HOMOGENEOUS, SEPARATING PLANE CONTINUA ARE DECOMPOSABLE James T. Rogers, Jr. ## Dedicated to my mother and father The problem of identifying the homogeneous plane continua stems from an old question of Knaster and Kuratowski [14]. R. H. Bing [1] and Bing and Jones [3] have made notable inroads on the problem by showing that, in addition to the simple closed curve, the pseudo-arc and the circle of pseudo-arcs are homogeneous plane continua. The list of (nondegenerate) homogeneous plane continua includes only these three. In 1955, Jones [12] classified the homogeneous plane continua into three types: (1) the ones that do not separate the plane; (2) the decomposable ones that separate the plane; and (3) the indecomposable ones that separate the plane. Continua of types (1) and (3) must be hereditarily indecomposable [9] and [11], while continua of type (2) that are not simple closed curves must admit a continuous decomposition into elements of type (1) such that the resulting quotient space is a simple closed curve [12]. The pseudo-arc is of type (1), while the simple closed curve and the circle of pseudo-arcs are of type (2). No example of a homogeneous plane continuum of type (3) is known. The pseudo-circle of Bing [2], a logical candidate, is known not to be homogeneous [6] or [15]. In this paper, we prove that there do not exist homogeneous continua of type (3). C. E. Burgess [4, p. 77, Questions 2 and 6] has asked if there exists a homogeneous plane continuum having infinitely many complementary domains, and if there exists, for each positive integer n, a homogeneous plane continuum that separates the plane into n connected domains. It follows from the results of this paper that the answer to both questions is no. Howard Cook [5] has described, for n a positive integer or ∞ , a plane continuum that separates the plane into n complementary domains and has only pseudo-arcs as proper nondegenerate subcontinua. By the results of this paper, none of Cook's continua are homogeneous. This paper also provides another proof that a pseudo-circle (i.e., a hereditarily indecomposable, circle-like plane continuum different from the pseudo-arc) is not homogeneous. Received February 26, 1980. The author was partially supported by a research grant from the Tulane University Senate Committee on Research. Michigan Math. J. 28 (1981). A continuum is a compact, connected, nonvoid metric space. A space X is homogeneous if, given x and y in X, there exists a homeomorphism of X onto itself taking x to y. The following version, due to Hagopian [8], of a theorem of Effros [6] is crucial to our arguments. THEOREM 1. Let M be a homogeneous continuum, and let $\epsilon > 0$. There exists $\delta > 0$ such that if x and y are points of M and $d(x,y) < \delta$, then there is a homeomorphism h of M onto itself with h(x) = y and $d(z,h(z)) < \epsilon$, for each z in M. The compactness of M is essential to the proof of Theorem 1; in the next section, we will prove a similar theorem for a certain noncompact, homogeneous space associated with a homogeneous plane continuum. ## 1. COVERING SPACES OF HOMOGENEOUS CONTINUA Let S^1 be the unit circle in the plane with the arc-length metric. Let A be the annulus $S^1 \times I$ with the product metric. Let $S = \mathbb{R} \times I$ be the product of the real line and I with the product metric. Let $\sigma: S \to A$ be the universal covering space of A, where σ is defined by $\sigma(s, t) = (\exp(is), t)$. The map σ is a local isometry. Let M be a homogeneous subcontinuum of A, and let $\tilde{M} = \sigma^{-1}(M)$. Even though \tilde{M} is not compact and perhaps neither connected nor locally connected, it has the following important property. THEOREM 2. Let $0 < \epsilon < \pi$. There exists $\delta > 0$ such that if \tilde{p} and \tilde{q} are points of \tilde{M} with $d(\tilde{p},\tilde{q}) < \delta$, then there is a homeomorphism \tilde{h} of \tilde{M} onto itself such that $\tilde{h}(\tilde{p}) = \tilde{q}$ and $d(z,h(z)) < \epsilon$, for each z in \tilde{M} . *Proof.* Let β be a positive number such that any two maps f and g of a space W into A satisfying $d(f,g) < \beta$ are ε -homotopic [10, Theorem 1.1, p. 111]. Recall that a homotopy is an ε -homotopy if, for each w in W, the set $\{h_t(w): t \in I\}$ is of diameter less than ε . Note that $\beta \leq \varepsilon$. Let δ satisfy the conclusion of Theorem 1 for the input $\beta/3$. Then $\delta < \pi$. Let \tilde{p} and \tilde{q} be points of \tilde{M} such that $d(\tilde{p},\tilde{q}) < \delta$. We must exhibit a homeomorphism taking \tilde{p} and \tilde{q} and moving no point of \tilde{M} as much as ϵ . Let $p = \sigma(\tilde{p})$ and $q = \sigma(\tilde{q})$. Since $d(p,q) < \delta$, there exists a homeomorphism $h: M \to M$ such that h(p) = q and $d(h, 1_M) < \beta/3$. Extend h to a map g of a closed neighborhood N(M) of M in A. Let γ be a positive number less than $\beta/3$ satisfying the inequality $d(g(y), g(y')) < \beta/3$ if $d(y, y') < \gamma$, for all y, y' in N(M). Assume, by restricting N(M) if necessary, that $d(y, M) < \gamma$, for all y in N(M). It now follows that, for y in N(M), $d(y,g(y)) < \beta$. Hence g is ϵ -homotopic to the identity map of N(M). Use the Borsuk Homotopy Extension Theorem to extend g to a map $f:A \to A$ such that f is homotopic to the identity map of A by a homotopy F that extends the ϵ -homotopy between g and the identity map of N(M). The map $G = F \circ (\sigma \times 1) : S \times I \to A$ is a homotopy between σ and $f \circ \sigma$. The identity map of S lifts one end of G. Extend this lift to a lift $\tilde{G}: S \times I \to S$ of the homotopy G such that $\sigma \circ \tilde{G} = G$ and \tilde{G} is a homotopy between 1_S and a map $\tilde{f}: S \to S$. Let \tilde{h} be the restriction of \tilde{f} to M. The map \tilde{h} is the desired homeomorphism. To see that \tilde{h} moves no point of \tilde{M} as much as ϵ , observe that G restricted to $\tilde{M} \times I$ is an ϵ -homotopy. In particular, if $\tilde{x} \in \tilde{M}$, then the set $\{G_t(\tilde{x}): t \in I\}$ has diameter less than $\epsilon < \pi$; hence, it lies in an evenly-covered set of A. Since $\sigma\{\tilde{G}_t(\tilde{x}): t \in I\} = \{G_t(\tilde{x}): t \in I\}$, it follows that the set $\{\tilde{G}_t(\tilde{x}): t \in I\}$ also has diameter less than ϵ . Since $\tilde{h}(\tilde{x}) = \tilde{G}(\tilde{x}, 1)$, and $\tilde{x} = \tilde{G}(\tilde{x}, 0)$, the map \tilde{h} moves no point of \tilde{M} as much as ϵ . To see that \tilde{h} is a homeomorphism, follow the procedure of the above paragraphs to construct a lift $k: \tilde{M} \to \tilde{M}$ of the homeomorphism $h^{-1}: M \to M$ satisfying $d(z, k(z)) < \epsilon$, for all z in \tilde{M} (we use the letter k to avoid potential notational confusion). Clearly $k \circ \tilde{h}(\tilde{x})$ and $\tilde{h} \circ k(\tilde{x})$ are points in $\sigma^{-1}(\sigma(\tilde{x}))$. Since neither $k \circ \tilde{h}$ nor $\tilde{h} \circ k$ moves a point as much as 2π , it follows that $k \circ \tilde{h}(\tilde{x}) = \tilde{x} = \tilde{h} \circ k(\tilde{x})$. Similarly, $\tilde{h}(\tilde{p})$ is a point of $\sigma^{-1}(q)$. Since $d(\tilde{p}, \tilde{h}(\tilde{p})) < \epsilon$, it follows that $\tilde{h}(\tilde{p}) = \tilde{q}$. The proof of the theorem is complete. THEOREM 3. Each homogeneous, separating plane continuum M is decomposable. Proof. Let $T = \{z \in \mathbb{C}; 1 \le ||z|| \le 2\}$. Embed M in the planar annulus T so that a bounded complementary domain D of M contains the origin. If the continuum M is indecomposable, then it is hereditarily indecomposable [9] and [11]. No proper subcontinuum of M separates the plane. Hence M is the boundary of each of its complementary domains. In particular, if x is a point of M and y > 0, then the y-ball B(x; y) centered at x contains a point of D and a point of the unbounded complementary domain of M. Hence there exists an arc from D to the unbounded complementary domain of M whose intersection with M is contained in B(x; y). Embed M in A, and translate the facts of the previous paragraph to this new setting. The hereditarily indecomposable, homogeneous continuum M separates the two components of the boundary of A from each other, but no proper subcontinuum of M does. If $x \in M$ and $\gamma > 0$, there is an arc in A meeting both components of the boundary of A whose intersection with M is contained in the ball $B(x;\gamma)$. Let δ be a positive number satisfying the conclusion of Theorem 2 for $\epsilon = 1$. Let $x \in M$. Choose an arc J in A with one endpoint in $S^1 \times \{0\}$ and the other in $S^1 \times \{1\}$ whose intersection with M is contained in $B(x,\delta/2)$. Let B denote the ball $B(x,\delta/2)$. Let B_1 , B_2 , and B_3 be three components of $\sigma^{-1}(B)$ such that $B_2 = B_1 + (2\pi, 0)$ and $B_3 = B_2 + (2\pi, 0)$. Let J_1, J_2 , and J_3 be the corresponding lifts of J. Let $\phi: S \to S$ be the deck transformation that satisfies $\phi(B_1) = B_2$ and $\phi(B_2) = B_3$. Let K_1 be a subcontinuum in \tilde{M} irreducible between J_1 and J_2 . Such a continuum must exist because M separates $S^1 \times \{0\}$ from $S^1 \times \{1\}$ in A. Let a be a point in K_1 with smallest first-coordinate. Let $K_2 = \phi(K_1)$. Let b be a point of K_2 with largest first-coordinate. It follows that $d(a, K_2) = 2\pi = d(K_1, b)$. Let $c \in K_1 \cap J_2$ and $d \in K_2 \cap J_2$. Then c and d are points of B_2 . Use Theorem 2 to construct a homeomorphism $\tilde{h} : \tilde{M} \to \tilde{M}$ such that $\tilde{h}(c) = d$ and $d(\tilde{h}(x), x) < 1$, for all x in \tilde{M} . Assume the continuum $\tilde{h}(K_1) \cup K_1$ is hereditarily indecomposable; then either $\tilde{h}(K_1) \supset K_2$ or $\tilde{h}(K_1) \subset K_2$. In either case, \tilde{h} moves a point of \tilde{M} a distance greater than 1, which contradicts the restrictions on \tilde{h} . Therefore, the proof will be complete if we show that $\tilde{h}(K_1) \cup K_2$ is hereditarily indecomposable. First we show that $K_1 \cap K_2 = \emptyset$. If z were a point of $K_1 \cap K_2$, then the component C_1 of $B_2 \cap K_1$ containing z and the component C_2 of $B_2 \cap K_2$ containing z would have the property that $\bar{C}_1 \cup \bar{C}_2$ is a decomposable continuum. Since the restriction of σ to B_2 is a homeomorphism of B_2 onto B_2 , this contradicts the fact that M is hereditarily indecomposable. Next we show that $\sigma(K_1 \cap J_1) \cap \sigma(K_1 \cap J_2) = \emptyset$. Since $$\sigma(K_1 \cap J_1) = \sigma \phi(K_1 \cap J_1) = \sigma(K_2 \cap J_2),$$ and since the restriction of σ to J_2 is a homeomorphism, the claim follows from the fact that $K_1 \cap K_2 = \emptyset$. Hence the restriction of σ to K_1 is a homeomorphism of K_1 onto $\sigma(K_1)$. Also the restriction of σ to K_2 is a homeomorphism of K_2 onto $\sigma(K_2)$. Let $h: M \to M$ be a homeomorphism such that $h \circ \sigma = \sigma \circ \tilde{h}$. Since the restriction of $h \circ \sigma$ to K_1 is a homeomorphism, it follows that σ maps $\tilde{h}(K_1)$ homeomorphically onto $\sigma \tilde{h}(K_1)$. Since M is hereditarily indecomposable and the continua $\sigma \tilde{h}(K_1)$ and $\sigma(K_2)$ have a point in common, it follows that one contains the other. In either case, $K_2 \cup \tilde{h}(K_1)$ is homeomorphic to a subcontinuum of M and hence hereditarily indecomposable. ## REFERENCES - 1. R. H. Bing, A homogeneous indecomposable plane continuum. Duke Math. J. 15 (1948), 729-742. - 2. ——, Concerning hereditarily indecomposable continua. Pacific J. Math. 1 (1951), 43-51. - 3. R. H. Bing and F. B. Jones, Another homogeneous plane continuum. Trans. Amer. Math. Soc. 90 (1959), 171-192. - 4. C. E. Burgess, *Homogeneous continua*. Summary of Lectures and Seminars, Summer Institute on Set Theoretic Topology, Madison, 1955, 73-76. - 5. H. Cook, Concerning three questions of Burgess about homogeneous continua. Colloq. Math. 19 (1958), 241-244. - 6. E. G. Effros, Transformation groups and C*-algebras. Ann. of Math. (2) 81 (1965), 38-55. - 7. C. L. Hagopian, The fixed-point property for almost chainable homogeneous continua. Illinois J. Math. 20 (1976), no. 4, 650-652. - 8. ——, Homogeneous plane continua. Houston J. Math. 1 (1975), 35-41. - 9. ——, Indecomposable homogeneous plane continua are hereditarily indecomposable. Trans. Amer. Math. Soc. 224 (1976) no. 2, 339–350. - 10. S. T. Hu, Theory of retracts, Wayne State Univ. Press, Detroit, 1965. - 11. F. B. Jones, *Homogeneous plane continua*. Proc. Auburn Topology Conf., Auburn University, 1969. - 12. ——, On a certain type of homogeneous plane continuum. Proc. Amer. Math. Soc. 6 (1955), 735-740. - 13. ——, On homogeneity. Summary of Lectures and Seminars, Summer Institute on Set Theoretic Topology, Madison, 1955, 66-68. - 14. B. Knaster and C. Kuratowski, Problème 2. Fund. Math. 1 (1920), 223. - 15. J. T. Rogers, Jr., The pseudo-circle is not homogeneous. Trans. Amer. Math. Soc. 148 (1970), 417-428. Department of Mathematics Tulane University New Orleans, Louisiana 70118