HOMOGENEOUS, SEPARATING PLANE CONTINUA ARE DECOMPOSABLE

James T. Rogers, Jr.

Dedicated to my mother and father

The problem of identifying the homogeneous plane continua stems from an old question of Knaster and Kuratowski [14]. R. H. Bing [1] and Bing and Jones [3] have made notable inroads on the problem by showing that, in addition to the simple closed curve, the pseudo-arc and the circle of pseudo-arcs are homogeneous plane continua. The list of (nondegenerate) homogeneous plane continua includes only these three.

In 1955, Jones [12] classified the homogeneous plane continua into three types: (1) the ones that do not separate the plane; (2) the decomposable ones that separate the plane; and (3) the indecomposable ones that separate the plane. Continua of types (1) and (3) must be hereditarily indecomposable [9] and [11], while continua of type (2) that are not simple closed curves must admit a continuous decomposition into elements of type (1) such that the resulting quotient space is a simple closed curve [12].

The pseudo-arc is of type (1), while the simple closed curve and the circle of pseudo-arcs are of type (2). No example of a homogeneous plane continuum of type (3) is known. The pseudo-circle of Bing [2], a logical candidate, is known not to be homogeneous [6] or [15].

In this paper, we prove that there do not exist homogeneous continua of type (3).

C. E. Burgess [4, p. 77, Questions 2 and 6] has asked if there exists a homogeneous plane continuum having infinitely many complementary domains, and if there exists, for each positive integer n, a homogeneous plane continuum that separates the plane into n connected domains. It follows from the results of this paper that the answer to both questions is no.

Howard Cook [5] has described, for n a positive integer or ∞ , a plane continuum that separates the plane into n complementary domains and has only pseudo-arcs as proper nondegenerate subcontinua. By the results of this paper, none of Cook's continua are homogeneous.

This paper also provides another proof that a pseudo-circle (i.e., a hereditarily indecomposable, circle-like plane continuum different from the pseudo-arc) is not homogeneous.

Received February 26, 1980.

The author was partially supported by a research grant from the Tulane University Senate Committee on Research.

Michigan Math. J. 28 (1981).

A continuum is a compact, connected, nonvoid metric space. A space X is homogeneous if, given x and y in X, there exists a homeomorphism of X onto itself taking x to y.

The following version, due to Hagopian [8], of a theorem of Effros [6] is crucial to our arguments.

THEOREM 1. Let M be a homogeneous continuum, and let $\epsilon > 0$. There exists $\delta > 0$ such that if x and y are points of M and $d(x,y) < \delta$, then there is a homeomorphism h of M onto itself with h(x) = y and $d(z,h(z)) < \epsilon$, for each z in M.

The compactness of M is essential to the proof of Theorem 1; in the next section, we will prove a similar theorem for a certain noncompact, homogeneous space associated with a homogeneous plane continuum.

1. COVERING SPACES OF HOMOGENEOUS CONTINUA

Let S^1 be the unit circle in the plane with the arc-length metric. Let A be the annulus $S^1 \times I$ with the product metric. Let $S = \mathbb{R} \times I$ be the product of the real line and I with the product metric. Let $\sigma: S \to A$ be the universal covering space of A, where σ is defined by $\sigma(s, t) = (\exp(is), t)$. The map σ is a local isometry.

Let M be a homogeneous subcontinuum of A, and let $\tilde{M} = \sigma^{-1}(M)$. Even though \tilde{M} is not compact and perhaps neither connected nor locally connected, it has the following important property.

THEOREM 2. Let $0 < \epsilon < \pi$. There exists $\delta > 0$ such that if \tilde{p} and \tilde{q} are points of \tilde{M} with $d(\tilde{p},\tilde{q}) < \delta$, then there is a homeomorphism \tilde{h} of \tilde{M} onto itself such that $\tilde{h}(\tilde{p}) = \tilde{q}$ and $d(z,h(z)) < \epsilon$, for each z in \tilde{M} .

Proof. Let β be a positive number such that any two maps f and g of a space W into A satisfying $d(f,g) < \beta$ are ε -homotopic [10, Theorem 1.1, p. 111]. Recall that a homotopy is an ε -homotopy if, for each w in W, the set $\{h_t(w): t \in I\}$ is of diameter less than ε . Note that $\beta \leq \varepsilon$.

Let δ satisfy the conclusion of Theorem 1 for the input $\beta/3$. Then $\delta < \pi$. Let \tilde{p} and \tilde{q} be points of \tilde{M} such that $d(\tilde{p},\tilde{q}) < \delta$. We must exhibit a homeomorphism taking \tilde{p} and \tilde{q} and moving no point of \tilde{M} as much as ϵ .

Let $p = \sigma(\tilde{p})$ and $q = \sigma(\tilde{q})$. Since $d(p,q) < \delta$, there exists a homeomorphism $h: M \to M$ such that h(p) = q and $d(h, 1_M) < \beta/3$. Extend h to a map g of a closed neighborhood N(M) of M in A. Let γ be a positive number less than $\beta/3$ satisfying the inequality $d(g(y), g(y')) < \beta/3$ if $d(y, y') < \gamma$, for all y, y' in N(M). Assume, by restricting N(M) if necessary, that $d(y, M) < \gamma$, for all y in N(M).

It now follows that, for y in N(M), $d(y,g(y)) < \beta$. Hence g is ϵ -homotopic to the identity map of N(M). Use the Borsuk Homotopy Extension Theorem to extend g to a map $f:A \to A$ such that f is homotopic to the identity map of A by a homotopy F that extends the ϵ -homotopy between g and the identity map of N(M).

The map $G = F \circ (\sigma \times 1) : S \times I \to A$ is a homotopy between σ and $f \circ \sigma$. The identity map of S lifts one end of G. Extend this lift to a lift $\tilde{G}: S \times I \to S$ of the homotopy G such that $\sigma \circ \tilde{G} = G$ and \tilde{G} is a homotopy between 1_S and a map $\tilde{f}: S \to S$.

Let \tilde{h} be the restriction of \tilde{f} to M. The map \tilde{h} is the desired homeomorphism.

To see that \tilde{h} moves no point of \tilde{M} as much as ϵ , observe that G restricted to $\tilde{M} \times I$ is an ϵ -homotopy. In particular, if $\tilde{x} \in \tilde{M}$, then the set $\{G_t(\tilde{x}): t \in I\}$ has diameter less than $\epsilon < \pi$; hence, it lies in an evenly-covered set of A. Since $\sigma\{\tilde{G}_t(\tilde{x}): t \in I\} = \{G_t(\tilde{x}): t \in I\}$, it follows that the set $\{\tilde{G}_t(\tilde{x}): t \in I\}$ also has diameter less than ϵ . Since $\tilde{h}(\tilde{x}) = \tilde{G}(\tilde{x}, 1)$, and $\tilde{x} = \tilde{G}(\tilde{x}, 0)$, the map \tilde{h} moves no point of \tilde{M} as much as ϵ .

To see that \tilde{h} is a homeomorphism, follow the procedure of the above paragraphs to construct a lift $k: \tilde{M} \to \tilde{M}$ of the homeomorphism $h^{-1}: M \to M$ satisfying $d(z, k(z)) < \epsilon$, for all z in \tilde{M} (we use the letter k to avoid potential notational confusion). Clearly $k \circ \tilde{h}(\tilde{x})$ and $\tilde{h} \circ k(\tilde{x})$ are points in $\sigma^{-1}(\sigma(\tilde{x}))$. Since neither $k \circ \tilde{h}$ nor $\tilde{h} \circ k$ moves a point as much as 2π , it follows that $k \circ \tilde{h}(\tilde{x}) = \tilde{x} = \tilde{h} \circ k(\tilde{x})$.

Similarly, $\tilde{h}(\tilde{p})$ is a point of $\sigma^{-1}(q)$. Since $d(\tilde{p}, \tilde{h}(\tilde{p})) < \epsilon$, it follows that $\tilde{h}(\tilde{p}) = \tilde{q}$. The proof of the theorem is complete.

THEOREM 3. Each homogeneous, separating plane continuum M is decomposable.

Proof. Let $T = \{z \in \mathbb{C}; 1 \le ||z|| \le 2\}$. Embed M in the planar annulus T so that a bounded complementary domain D of M contains the origin. If the continuum M is indecomposable, then it is hereditarily indecomposable [9] and [11]. No proper subcontinuum of M separates the plane. Hence M is the boundary of each of its complementary domains. In particular, if x is a point of M and y > 0, then the y-ball B(x; y) centered at x contains a point of D and a point of the unbounded complementary domain of M. Hence there exists an arc from D to the unbounded complementary domain of M whose intersection with M is contained in B(x; y).

Embed M in A, and translate the facts of the previous paragraph to this new setting. The hereditarily indecomposable, homogeneous continuum M separates the two components of the boundary of A from each other, but no proper subcontinuum of M does. If $x \in M$ and $\gamma > 0$, there is an arc in A meeting both components of the boundary of A whose intersection with M is contained in the ball $B(x;\gamma)$.

Let δ be a positive number satisfying the conclusion of Theorem 2 for $\epsilon = 1$. Let $x \in M$. Choose an arc J in A with one endpoint in $S^1 \times \{0\}$ and the other in $S^1 \times \{1\}$ whose intersection with M is contained in $B(x,\delta/2)$. Let B denote the ball $B(x,\delta/2)$.

Let B_1 , B_2 , and B_3 be three components of $\sigma^{-1}(B)$ such that $B_2 = B_1 + (2\pi, 0)$ and $B_3 = B_2 + (2\pi, 0)$. Let J_1, J_2 , and J_3 be the corresponding lifts of J. Let $\phi: S \to S$ be the deck transformation that satisfies $\phi(B_1) = B_2$ and $\phi(B_2) = B_3$.

Let K_1 be a subcontinuum in \tilde{M} irreducible between J_1 and J_2 . Such a continuum must exist because M separates $S^1 \times \{0\}$ from $S^1 \times \{1\}$ in A. Let a be a point in K_1 with smallest first-coordinate.

Let $K_2 = \phi(K_1)$. Let b be a point of K_2 with largest first-coordinate. It follows that $d(a, K_2) = 2\pi = d(K_1, b)$.

Let $c \in K_1 \cap J_2$ and $d \in K_2 \cap J_2$. Then c and d are points of B_2 . Use Theorem 2 to construct a homeomorphism $\tilde{h} : \tilde{M} \to \tilde{M}$ such that $\tilde{h}(c) = d$ and $d(\tilde{h}(x), x) < 1$, for all x in \tilde{M} . Assume the continuum $\tilde{h}(K_1) \cup K_1$ is hereditarily indecomposable; then either $\tilde{h}(K_1) \supset K_2$ or $\tilde{h}(K_1) \subset K_2$. In either case, \tilde{h} moves a point of \tilde{M} a distance greater than 1, which contradicts the restrictions on \tilde{h} .

Therefore, the proof will be complete if we show that $\tilde{h}(K_1) \cup K_2$ is hereditarily indecomposable. First we show that $K_1 \cap K_2 = \emptyset$. If z were a point of $K_1 \cap K_2$, then the component C_1 of $B_2 \cap K_1$ containing z and the component C_2 of $B_2 \cap K_2$ containing z would have the property that $\bar{C}_1 \cup \bar{C}_2$ is a decomposable continuum. Since the restriction of σ to B_2 is a homeomorphism of B_2 onto B_2 , this contradicts the fact that M is hereditarily indecomposable.

Next we show that $\sigma(K_1 \cap J_1) \cap \sigma(K_1 \cap J_2) = \emptyset$. Since

$$\sigma(K_1 \cap J_1) = \sigma \phi(K_1 \cap J_1) = \sigma(K_2 \cap J_2),$$

and since the restriction of σ to J_2 is a homeomorphism, the claim follows from the fact that $K_1 \cap K_2 = \emptyset$.

Hence the restriction of σ to K_1 is a homeomorphism of K_1 onto $\sigma(K_1)$. Also the restriction of σ to K_2 is a homeomorphism of K_2 onto $\sigma(K_2)$.

Let $h: M \to M$ be a homeomorphism such that $h \circ \sigma = \sigma \circ \tilde{h}$. Since the restriction of $h \circ \sigma$ to K_1 is a homeomorphism, it follows that σ maps $\tilde{h}(K_1)$ homeomorphically onto $\sigma \tilde{h}(K_1)$. Since M is hereditarily indecomposable and the continua $\sigma \tilde{h}(K_1)$ and $\sigma(K_2)$ have a point in common, it follows that one contains the other. In either case, $K_2 \cup \tilde{h}(K_1)$ is homeomorphic to a subcontinuum of M and hence hereditarily indecomposable.

REFERENCES

- 1. R. H. Bing, A homogeneous indecomposable plane continuum. Duke Math. J. 15 (1948), 729-742.
- 2. ——, Concerning hereditarily indecomposable continua. Pacific J. Math. 1 (1951), 43-51.
- 3. R. H. Bing and F. B. Jones, Another homogeneous plane continuum. Trans. Amer. Math. Soc. 90 (1959), 171-192.
- 4. C. E. Burgess, *Homogeneous continua*. Summary of Lectures and Seminars, Summer Institute on Set Theoretic Topology, Madison, 1955, 73-76.
- 5. H. Cook, Concerning three questions of Burgess about homogeneous continua. Colloq. Math. 19 (1958), 241-244.
- 6. E. G. Effros, Transformation groups and C*-algebras. Ann. of Math. (2) 81 (1965), 38-55.
- 7. C. L. Hagopian, The fixed-point property for almost chainable homogeneous continua. Illinois J. Math. 20 (1976), no. 4, 650-652.
- 8. ——, Homogeneous plane continua. Houston J. Math. 1 (1975), 35-41.
- 9. ——, Indecomposable homogeneous plane continua are hereditarily indecomposable. Trans. Amer. Math. Soc. 224 (1976) no. 2, 339–350.
- 10. S. T. Hu, Theory of retracts, Wayne State Univ. Press, Detroit, 1965.
- 11. F. B. Jones, *Homogeneous plane continua*. Proc. Auburn Topology Conf., Auburn University, 1969.
- 12. ——, On a certain type of homogeneous plane continuum. Proc. Amer. Math. Soc. 6 (1955), 735-740.

- 13. ——, On homogeneity. Summary of Lectures and Seminars, Summer Institute on Set Theoretic Topology, Madison, 1955, 66-68.
- 14. B. Knaster and C. Kuratowski, Problème 2. Fund. Math. 1 (1920), 223.
- 15. J. T. Rogers, Jr., The pseudo-circle is not homogeneous. Trans. Amer. Math. Soc. 148 (1970), 417-428.

Department of Mathematics Tulane University New Orleans, Louisiana 70118