PROJECTIVE MODULES OVER KRULL SEMIGROUP RINGS

Leo G. Chouinard 11

1. Introduction and notation. Since the remarkable proofs of Serre’s conjecture
by Quillen and Suslin several years ago ([8], [9]), a number of papers have appeared
generalizing the results there to other coefficient rings (e.g. [2], [7]). However, pur-
suing the question in a different direction suggested by the work of Anderson [1], we
inquire into the class of semigroups which can replace the free abelian semigroup of
monomials in the polynomial ring. Our result, strangely enough, is that the essence
of Horrocks’ Theorem, on which Quillen’s proof relies, can be reformulated for
rings arising from Krull semigroups with torsion divisor class group [3]. Using this,
we show that if S is such a semigroup and A is a ring such that all finitely generated
A[G]-projectives are extended from A whenever G is a free abelian group, then
every finitely generated A[S]-projective is extended from A. In particular, this holds
if A is a Dedekind domain by the Suslin-Swan observation on the Quillen-Suslin
result ([9], [10]).

All rings are commutative with unit unless otherwise indicated. If A is a ring and
M is an A-module, we let M~ denote the quasi-coherent sheaf over Spec(A) cor-
responding to M. Where not specified, we use [5] as our source of results and nota-
tion on algebraic geometry. If S— A is a morphism of rings, we say M is extended
from S if there exists an S-module N such that M=A@gN. If A is a local ring with
maximal ideal », then M~ denotes the m-adic completion of M.

All semigroups are commutative, cancellative with unit. Furthermore, we assume
our semigroups have torsion-free total quotient group; if S is a semigroup, we denote
its total quotient group by {(S). For the notion of a Krull semigroup and its divisor
class group and essential valuations, we refer to [3]. Z denotes the group of integers,
and we use @ ,e;Zx, for a free group with specified bases {x, |« €I}. If Fis this
group with basis, /', denotes the subsemigroup of elements of F such that all of the
X, have nonnegative coefficients. Other semigroups are written multiplicatively.

Where our proofs are similar to those in [6] and [8], they are briefly sketched, with
more careful attention paid to the significant differences.

2. Preliminaries. We first prove some results on Krull semigroups which we will
need later.

LEMMA 2.1. Let S be a Krull semigroup with torsion divisor class group,
{ve | €1) the set of essential valuations of S, and BEI. Then there exists a t€S
such that vg(t) >0 but v,(t) =0 for all « €1 with o #f3.

Proof. By the proof of Proposition 1 in [3], and Theorem 2 of the same paper, the
map ¢ :{(S)—>F= ®,es Zx, defined by ¢ (s) =YX v,(s)x, satisfies S=y¢ 1 (F,)
and CI(S) = F/im(y), so since CI(S) is torsion, nxzg €imy for some n> 0. Pick

t€y~(nxg). )
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LEMMA 2.2. Let S, I, B, and t be as in Le{nma 2.1, and suppose [ is finite. Let
T={t"|n€Z}, So=[s€S|vg(s) =0}, and S=TS. Then Sy and S are Krull semi-
groups with torsion divisor class group and one less essential valuation than S.

Proof. Let eg: F= @yerZx, > F= ®,csZx,, where J={aEI|a# ), be the
natural projection. Then if s € {S), s€ S if and only if t"s€ S for some n € Z, if and
only if v,(s) =0 for all @ # B, if and only if (egey)(s) € F, (with ¢ as above) so Sis
Krull. Moreover, (egoy) (S) is reduced in F since ¢ (S) is reduced in F, so Lemma
2.1 applied to the other valuations on S implies that condition (2) of Theorem 2 in [3]
is satisfied, so the valuations resulting from the projections onto the factors of F are
the essential valuations of S. Also, CI(S) = F/((eg°y) ({S))) is clearly torsion.

Likewise, if s € (Sy ), then vg(s) =0so0 s€S, if and only if v, (s) =0 for all o # B,
if and only if (egey)(s) € F,, so Sy is Krull. Furthermore, all of the hypotheses of
(2) in Theorem 2 of [3] again hold for (eg°y)(Sy) c F,, except that this subsemi-
group may not be reduced. But replacing each basis element of F by the smallest
positive multiple appearing as a coefficient of it in (egey)(Sy), we resurrect the
reduced condition, and the resulting class group is clearly isomorphic to a subgroup
of CI(S) via a map induced by the obvious inclusion from F into F.

REMARK. The above lemma can be generalized to any localization of any Krull
semigroup S, or any subsemigroup of S of the form SN H, where H is a subgroup of
(S). In particular, any localization of a Krull semigroup is a Krull semigroup, with
essential valuations precisely the essential valuations of the original semigroup which
are trivial on each element inverted. The resulting class group is then a homomorphic
image of the original class group.

3. Horrocks’ Theorem for Krull semigroups. Let A be a commutative Noetherian
ring, and let S be a finitely generated Krull semigroup with CI(S) torsion, and
distinct essential valuations v=v, ..., v,,. We make A[S] into a positively graded
ring via A[S],=A[S,]= @ses,, As where S, ={s€S|v(s)=n}. Let t€S satisfy
v(t) >0 but v;(¢) =0 for i 22 by Lemma 2.1, and suppose that ¢ has been chosen to
minimize d =v(¢) among such elements. Let S be as in Lemma 2.2, and note that
A[S] is a Z-graded ring setting S, = {s€ S| v(s) =n} and A[§], =A[S,]. We note
S,=8,ifn=>0,and S_ =U,<oS, is also a finitely generated Krull semigroup with
essential valuations (—wv{),vy,...,v,, and CI(S_) =CI(S) (that S_ is finitely
generated follows from Remark 1 at the end of Section 2 of [3]).

Let m be a prime ideal of A[S,] containing all of the non-invertible elements of
Sy, and let A=A[S] ®A[30]A[S0]m, with the induced grading from A[S], so that
Ay = @izoldi = A[S1®asy AlSolm and A_ = D<o A = AIS_1®4(5,) ALSo -
Note A=A, [¢t~']=A_[¢], so we may form a scheme Y =Spec(A, )USpec(A_)
where we identify the subspaces corresponding to Spec(A). (Note: Y can also be
realized as Proj(A, [T]), with A, graded as above and 7 assigned degree 1.) Let
k= (A[So]/m)mE Ao/on.

LEMMA 3.1. Let M =~mA . Then M is a prime ideal of A.

Proof. Let m; = @sesonmASQm- Then if s€ S, clearly se vVm A[§] if and only
if v;(s)>0 for some i >2. This implies A[S]/VmA[S] = A[G,1[f,7~'] where
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Gy = Sy\m is a free group and f is the image of ¢. Thus VmA[S] is the inverse image
in A[S] of the prime ideal mA[Gy][f,77 '], so VmA[S§] is prime in A[S]. Local-
izing, vmA is a prime ideal of A. O

COROLLARY 3.2. A/M =k[f,f'], with  in degree d.
LEMMA 3.3. VIA, = @jsoA; and Vit TA_ = @< A;.

Proof. The results are true with A, and A_ replaced by A[S] and A[S_] respec-
tively, and localize to A, and A_. O

LEMMA 3.4. The natural map Y — Spec(Ay) is proper, and Y is a separated
scheme.

Proof. This is a straightforward exercise using Lemma 3.3 and the valuative cri-
terions for separatedness and properness ([5], Chapter II, Theorems 4.3 and 4.7). O

If M is a graded A-module, we can use it to define a quasi-coherent sheaf S (M) of
Oy-modules as follows: Let S(M)lspec(A+) =M7 and 8(M)|gyecs_,=MZ, where
M, =®;>oM; and M_ = @;<qM;, patching these together on Spec(A) using the
natural isomorphisms M, [t~ '1=M_[t]. If jJEZ, let L ;M denote the suspension
of M by degree j, i.e. (L;M),=M,,;. We are now ready to prove our version of
Horrocks’ Theorem ([6], Theorem 1).

THEOREM 3.5. If P is a finitely generated A -module, then P is free if and only if
P~ extends to a locally free sheaf of Oy-modules.

Proof. “‘Only if”’ is obvious, so let G be a locally free sheaf of Oy-modules extend-
ing P~. Now G®o,0y/8(IM) is a locally free sheaf on

Y, = Spec(AL /MNAL)YUSpec(A_/IMNA_)

identifying the subspaces corresponding to Spec(A/91T), but Corollary 3.2 implies
Y, =P{, the projective line over k. Thus §®o, Oy/S(M) = @ r,Op)(n) for some
nonnegative integers r,, not all 0 (if P#0). Replacing G by the sheaf with the
same sections on U; =Spec(A,) and U, =Spec(A_), but with the isomorphism
Y:G(U) [t '] = G(U,)[¢] replaced by ¢/, we get a sheaf G(j) which satisfies
our hypotheses and has Q(j)@oYGY/S(fm) = @r,,(‘)plg(n+j), SO we may assume
ro>0and r;=0if i <O0. O

Note I'(Y, G) is a Ay-module, so it carries a topology induced by the powers of m.
By Proposition 4.2.1 in Chapter III of E(_}A [4] applied to the map Y —> Spec(Ay),
we get I'(Y,G) " =limI'(Y, Q®0YS(A/m’A)). We wish to show the following:

i

LEMMA 3.6. Let 0>N—>M—>M’'—>0 be an exact sequence of graded A-
modules, such that N is finitely generated and annihilates some power of W. Then
I'(Y, Q®@YS(M)) - I'(Y, Q@oYS(M’)) is a surjection.

Proof. By induction on the length of N as a graded A-module, we may assume
N=Y; A/ for some j, and it clearly does no harm to assume 0<j<d. If j=0,
S(N)=0y/8(M), while if 0<j<d, S(N)=(Oy/8(M))(—1). Thus in the first
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case, Q®0YS(N) =® r.Opp(n), while in the second case
G ®o, S(N) = @ r,0p;(n—1).
So we have an exact sequence
I'(Y, $®o,8(M)) = T'(Y, §®o,8(M’)) = H' (Y, GR®p,S(N))
= H' (P}, @ r;0p}(n))

where r;, =0 if n < —1. But H'(P}, Oplg(n)) =0 if n 2 —1, and the lemma follows.
O
From the lemma, the composite

(Y, §) » (Y, §)" = T'(Y, §®p,S(A/mA)) = T'(Y, §&o,S(A/IN))

is surjective, and the last object can be rewritten as

L(Ye, Or)) DT (Y (0=1)08)) DT (Yo @ r,0p)(m).
Let § be a nonzero element of the first summand, and let s be an element of I'( Y, G)
which maps to §. By induction on the rank of P, we need only show that s is basic. It
suffices to show this at the closed points of Y, and it follows from the above that s is
basic on Y since §is. But if y is a closed point of Y, y maps to m in Spec(A;) since
Y — Spec(Ay) is proper. Thus y € Y;.

4. Projective modules over semigroup rings. The proof of our main theorem now
proceeds along the basic lines covered by Quillen [8].

DEFINITION. Let I" be a positively graded A-algebra with unit (not necessari.ly
commutative), § = X" ,6,ET where §; €I, and g€ A. Define 0(g) = L2,g'0;
(where g°=1).

With this definition, Lemma 1 of [8] holds true with R[ 7] replaced by I' and
TR([T] replaced by ;o I';. Theorem 1 there becomes:

LEMMA 4.1. If A is a positively graded Ay-algebra and M is a finitely presented
A-module such that M, is extended from (Ay),, for every maximal ideal m of A,,
then M is extended from A,.

The only real change needed in Quillen’s proof is in the second displayed equation,
where if N=(A/ @50 A;) ®aM, we have

HomAf(Af®A0Ns Ar®a,N) = Homy (A®s, N, ARy, N) @a,(A0)y

and our graded algebra for applying Quillen’s Lemma 1 is End, (A®4,N) instead of
(End4(N)[T].

LEMMA 4.2. Let M be a finitely generated projective A[S]-module, with S as in
Section 3. M is the restriction of a vector bundle over X = Spec(A([S])USpec(AS_1])
identifying the subspaces corresponding to Spec(A[S)) if and only if M is extended
Jrom A[S,].
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Proof. If M is extended from A[Sy], say M= A[S] ®as,) NN, then the Ox-module
induced from N~ by the map X — Spec(A[S;] restricts to M~ on Spec(A[S])
(note N=M/(@® ;>0 A[S;1 M) is a projective A[Sy]-module). Conversely, if there is
a vector bundle F on X which restricts to M, we may use Lemma 4.1 to reduce to a
localization of A[S] by a prime m in A[S,]. First replace S by its localization by all
elements in Sy\m, obtaining a (possibly) larger finitely generated Krull semigroup
with torsion divisor class group, by the remark after Lemma 2.2. Then apply
Theorem 3.5. O

COROLLARY 4.3. If M is a finitely generated projective A[S]-module, with S as
above, and A[S]1® 151 M is extended from A[S,], then M is extended from A[S,].

THEOREM 4.4. If A is a Dedekind domain, and S is a finitely generated Krull semi-
group with torsion divisor class group, then every finitely generated projective
A[S]-module is extended from A.

Proof. Use induction on the number of essential valuations of S. If there are no
essential valuations, then S is a free group and the result holds by the Suslin-Swan
observation on the Quillen-Suslin result ([9] and [10]). Otherwise, let T, S be as
before. By Lemma 2.2, S has one less essential valuation than S, so by induc-
tion A[S]®,(5)M is extended from A, so M is extended from A[Sy], say M =
A[S]®ars, N- Now N is a finitely generated projective A[Sp]-module, but Sy is a
Krull semigroup with one less essential valuation than S, so by induction N, and thus
M, is extended from A.

REMARK 1. Note that the result holds as long as projective modules over A[ ]
are extended from A if G is a free group with rank g = rank{S).

REMARK 2. Using Proposition 1 and Remark 1 from [3], and arguments present in
the proof of Lemma 2.2, we can show that if S is any Krull semigroup with torsion
divisor class group, then S is a directed union of finitely generated Krull semigroups
with torsion divisor class groups. This enables us to drop the assumption that S is
finitely generated from Theorem 4.4.

We close with two questions raised by the above.

QUESTION 1. Is the assumption that the class group be torsion really necessary?
Anderson [1] has conjectured that K[S]-projective modules should be free whenever
K is a field and S is a finitely generated semigroup such that K[S] is a Krull domain
and only the identity of S is invertible. The simplest case not covered by the above is
the ring K[ XY, YZ,ZW,WX] (SK[X,Y,Z, W]), which has class group = Z.

QUESTION 2. What is the widest class of semigroups S such that K[ S]-projectives
are free when K is a field (or PID)? In the same paper ([1], Example 5.2), Anderson
shows that a semigroup ring need not even be Krull to have this property.
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