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The problem of identifying the homogeneous plane continua stems from an
old question of Knaster and Kuratowski [14]. R. H. Bing [1] and Bing and Jones
[3] have made notable inroads on the problem by showing that, in addition to
the simple closed curve, the pseudo-arc and the circle of pseudo-arcs are homogeneous
plane continua. The list of (nondegenerate) homogeneous plane continua includes
only these three.

In 1955, Jones [12] classified the homogeneous plane continua into three types:
(1) the ones that do not separate the plane; (2) the decomposable ones that separate
the, plane; and (3) the indecomposable ones that separate the plane. Continua
of types (1) and (3) must be hereditarily indecomposable [9] and [11], while continua
of type (2) that are not simple closed curves must admit a continuous decomposition
into elements of type (1) such that the resulting quotient space is a simple closed
curve [12].

The pseudo-arc is of type (1), while the simple closed curve and the circle
of pseudo-arcs are of type (2). No example of a homogeneous plane continuum
of type (3) is known. The pseudo-circle of Bing [2], a logical candidate, is known
not to be homogeneous [6] or [15].

In this paper, we prove that there do not exist homogeneous continua of type

(3).

C.E.Burgess [4, p. 77, Questions 2 and 6] has asked if there exists a homogeneous
plane continuum having infinitely many complementary domains, and if there
exists, for each positive integer n, a homogeneous plane continuum that separates
the plane into n connected domains. It follows from the results of this paper
that the answer to both questions is no.

Howard Cook [5] has described, for n a positive integer or «, a plane continuum
that separates the plane into n complementary domains and has only pseudo-arcs
as proper nondegenerate subcontinua. By the results of this paper, none of Cook’s
continua are homogeneous.

This paper also provides another proof that a pseudo-circle (i.e., a hereditarily
indecomposable, circle-like plane continuum different from the pseudo-arc) is not
homogeneous.
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A continuum is a compact, connected, nonvoid metric space. A space X is
homogeneous if, given x and y in X, there exists a homeomorphism of X onto
itself taking x to y.

The following version, due.to Hagopian [8], of a theorem of Effros [6] is
crucial to our arguments.

THEOREM 1. Let M be a homogeneous continuum, and let € > 0. There exists
3> 0 such that if x and y are points of M and d(x,y) <3, then there is a
homeomorphism h of M onto itself with hA(x) =y and d(z,h(2)) < e, for each z
in M.

The compactness of M is essential to the proof of Theorem 1; in the next
section, we will prove a similar theorem for a certain noncompact, homogeneous
space associated with a homogeneous plane continuum.

1. COVERING SPACES OF HOMOGENEOUS CONTINUA

Let S* be the unit circle in the plane with the arc-length metric. Let A be
the annulus S*' x I with the product metric. Let S = R X I be the product of the
real line and I with the product metric. Let o: S— A be the universal covering
space of A, where o is defined by o (s, £) = (exp (is), £). The map o is a local isometry.

Let M be a homogeneous subcontinuum of A, and let M = ¢~ ' (M). Even though
M is not compact and perhaps neither connected nor locally connected, it has
the following important property.

THEOREM 2. Let 0 < € < w. There exists 8 > 0 such that if p and q are points
of M with d(p,q) <3, then there is a homeomorphism h of M onto itself such
that h(p) = § and d(z, h(2)) < ¢, for each z in M.

Proof. Let B be a positive number such that any two maps f and g of a space
W into A satisfying d(f,g) < B are e-homotopic [10, Theorem 1.1, p. 111]. Recall
that a homotopy is an e-homotopy if, for each w in W, the set {(h,(w):t € I}
is of diameter less than e. Note that < e.

Let 3 satisfy the conclusion of Theorem 1 for the input B/3. Then 3 < w. Let
p and @ be points of M such that d (p,§) < 8. We must exhibit a homeomorphism
taking p and § and moving no point of M as much as e.

Let p = o(p) and g = o(g). Since d(p,q) <3, there exists a homeomorphism
h:M — M such that 2(p) = q and d (h,1,,) < 3/3. Extend & to a map g of a closed
neighborhood N (M) of M in A. Let v be a positive number less than /3 satisfying
the inequality d(g (), g(¥")) <B/3if d(y,y’) <~w, for all y, y’ in N (M). Assume,
by restricting N (M) if necessary, that d(y, M) <+, for all y in N (M).

It now follows that, for y in N(M), d(y,g(y)) <p. Hence g is e-homotopic
to the identity map of N (M). Use the Borsuk Homotopy Extension Theorem to
extend g to a map f:A— A such that f is homotopic to the identity map of A
by a homotopy F that extends the e-homotopy between g and the identity map
of N (M).
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The map G = Fo (o X 1):SXI— A is a homotopy between c~and feo. The
identity map of S lifts one end of G. Extend this lift to a lift G:SXI— S of

the homotopy G such that oo G = G and G is a homotopy between 15 and a map
f:S—S. ' |

Let 4 be the restriction of f to M. The map % is the desired homeomorphism.

To see that # moves no point of M as much as ¢, observe that G restricted
to M x I is an e-homotopy. In particular, if ¥ € M, then the set {G,(¥):t € I}
has diameter less than € < ar; hence, it lies in an evenly-covered set of A. Since
o{G,®):t € I} = {G,(%):t € I}, it follows that the set {G,(X):¢ € I} also has
diameter less than e. Since # () = G (%,1), and ¥ = G(%,0), the map A moves no
point of M as much as e.

To see that 4 is a homeomorphism, follow the procedure of the above paragraphs
to construct a lift 2:M— M of the homeomorphism A~ ':M— M satisfying
d(z,k(2)) <e, for all z in M (we use the letter % to avoid potential notational
confusion). Clearly.ko /(%) and Ao k(X) are points in o '(o(%¥)). Since neither
ko h nor Ao k moves a point as much as 2, it follows that ko £(X) = & = Ao k(%).

Similarly, 4 () is a point of 6~ *(g). Since d (5, 2 (p)) < ¢, it follows that Z(5) = §.
The proof of the theorem is complete.

THEOREM 3. Each homogeneous, separating plane continuum M is de-
composable.

Proof. LetT = {z € C; 1= |z]j = 2}. Embed M in the planar annulus 7 so that
a bounded complementary domain D of M contains the origin. If the continuum
M is indecomposable, then it is hereditarily indecomposable [9] and [11]. No
proper subcontinuum of M separates the plane. Hence M is the boundary of each
of its complementary domains. In particular, if x is a point of M and y > 0, then
the y-ball B (x;v) centered at x contains a point of D and a point of the unbounded
complementary domain of M. Hence there exists an arc from D to the unbounded
complementary domain of M whose intersection with M is contained in B (x;~).

Embed M in A, and translate the facts of the previous paragraph to this new
setting. The hereditarily indecomposable, homogeneous continuum M separates
the two components of the boundary of A from each other, but no proper subcontin-
uum of M does. If x € M and vy > 0, there is an arc in A meeting both components
of the boundary of A whose intersection with M is contained in the ball B (x;~).

Let & be a positive number satisfying the conclusion of Theorem 2 for ¢ = 1.
Let x € M. Choose an arc J in A with one endpoint in S* X {0} and the other
in S' X {1} whose intersection with M is contained in B (x,5/2). Let B denote
the ball B (x,53/2).

Let B,, B,, and B, be three components of ¢~ '(B) such that B, = B, + (2m,0)
and B; = B, + (2m,0). LetdJ,, J,, and J; be the corresponding lifts of J. Let $:S— S
be the deck transformation that satisfies $(B,) = B, and ¢ (B,) = B,.

Let K, be a subcontinuum in M irreducible between <, and <J,. Such a continuum
must exist because M separates S' X {0} from S' X {1} in A. Let a be a point
in K, with smallest first-coordinate.
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Let K, = ¢(K,). Let b be a point of K, with largest first-coordinate. It follows
that d(a,K,) = 2w = d(K,,b).

Letc € K, N J,and d € K, N J,. Then ¢ and d are points of B,. Use Theorem
2 to construct a homeomorphism 4 : M — M such that A(c) = d and d(h(x),x) <1,
for all x in M. Assume the continuum £ (K,) U K, is heredltarlly 1ndecomposable,
then either A(K,) D K, or A(K,) C K,. In elther case, £ moves a point of M
a distance greater than 1, which contradicts the restrictions on 4.



PLANE CONTINUA ARE DECOMPOSABLE 321

Therefore, the proof will be complete if we show that 4 (K,) U K, is hereditarily
indecomposable. First we show that K, N K, = . If z were a point of K; N K,,
then the component C, of B, N K, containing z and the component C, of B, N K,
containing 2z would have the property that C, U C, is a decomposable continuum.
Since the restriction of o to B, is a homeomorphism of B, onto B, this contradicts
the fact that M is hereditarily indecomposable.

Next we show that o (K, N J;) N o(K; N J,) = P. Since
oK, NdJ)=0d(K,NJ)=0c(K,N Jy),

and since the restriction of o to J, is a homeomorphism, the claim follows from
the fact that K, N K, = Q.

Hence the restriction of o to K, is a homeomorphism of K, onto o(K,). Also
the restriction of o to K, is a homeomorphism of K, onto o (K,).

Let 2: M — M be a homeomorphism such that # o o = o o A. Since the restriction
of Ao o to K, is a homeomorphism, it follows that ¢ maps #(X,) homeomorphically
onto oﬁ(Kl). Since M is hereditarily indecomposable and the continua oh(K,)
and o(K,) have a point in common, it follows that one contains the other. In
either case, K, U A(K,) is homeomorphic to a subcontinuum of M and hence
hereditarily indecomposable.
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