ON THE CENTRAL LIMIT THEOREM FOR THETA SERIES

W. B. Jurkat and J. W. Van Horne
To the memory of David L. Williams

1. Introduction. In this paper we consider the sums

N-1
Sy(x) =1+ ¥ exp(imn®x) + 5 exp(imNx)
n=1

for real x and positive integers N and study the behavior of the distribution functions
Dy(N) =]{x€[0,1]: A=N"Y2|Sy(x)|}| as N tends to infinity, where X is a non-
negative real, and |A4| denotes the Lebesgue measure of the set 4. One result is that
for all N there are constants ¢y, ¢, ¢, such that if 0 <A =<cyyN then ¢, (1+A*) "<
Dn(N) <c,(1+7A*) 71 We conjecture that the limit of Dy (\) as N tends to oo exists,
which would be the central limit theorem for theta series. This however appears
rather difficult. We prove a somewhat related statement on the theta series

(o]

00(z) = Y exp(irn®z)

n=—=oc
where z is a complex number with positive imaginary part. Then
[{x€[0,11: A= N"12|0,(x+iN"?)|}|

converges for all A =0 as N tends to infinity. The form of the limit is complicated but
may be given explicitly.

The methods used to obtain these results are different from those used to treat
similar questions regarding sums of the form L{_oexp (iwn,x) in place of Sy, where
n; is a rapidly increasing sequence of integers. In the case of Hadamard gaps, for
example, n,=2%, the summands are sufficiently independent for probabilistic
methods to show that their distributions converge to a normal distribution [5], [6],
[8]. We rely upon a general form of the functional equation for theta series and the
asymptotic expansion of Sy in neighborhoods of rational points due to Fiedler,
Jurkat and Korner [2]. We partition [0, 1] into subintervals on which the behavior of
the sums Sy and 6, can be described by an associated function in a neighborhood of
0. The distribution function can then be expressed as a sum similar to a Riemann sum
involving these associated functions.

The following notation will be used. E(x) denotes e/™. Given a natural number g,
Y rmodq Means summation over a complete residue system modulo g. If g(x) is a
complex valued measurable function of x€[0,1], and if A=0 then D(\;g) =
[{xe[0,1]1: A=< |g(x)|}]. If P(x,»,...,2) is a property of variables x, y, ..., z,

1 if P(x, y,...,2) holds

XV, ..., 2, P) = .
x (%Y % P) {0 otherwise.
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If f(x) >0 and A (x) are defined for x € D, and there is a constant B such that for all
x€ D, |h(x)| =Bf(x), then we say A(x) =0(f(x)) for x€ D.

2. A convergence theorem. Suppose NN is a positive integer and Fy is the Farey
series of order N; that is, & is the set of all rationals p/q for which p/q € [0, 1],
(p,g)=1and 1=g=<N. If 1#p/q€ Ty and p'/q’ is the successor of p/q in Fy,
then the mediant of p/q and p’/q’ is (p+p’)/(g+q’). It is known (see [1] or [4])
that

2.1) p'qa—pqg’ =1
so that (p+p’)/(g+q’Y=p/q+1/(gq(g+q’)). Partition [0, 1] into subintervals

I, ., 3 Dp/q using as endpoints all the mediants, 0, and 1. Then for g>1,
D 1 N r
2.2 I = — —J— , —
@2 L I <q Q)
where
2 2
-y y
J , L) = s
0> 2 [[y+z]+l—z [y—z]+1+z]

for 1=y, —1/2=<z=<1/2, and r=r(p, q) is uniquely defined by
(2.3) pr=—1(modg), -—qg/2<r=<gq/2.

To see (2.2) observe that because of (2.3) for some n, ng—pr=1. This with (2.1)
shows that p’=kp+n and q’'=kqg+r for some integer k. Because ¢’ <N and
qg+q’'>N we must have k=[(N/q) — (r/q)]. Hence the right endpoint of I, , v is

p, L _p 1
a qlg+q’) g q((N/q)—(r/@)lg+q+r)
_ p + 1 1

g N2 (q*/N2)(I(N/q) - (r/q)]1 +1+(r/q))

which is precisely the right endpoint of the interval on the right side of (2.2). The
argument for the left endpoint is similar.

From x<[x]+1 for all real x one sees that J(y,z) S[—y, y]. Also observe that
J(», —2)=-J(»,2).

Let c(q, r) be an array of complex numbers defined for certain integers ¢ and r
satisfying (g, r) =1, and let B be a Riemann measurable set of positive measure in
the plane. We say c(q, r) has average density L in B if when we extend the definition
of c(q, r) by zero to all pairs (g, r) then

1
2.4 lim 1A @ g;e ) c(g,ry=L
for all bounded Riemann measurable sets A in B with positive measure.
To formulate our basic convergence result we assume K is a fixed nonnegative
integer, k=0, ..., K, and
(i) if g =3, —q/2<r< q/2, and (r,q) =1, then v=»(q, r) is an integer from O to
K. Further, for such ¢ and r, ¢, (q,r)=68(k, v(q,r))+6(k, v(q, —r)) has average
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density L; in {(»,z) :0<z=<1y}, where §(m, n) is the Kronecker delta.

(ii) a(p, q) is an array of complex numbers of modulus 1 defined for integers
3=<qg,l=p=<gqgand (p,q)=1.

(iii) For 1=y, —1/2<z=<1/2 and for all real ¢, f;(y, z, t) is a complex valued
Lebesgue measurable function with respect to ¢ for fixed (y, z) such that

(2°5) Ifk()’, —% t)l = Ifk()’, < _t)|°

(iv) Finally Ay (x) is a sequence of functions for x € [0, 1] such that for 3<g <N,
1<p=<q, —q/2<r<q/2 satisfying pr=—1(modgq) and t€ [-N?p/q, N*(q—p) /q],

p t N r
hyl — + — )= S l—, — )
WG + )= ewon(G 5 1)
Observe that from (iii) 4y (x) is measurable. Now for A =0 let

Fx,k(y,z>=§ XO:z 6N S0z DD

J(. z
Observe that F, ,(y,z) <2y and F(y, —z) =F(y, z).
THEOREM 2.1. If A =0 and assumptions (i)-(iv) are satisfied then
L. K ™ nl/2 _3
liminfD(\;hy) = 1 LkS S ko z)y "dydz
N—o k=0 1 Jo
. K © 01/2 _3
limsupD(N;hy) < 3 Ly S S B e2)y 7dydz
N—o k=0 1 Jo

where {{ and j—j denote the lower and upper double Riemann integrals, that is, the
limits of the lower and upper double Riemann integrals over [1,R] X [0,1/2] as
R—> oo,

Proof. Let N=3,4, ... and A >0 be given, and use the Farey dissection {1, , ] of
[0, 1] to obtain

(2.6) D(\; hy) = El Y |{x€l 4NN = [An(0)[}].

Because |1, , x| = (N+1)7! for g=1 and |[; 5 | <(N+1)"! the contribution of
these terms is O(N ~!). For the remaining terms we apply hypothesis (iv). Replace x
by p/q + t/N? so that the condition x € I, , nbecomes t€ J(N/q, r(p, q)/q) where
r(p, q) satisfies —q/2<r(p,q)<q/2 and pr(p,q)=—1(modgqg). Then with
v=v(q,r) (2.6) becomes

N
Dihy = 3 % % {tej(ﬁ’r(p,q')):)\S ﬁ(ﬁ, r(p, q) t)B.
a=3 r=1 N q q q q

ro(3)
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N 1 N r 1
= — FR,(=,Z)+0—
q§3 —q/2§<q/2 N2 M( q q ) * <N>

(r,q)=l
q=3 (rr=)1=1 N2 \( D, g’ q Mg -0 q’ q N
KN 2 cglgr) (N r) ( 1 )
27) = D g (2 D v o).
2.7 k);'o q§3 ( rgl_ N2 M\q > q N

We consider k fixed and estimate the sum over ¢ and r from below. Let 0<e<1
and 1<% =<N/2 be given. By a half-open rectangle we mean a nonempty open
rectangle plus possibly any of its open edges and/or vertices. Let {A;} be a finite
collection of nonintersecting half-open rectangles such that

UAd;={02):1=sy=n 0=<z=;}
J

and such that for each j, diamA;<e. Define a transformation G by G(y,z) =
(1/y, z/y) and let B;=G(A;). Then
r 1

1 N
w@nNbl -7 )= 5 clgr) inf  F iz
N2 (q”));SNBj €@ )\’k(q f1> N2 (q,r)EENBj K )(y,z)eAj Ml 2)

= Li|B; izr)ﬁ;AjFx,k(y,z) + 0y, x (N, J)

I 67

where 8y 4 (N, j) —> 0 as N—> oo, The Jacobian of G is y 3, and one can find M>0
an absolute constant such that |B;| = |A;| (supy, ca;y =3 _ Me). Therefore

1 N
E Ck(q,r)F)\,k<Z ’ L)

N? (g, r) e NB q

= Li|A)| o izl)lf;A'F’x,lc()’,Z)((ySzl)lIéA.y—3 — Me) + 6 (N, J))
> J g J

= Li|A)| ((y iglgA_Fx,k(y, 2)y 73 = 29Me) + &) 1 (N, ).
’ J

Because there are a finite number of j,

1 N
Y XY ol r)F)\,k<E , L)

N2 7§ (q.neNs; q

(2.8) ZLkZ:'Aj,((y B\ (7, 2)y 7% — 29Me) + 8, 1 (N).
j »2) €4;

inf
Z) €A

where 6, x(N) —> 0 as N—> . The summation on the left in (2.8) ranges over
N/n=qg=N,0=<r=<gq/2, which is a portion of the summation in (2.7) approximating
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o K 7 172 _3
liminfD(\;hy) = 1 LkS S F\ (r,z2)y dydz,
N—oo K=0 1 Jo

since there is a partition {A;} for which the lower Riemann sums of the functions
Fy xy~* are simultaneously close to their respective lower Riemann integrals for
k=0,1,...,K. The left side is independent of %, so take 5 to o to get
o K w 0172 _3
liminf DO hy) = L L [~ | 7 Fn2)y dyde.
—~ oo k=0 1 Jo

In a similar manner we can obtain an upper estimate corresponding to (2.8). The
remaining terms appearing in (2.7) can be estimated by F\ ,(N/q, r/q) <2N/q so

that
1 Nm o ar N r 1)
— (g Fl =, 2 )=0(=).
N2q§3(§f),k(q ))\,k<q q) (77
na=

Since this error vanishes when n goes to o, we have
. K o 0172 _3
limsup D(A;hy) < X LKS S P, 2)y  dydz. s

It is clear that the limit will exist if the functions F, (y, z) are locally Riemann
integrable. A sufficient condition for this is

LEMMA 2.2. Let f(y,2,t) be a complex valued function defined for y=1,
0=<z=<1/2and all real t, and assume f is continuous in (y, z) for fixed t and measur-
able in t for fixed (y,z). Then F\(y,z) = |{t€J(», 2) : A=< |f(), 2, t)|}| is locally
Riemann integrable in (y, z) for all \=0if |{t€ R:\=|f(}, 2, 1)|}| =0 for all y and
Z in the domain of f.

Proof. By the hypothesis no discontinuities can arise from the condition A <
|f(», z, t)|. The endpoints of J(y, z) vary continuously except at the lines y+z=m
and y—z=n, for m and n integral, where the discontinuities are caused by the jumps
of [y+z] and [y—z]. Because these lines have measure zero in the plane, F) (y, z) is
locally Riemann integrable.

3. The distribution of theta sums. The generalized Gaussian sums are defined for

integers k as
ph* + kh
a&paq)= X E(——)
hmod 2q q

It was shown in [2] that if p’ is a solution of pp’=1(modg) which also satisfies
4|p’ if pis odd and if p*= —p(p’)? then

0 if 2 +k
gD, q) = 2 Apq

k :
E( 1 )go(p+6q, q) if 2|pg+k
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where 6=0 or 1 as pg is even or odd. We require
LEMMA 3.1. When 2| pq+k and r and n are determined by
3.1) ngq—pr=1, —q/2<r=<gq/2

then
~

E (15 k2>E(ﬁ k2>go(p, q) if 2|pq

| ™
™

gk(p,q)=<E( n>E<—r—k2>go(p+q,q) if 24pq, 2|r

4 4q

5]

E
-

Proof. Note that because of (3.1), r= —p’(mod g), so r—nqr= —pr’=p*(mod q).

Casel. 2|q.

Here we may take p’ = —r so that p* = r—ngr and therefore (p*/4q)k?=
(—rn/4)k*+ (r/4q) k2.

Case II. 2 | p.

We now have p*=0= —pr?(mod2) so that p*=r—ngr(mod2q). Since 2 | k, k*/4
is integral and (p*/4q)k*= (r/4q)k*— (nr/4)k?(mod2).

Case I11. 2 ¥ pq.

In this case p*=0(mod8) and because g>=1(mod8), pr’q*—pr*=0(mod38).
Hence p* =pr2q?—pr?(mod8q), and since k? =1(mod8), (p*/4q)k? =
(priq—nr)/4+ (r/4q)k*(mod2) If 2|r, then priq/4=r/2(mod2), and if 2 47,
prtq/4=pq/4(mod?2). m]

We wish to apply this to Lemma 2 of [2], which states that if we extend our
definition of Sy to real N>0 by Sy(x)=1/2+ ¥, <,<ny E(n?x) when N is not an
integer, then for (p, g) =1 and real ¢

p t > g(p, q) (N_[s*t kS)
) 24 )= S (ME(2 2 — 22 gs,
(3.2) SN(q + N2> k=z_:m 2o SO (N2 . ds

and the series converges, For y >0, z rational and ¢ real define
o0

1
To(r,zt) = YL E(zk?) S E(s%t — 2ksy) ds
k=—oo 0

oo

Tiot)= Y (—1)E(zk?) S;E(szt—sty)ds

ot 1
T,(hot)= ¥ E(z(k+1)?) SOE(szt —2(k + Y)sy) ds
k:—OO
when these series converge. When one applies Lemma 3.1 to (3.2) one obtains

PROPOSITION 3.2. Let p,q,r and n be integers satisfying 2<q, 1<p=gq,
—q/2<r=gq/2 and nq—pr=1,
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0 if 2|pq and 2|\nr
v=v(qry=<1 if 2|pq and 2)fnr
2 if 2¥pq

and
(1

Wgo(p,q) if 2|pq

1 r rn
v qg) =< — E(— — — A if 2 d 2
a(p,q) =+ e (2 y )go(p+q q) if 2¥pg an [r

1 pg—rn .
E ; 2 2| n.
B ( 3 )go(p+q q) if 2¥pq and 2|n

Then for all real t and N>0,

D t ) N (N r )
S —+—=)=a (] = Tv Ty t ’
and (N/q, r/q, t) is within the set where T, ,) converges.

In the same way one can show a similar result for the theta series 6,({) =
Y2 _o E(tk?*), for Im ¢>0, which is actually a reformulation of the usual trans-
formation formula (see for example [7]). Letting 8, ({) = L5 _ o (—1)*E({k?) and
0,(Y)=Li= _o E(F(k+1/2)?%) for Im >0 we have

PROPOSITION 3.3. Under the assumptions of Proposition 3.2,

p t+i N /[ i )‘/2 (r N2 )
O\ — +—5 ) = g =\ b0\ —— =7
°<q * N2> a(p.q) Vg (t+t g q*(t+i)

where we take the principal value of the square root.

Next we discuss the average densities of the arrays we will be needing. It is clear by
simple measure theoretic considerations that to show an array c(g, r) has average
density L in Q={y,z:0=<z, 0<y] it suffices to show (2.4) for

A={y,z2:.0<sy=<a, 0=<z<Db},

where @ and b are arbitrary positive reals.
First we consider

1 if ,r)y =1, =1, r=1
a(q,r)={ a.r) e

0 otherwise
LEMMA 3.4. The array a(q, r) has average density 6/7* in Q.

Proof. Let a and b be given positive numbers. Note that for g=1 and r=1,

alg,ry= Y p(d) =Y p(d).
d|(q, 1) g;g
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Hence for real N sufficiently large

aN bN aN bN
Y Yoalgr)= Y X Yud)
q=0 r=0 g=1 r=1 ;};1
N aN 1] bN .
= dgl p(d) [7] [—d—] (¢ = min(a, b))
—aon? ¥ P L oNiogN)
d=1 d?

6
— abN? + O(NlogN)

as desired. o
Next let

1 if (gr)=1, 2|q, g#0, r#0
0 otherwise

B(q,r)={

LEMMA 3.5. The array 3(q, r) has average density 2/%? in Q.

Proof. Let a and b be arbitrary positive numbers. Then for real positive N

aN bN aN BN
L LBgn=YX X Xud)
g=0 r=0 g|=ql r=1 Zlg

N aN bN
= d
P ’[ 2,d] ][ a ]
where again c=min(a, b) and [m, n] denotes the least common multiple of m and
n. For N sufficiently large one calculates

T T s@n=an ¥ 9D L oniogN)
,r) =
o 2 P =N B T dd o8
2 2
= ?abN + O(NlogN). a

COROLLARY 3.6. The array

(@ r) = 1 if (gr)=1, 2fq, q#0, r#0
YTV =0 0 otherwise
has average density 4/7* in Q.
Proof. Clear from the previous two lemmas. O

We turn now to the local Riemann integrability of the F, , associated with
0o (x+iN~2).
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LEMMA 3.7. For k=0,1,2 and A\ =0,

Proof. Let k=0, 1, or 2 and A =0 be given. By Lemma 2.2 it suffices to show

172 2
y y
3.3 teR: A= |{— 6 - =0
©G-3) u ‘<t+i> "(z r+i>m
Because
2= y 1/2 y )1/20 _ y2 )0 (z— y2>
t+i f—i k t+i) * t+i

y )1/20 . yz )
f+i k f+i
2 2
=L0k<z——y—r>9k(—z— Y .>,
NIZEN t+1 —I+1i

(3.3) is equivalent to

2 2
N2 Y _ ) 4
{tER')‘ NS 0"<z t+i>0"< : ——t+i)}

However since y({2+41)7 12, 0,(z—y2(¢+i)~Y) and 0, (—z—y*(—¢+i)~') are
each analytic in the region —1<Im {<1, either their product is constant or (3.4) is
true. It is known [3] that for a dense set of r-values, 0, (z—y?(¢f+ie) ') approaches
infinity as e tends to 0. Therefore the product cannot be constant and (3.4) is true.
O

y >1/20 L yz)
t+i) * t+i

is locally Riemann integrable in y and z for 1 <y and 0 <z<1/2.

ki z) = '{tef(y,z) A<

3.4

We now present our main result.
THEOREM 3.8. For all A\ =0,

D(\;0p(x + IN"2)N-12) —

4 2 cody ;12 y >1/2 y? )
—_— — d dt 'y ,t:)\ < —_— 0 _
w2 k“;;o Sl y3 SO ZSJ(y.z) X<y ¢ '(H” k(z [+1

as N—> oo,

)

Proof. It is clear from Proposition 3.3 that we take
Sz t) = 0/ (t+i) 20, (z — y*/(¢+i))  for  k=0,1,2.

Hypothesis (iii) is satisfied because a simple check shows (2.5). For integers p, g, n,
and r satisfying 3<gq, l=p=<gq, —q/2<r<q/2 and ng—pr=1, let a(p,q) and
v(q, r) be as in Proposition 3.2. It remains only to show that

celq,r) =6(k,v(q, 1)) + 6(k,v(q, —1))

has average density 4/#% in {y,2:0=<z=<y/2}. From the definition of » and the
relation nqg —pr=1 we conclude that
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(i) if 2| g, so that 2 }f r, then either »(gq, r)=0 and »(q, —r)=1or v(q,r)=1 and
v(q, —r)=0;

(ii) if 2./ q and 2 |r then either v(q, r)=0 and v(q, —r)=2 or v(q,r)=2 and
V(q: _r) =0;

(iii) if 2 ¥ g and 2} r then either v(g,r)=1 and »(q, —r)=2 or »(q, r) =2 and
v(q, —r)=1.
Therefore for g =3 and —q/2<r<gq/2, (r, q) =1, we have cy(q, r)=B(q, r) +B(r, q),
c{g, ry=v(r,q), c;(q, r)=v(qg,r). We now extend the definition of c,(q, r) to
qg=3, r#0, (r,q)=1 by means of these formulas. Since the values of ¢, (g, r) for
g=1,2 do not affect the average density, it follows from Lemma 3.5 and Corollary
3.6 that for k=0, 1, 2 the extended ¢, (g, r) has average density 4/7% in Q and hence
in {y,z:0=<z=<y/2}, where it is the original c;. a

Convergence of D(\; N~128,) will be shown when the local Riemann integra-
bility of the corresponding Fy x has been demonstrated. Now we can obtain an order
estimate using the approximation of Sy(x) by Fiedler, Jurkat, and Korner [2]. This
says that for integers p, ¢, N and real f such that 1 =g =<4N, (p,q)=1,0<p=<gqgand
p/q + t/16N*€ I, , 4n, then

t N 1 [ts?
(3.5) SN( + 16N2) =a(p,q) — a S E<16)dS+6(p, a, N, t),

where a(p, q) is such that |a(p, g)| =0 or 1 as pq is odd or even, and 6 (p, g, N, t) is
bounded by Kjvg for an absolute constant K, >0. We denote by H(¢) the integral
SOE (ts2/16)ds and construct a function using the normalized main term of (3.5).
That is, for each N let

1/2
An(x) = ”(’;‘” (g—) H(D); (x—%+1\5 el, q~>

Then D(\; Ay) and D(N\; N~1/2S,) are related through the following:

PROPOSITION 3.9. Let A\>0 and ¢ >0 be given such that
(i) 1+4K, <\
(i) (14+4Ky) Ko~ <e

Then D(AN+¢€; Aqn) <D\, N7V283) <D(AN—€; Agn).

Proof. Let N be given and suppose € and A satisfy the hypotheses. Consider p and
gsuchthat 1 =g=<4N,0=<p=<gqgand (p,qg)=1.
Suppose pq is odd. Then if x€ I, ; 4n,

IN~V2S5(x)| = N~V2|8(p, g, N, t)| < Ko(g/N)? = 2Ky < A

by (i), so that {x€ I, , 4x :A<N"12|Sy(x)|}=0. Clearly in this case also Ayy =0
on I, ; 4n-
Now suppose pgq is even, so for x€ 1, 44N>

N=V2ISy(x)| = (N/@)?|H (1) + Ko(q/N)"? = (1 + 4Ky) (N/g)"?
and |Asn(x)| = (N/q)'? since |H(t)| =1 for all real ¢. If g> (1 +4K,)>A~2N then
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(x€1, 4an : A=NT2Sy(x)|} =0 and {x€ 1, ,an:N<|A4n(x)|)=@. For g=<
(1 +4K0)2A»2N and x € Ip,q,4Ns

IN71284(x) — Agn(x)| < Ko(q/N)V? < Ky(1 + 4K)N ! < e
Therefore
(X€@, gan: N+ e = |An(x)|}
(3.6) C{x€l, ,an: N < N"2|Sy(x)|}
S {xel,gan:N—e = |Asn(X)|].

Taking the measures of the sets in (3.6) and adding for all p, ¢ in the permitted range
one reaches the conclusion. 0o

Observe that H({)H(—¢) is a nonconstant analytic function of complex { and
therefore {t€ R:N=|H(?)|}=(t€R: N =H(¢t)H(—t)} has measure zero. Hence
F(y,z)=|{teJ(y,2): A< %\/} |H ()|} is locally Riemann integrable, and when we
apply Theorem 2.1 to Ay we obtain

PROPOSITION 3.10. For A>0,

. 8 (o 1/2 _
lim D()\;AN)=—75 dys~ dzg dty 3 x(,z t:N < Wy |H()]).
N—o T J1 0 J(»2)

Proof. Take K=1, fo(»,2 t)=VyH(t)/2 and f; (), z, t) =0. For integers p, g, r,
and n satisfying 3<gq, 1 <p<gq, —q/2<r<gq/2 and nqg—pr=1 let a(p, q) be as in
Proposition 3.2 and
0 if 2|pgq

V(g 1) = { 1 otherwise

One determines that ¢;(g, r) =28(q, r) +v(q, r) which has average density 8/#2 in
(3,2:0=<z=<y/2}. ]

Our next step is to rewrite the integral in Proposition 3.10.
LEMMA 3.11. For A>0,

w min(1, (y%/t)—y)
d
M y3 Y

b0 = &

where M=max (1, t, 4N*/|H(1)|?).

Proof. Denote by I the triple integral in Proposition 3.10, and let a, , =
¥/ (ly—z1+1+z) so J(y,z)=[—a, _,, a, 1. On the range —a, _, <t=<0 sub-
stitute —¢ and —z for ¢ and z and use |H(—¢)| = |H(¢)| to obtain

172 ca,, .
S sz Xz t:N = Wy |H(1)]) dt

—4dy, —z

1/2 ay » 1
=S sz Xz t:N = Wy |H()) dt.
—-1/2 0
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The integrand is independent of z, and g, _, is periodic in z with period 1, so we may
instead integrate over y—1<z <y where q,, , = =y?/(1+4z). Rearranging we get

I= g""dr §°° min (1, y2/t=y)y 3 x(y, t: N2 < (1/4)y|H(t)|?) dy
0 max(1,¢)

=S th min (1, y2/t—y)y ~3dy. a

THEOREM 3.12. There is an absolute constant K such that for A\>0,

1 K

L . -1/2 4 _
liminf DO N™Y28y) = S |H(1)| dt— &
limsup D(N\; N™128y) < r’ [H(t)|4dt—l— + X
N—o ’ 4m2 Jo A N6

Proof. Because 55’°E(s2)ds=\/17/2 we may find a constant K; such that
VE|H(¢t)| <K, for all £>0.
Consider A =max (K;/V2, 1+4K,, V(1+v5)/8 ). Then

AN |H(t)|"2 = 2KE|H(t)|72 =2t and 4N |H(t)| 22N =1

since |H(¢)| <1 for all real ¢. Therefore max (1,4 N2|H(t)|~2) = 4N2|H(t)| 2.
Now suppose y = 4N |H ()| 2. If 0<t <1 then y%/t—y=y?>—y =1 since y =
(1+V5)/2. If t>1 then 4N?|H(¢)| ~2=2K2|H(¢)| % =2t so that y?/t—y =2y—y=
y=1. Therefore

lim D(\; Ay) =

1 o
t dy=—\ |H(t 4dt——.
N—o w2 So S4A2/|H(t)|2y 7 2 So 1H(1)]

47 PN
Let K, > (1+4K,) K, and apply Proposition 3.9 to see

liminf DO N™Y2Sy) = lim DA +Ky/A; Agy) = r |H(1)|*dt
— 00 — 00 0

1
472 (N Kp/N)*

1
(N=Ky/N)4
Using (A\—=K,/N) " *=N"*+ KN "%and (\+K,/N) " #=N"*—K;1\ "¢ for an absolute

constant K3, we obtain the desired estimates for this range of A. It is clear, though,
that by increasing the constant X we may take the estimates valid for all A\>0. 0O

' sNTY28y) = lim D(N—Ka/\; = (" 4
limsup DOV NY28y) < lim DON=Ky/N; Aan) = go |H(£)|*dt

REMARK. In a similar way one could show that there are constants ¢y, ¢;, ¢, such
that if 0 <A <¢,VN then

a(l+M " T<sD\NT28)) <=6 (1 + 2!

by first proving a corresponding estimate for A.
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