dirichlet boundary conditions requiring oM # ¢:
Tr K,(¢) < (dim V)e? vol MC,t~"2,
Here C,, C,, C4, Cs have the geometric dependence described in Section 3.

Using the elementary Lemmas 2.5, 2.6, and 2.7 one has eigenvalue estimates cor-
responding to each case in Corollary 4.5:

COROLLARY 4.6. (i) For Neumann boundary conditions or if dM = ¢, then for
some m and all k 2 m, N\, = Cgk*". Here m, Cq depend only on volM, b, n, dim V,
and Cs of Corollary 4.5.
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(i) For Dirichlet boundary conditions or if OM = ¢, then for some m and k 2 m,
¢ = C,k*". Here m, C; depend only on volM, b, n, dim V and C,;, C, of Corol-
lary 4.5.

(iii) For Dirichlet boundary conditions and dM # ¢, one has for some m and all
kzm, A\, =Cgk?*". Here m,Cy depend only on volM, b, n, dimV, and C, of
Corollary 4.5.

In this Corollary, 0 <\; < N\, < ... are the positive eigenvalues of A.

If 5<0, then m=1 in all parts of Corollary 4.6. If b< 0, then m =1 in Part (iii) of
Corollary 4.6.

Similarly, one may employ Lemma 2.4 to give an upper bound on the number of
non-positive eigenvalues of A:

COROLLARY 4.7. Let Il denote the number of non-positive eigenvalues for A. Then
(i) For Neumann boundary conditions or if M = ¢, 1< (dim V)e?(1+ Csvol M).
(i) For Dirichlet boundary conditions or if 0M = ¢, < (dim V)e®? volM(C, + C,).
(iii) For Dirichlet boundary conditions and 0M # ¢, 1< (dim V)e? vol MC,.
Here we use the notation of Corollary 4.5.

5. Second variation operator. The second variation operator, which arises in the
study of minimal submanifolds, provides an interesting example for application of
the results in Section 4. Let M be a compact Riemannian manifold with boundary
which is minimally imbedded in the ambient space M. That is, the mean curvature
vector vanishes identically on the interior of M. The normal bundle T* M —> M of M
in M is naturally a Riemannian vector bundle with metric and connection induced by
the Riemannian metric and Levi-Civita connection of M. We take V= T+ M, in the
notation of Section 2.

Let D denote the Bochner Laplacian of T+ M, i.e. D=Tr(V?). For the definition
of the second variation operator, we follow [15]. Denote SM to be the space of sym-
metric linear transformations TM — TM. The second fundamental form of M in M
may be regarded as an endomorphism A € End(7T*M, SM). Set A ='A-A, where
the superscript ¢ denotes the transpose with respect to the induced metrics. Then
A:T*M— T+ M. If R denotes the curvature tensor of M, then a partial Ricci trans-
formation Ric is defined for v € T+ M by:

Ric(v) = f: (R-ei,vei)_L-
i=1

Here the sum runs over an orthonormal basis e; of TM and the perpendicular sign L
means to take the normal component. Of course, Ric is an endomorphism
Ric: T*M— T+ M. Given these preliminaries, one may define the second variation
operator A:T' (Tt M) ->T(T+M) by

(5.1) Av = —Dv+ Ric(v) — Av
forve T+ M.
The operator A has an interesting geometrical meaning for Dirichlet boundary con-

ditions. In fact, if v € I'(T* M) vanishes on dM then (Av, v), global inner product,
represents the second derivative of area for a deformation of M along direction v.
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The index of M is the number of negative eigenvalues of A, counted to multiplicity.
The nullity of M is the number of zero eigenvalues of A.

Suppose that b is a real number satisfying (Ric(v) — Av, v) = —b{v, v). Then one
may apply the results of Section 4, with E = Ric— A. It is most interesting to give an
upper bound for the index and nullity of M:

PROPOSITION 5.2. Let [ denote the number of non-positive eigenvalues of
A:T(T+*M)—>T(T*M) acting with Dirichlet boundary conditions. Here A is the
second variation operator given by (5.1). Denote n’ to be the codimension of M.
Then

() If oM =¢, I< n’eb(1+ Csvol M), where Cs has the geometrical dependence
described in Section 3. In particular, Cs may be bounded above given an upper
bound for the diameter and lower bounds for the Ricci curvature and volume of M.

(i) For any minimal M, 1< n’e’volM(C, + C,), where C,, C, are as in Theorem
3.3. If oM =¢, then C,+ C, may be bounded above given a lower bound for the
injectivity radius and an upper bound for the sectional curvature of M.

(iii) If oM # ¢, then I< n’e’vol MCy, where C, is as given in Theorem 3.6.

Corollary 4.6 applies directly to give lower bounds for the positive eigenvalues of
the second variation operator A. For the sake of brevity, we omit writing this out
in detail.

6. Laplacian for differential forms. Let M be a compact Riemannian manifold
with boundary oM. For convenience, we assume that M is oriented. All our results
generalize to the non-orientable case by passing to the orientable double cover. Let
A=db+6d denote the Hodge Laplacian acting on smooth differential p-forms,
1 < p<n—1. The operator A is positive semi-definite on Cy° M.

The results of Section 4 would apply to A if one imposed Dirichlet or Neumann
boundary conditions. However, it is more interesting to consider the Hodge Laplacian
with absolute or relative boundary conditions. Let » be an inward pointing normal
covector along aM. If a€ A’M is a smooth p-form, then along dM we may de-
compose a into its tangential and normal components, @ = @, + @porm AV, With
Ao € APOM, a0 € AP~ 10M. The form a is said to satisfy relative boundary con-
ditions if a,, = (6a).., =0 and a is said to satisfy absolute boundary conditions if
Aporm = (@) yorm = 0. Here d is the exterior derivative, d: A’M — A?*'M, and § is the
adjoint of d. Clearly, the Hodge star operator * maps forms satisfying absolute
boundary conditions to those satisfying relative boundary conditions,

% : APM — A"PM.

Recall that « is said to be harmonic if Aea=0. The significance of absolute and
relative boundary conditions stems from the well-known [13]:

THEOREM 6.1. (i) The singular cohomology group HPM is isomorphic to the
space of harmonic p-forms satisfying absolute boundary conditions.

(ii) The singular cohomology group HP? (M, dM) is isomorphic to the space of
harmonic p-forms satisfying relative boundary conditions.



EIGENVALUES OF RIEMANNIAN MANIFOLDS 159

Suppose that vy, ..., y,_; are eigenvalues of the second fundamental form of oM.
The +; are functions on dM and we may define a real number o, by
o, = maxmaxwy; +---+vy; ,
P~ ceam 1 Th i

where I=(i,...,i,) is a multi-index. The following technical lemma will be
required:

LEMMA 6.2. Denote N to be an inward pointing normal vector along oM. Let
a€EANM, then V| a|? =0 if either:

(i) The p-form a satisfies absolute boundary conditions and o, < 0.

(i) The p-form a satisfies relative boundary conditions and o,_, < 0.

Proof. Since * induces an isomorphism from relative to absolute boundary condi-
tions, it suffices to establish (ii).

Fix x € aM. To compute Vylla||?, we choose a co-frame field w;, ..., w,_;,w,, SO
that the second fundamental form is diagonalized at x. In coordinates with respect to

this frame, let ...i, be the components of a5, and a;, . Jp—tin the components of

@norm > Where the indices i,/ run from 1 to n—1.
The relative boundary conditions read g; i, = 0 for a,,, =0 and

%akl...kpa,a-{_ akl...kp_ln,n =0

for (6a),, = 0. Here, the index « runs from 1 to n—1. An index following a comma
means covariant differentiation.
Now

%Vj\’”‘l”2 = (vNa! a) = ;aj}...jp_lnajl...jp_ln,n

since a;,, =0.
Using that (8a),, =0 gives ; Vnlla||>= -1, o Gy...jyrewaljy...jy_yn-
However, differentiating along oM,

(vaa)tan = %:ajl...jp_lnwjl AR /\wjp_l A (vawn)lan'

From the definition of the second fundamental form

(Vaa)tan = ;ajl...jp_lnvawjl /\ ot ijp—l Awa

where no sum on « is intended in the last equation.
Thus ;Vy[al® = —Z; Zags vald),...j,_,n)? Where J = (j1, ..., jp-1) is summed
over all increasing multi-indices.
Lo .1 2 2
By definition of a,,_]p. ilelall Z—0,_p ZEJ(ajlmjp_l,,) .
So that along aM, ;Vy|al||* = —o,_,|al*>0.
This proves Lemma 6.2. O

The Weitzenbock formula reads A= —D+ R, where D is Bochner’s Laplacian and
R,:A’M— A’M is an endomorphism depending upon the curvature tensor of M.
Suppose that (R,v,v) 2 —b,(v,v) for some real number b,. By *-duality, one has
b,=b,_p.
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Let K, denote the heat kernel for the Hodge Laplacian with absolute boundary
conditions and K, the analogous kernel for relative boundary conditions. Let K|, ¢ be
the heat kernel on functions with Neumann boundary conditions.

The main result of this section is:

THEOREM 6.4. (i) If 0, <0, then for the heat kernel on p-forms |K,| < e®'K, o,
I<p<n-1.

(i) If 0,_, < O, then for the heat kernel on p-forms |K,| < e’%'K, o, 1<p<n-—1.

(iii) If M = ¢, no side condition is required to assure that |K| < e®'K,,
1< p< n—1. Here K denotes the heat kernel on p-forms and K, the heat kernel on
JSunctions.

Proof. This is entirely analogous to the proof of Theorem 4.3. In applying
Duhamel’s principle, a boundary integral arises. The sign of the integrand is
controlled with Lemma 6.2.

Using Lemma 2.4 and Theorems 6.1, 6.4, one obtains upper bounds for the betti
numbers of M. Set 8, M=dim H’M and B8,(M, dM) = dim H?(M, dM). Then one
has

COROLLARY 6.5. (i) If 0, < 0, then B,M< (})e’ (14 Csvol M).
(i) If dM=¢ then B,M < (})e% vol M(C,+C3).

Here C,, C,, Cs have the geometric dependence described in Section 3. The analo-
gous bounds to (i) for 8,(M, 8M) follow by Lefschetz duality.

Similarly, for the positive eigenvalues of the Hodge Laplacian, 0 <A\; <\, < ...,
one has

COROLLARY 6.6. (i) Suppose that o, < 0 and one imposes absolute boundary con-
ditions on the Hodge Laplacian A. Then for some m and all k> m, A\, = Cek?".
Here m, Cg depend only on n, p, b,, volM, and Cs of Theorem 3.5.

(i) If OM = ¢, then for some m and all k 2m, \; = C;k*". Here m,C; depend
only on n, p, b,, volM, and C,, C, of Theorem 3.3

The results analogous to (i) for relative boundary conditions follow by *-duality.
Corollary 6.6 follows from Theorem 6.4 using Lemmas 2.5 and 2.6.

REMARK. If M is a domain in the flat plane R? then b, = 0. Set p =1, in Part (i) of
Theorem 6.4, so that the conclusion reads |K,| < K, o. Taking the trace and letting
t — oo yields 8;M < 2. One observes that a domain with /-holes will have g,M=1.
This shows that some condition on the second fundamental form, such as ¢, <0, is
required for Theorem 6.4 to hold.
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