HEREDITARILY STRONGLY INFINITE DIMENSIONAL SPACES

Leonard R. Rubin

1. INTRODUCTION

Recently in [8] John J. Walsh constructed an infinite dimensional compactum
Z lying in the Hilbert cube @ which contains no finite dimensional subspaces
except those of dimension 0. By minor modifications, he can also eliminate all
countable dimensional subsets from Z.

Prior to Walsh’s result, we had the following situation. In 1932, Hurewicz
[4], assuming the continuum hypothesis, gave an example of an infinite dimensional
subset of the Hilbert cube such that every finite dimensional subset is countable,
hence, 0-dimensional. In 1965, Henderson [3] and then Bing [1] in 1966 constructed
infinite dimensional compacta all of whose closed finite dimensional subsets are
of dimension 0. In 1974, Zarelua [10} constructed strongly infinite dimensional
compacta all of whose closed subsets are strongly infinite dimensional, using
different techniques. Following that, in 1977, Rubin, Schori and Walsh [7] developed
a simpler, axiomatic approach to these constructions; we shall use their results
in the sequel.

The construction given herein is a variation of Walsh’s. It gives us an infinite
dimensional compactum X having the property that if Y C X and dim Y > 0,
then Y is strongly infinite dimensional. In a forthcoming paper, we will show
that every strongly infinite dimensional space contains such a “hereditarily” strongly
infinite dimensional closed subspace.

This paper is a revision of an earlier version that was incorrect. We gratefully
thank John Walsh for finding the error there. We also thank Wesley Terry for
many stimulating discussions that helped generate ideas for the techniques used.

2. DEFINITIONS

The spaces dealt with herein are all separable and metrizable. Let I" denote
a countable or finite indexing set.

Definition 2.1. Let X be a space and A,B be closed subsets of X. A closed
set S of X separates A and B if X — S can be written as the union to two separated
sets, one containing A, the other containing B. We say S continuum-wise separates
A and B if each continuum in X that meets A and B also meets S.

Definition 2.2 Let X be a space and {A4,, B,): k2 € T'} be a collection of disjoint
pairs of closed, nonempty subsets of X. The family is called essential provided
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that if S, separates A, and B, for each &, then N {S,:k € T} # 8. If T is infinite,
then X is called strongly infinite dimensional if it has such an essential family.

LEMMA 2.3 Every strongly infinite dimensional space is infinite dimensional
but is not countably infinite dimensional.

Proof. Let X be such a space and suppose X can be written as the countable

union U {X;:i € 3} where each X, is 0-dimensional. For £ € 3, choose a separator
S, of A, and B, such that S, N X, =W¥..Itisroutine to checkthat N {S,:k € 3} =9,
which is a contradiction to the definition of essential family.

For use in the sequel we state 5.5 of [7].

PROPOSITION 2.4 Let{(A,;,B;):j € I'} be an essential family in a compactum
X. LetJ C T and suppose for each j € J, X;is a closed subset of X which continuum-
wiseseparates A,and B;. LettingY = N {X,:j€J},{(A,NY,B,NY):kET -J}
is an essential family in Y.

Now suppose X is a locally connected compactum, A,B are disjoint closed subsets
of X, and S is a continuum-wise separator of A and B in X. Let F(S) denote
the union of S and all complementary domains of S that do not intersect A U B.
If 3 is a collection of continuum-wise separators of A and B, then F (3) designates
{F(S):S € 3}. The following lemma can easily be proved.

LEMMA 2.5. Let X be a locally connected compactum and suppose A,B are
disjoint closed subsets of X. If S is a continuum-wise separator of A and B in
X, then so is F(S). If S is a separator of A and B in X, then so is F (S).

3. CONSTRUCTION OF CONTINUUM-WISE SEPARATORS

In this section we develop a special way to produce continuum-wise separators.

Let X be a Peano continuum, Y be a metric space and ®: Y — 2% (supplied
with the Hausdorff metric [6]) be a function. Then ® is upper semi-continuous
(usc) provided: if y; - y and U is a neighborhood in X of <I>(y) then there is
an integer N such that ®(y,) C Ufor all i = N.

Now assume A,B are disjoint closed subsets of X and let % denote the collection
of all continuum-wise separators of A and B in X. It is easy to show that .&
is a compact subset of 2%. Let ®:7 = [—1,1] — % be usc and let F be as in 2.5.

LEMMA 3.1. The composition Fo®:I— .#is usc.

Proof. Let G = F(®(¢)) and let U be an open neighborhood of G. Using local
connectedness, cover X — U with a finite collection of closed, connected sets K;
each of which does not intersect G but does intersect A U B. Let V be the comple-
ment of U {K,}. Then if ® (s) C V, F(®P(s)) C V also.

Now let 7 : X — I be continuous and define Zto be U {w ' () N Fo®(t) : ¢t € I}.
PROPOSITION 3.2. Zisclosedin X and Z € %,
Proof. Employing the fact that Fo ® is usc, it is easy to show Z is closed.
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ForC € {A,B},letU,= {x € X — Z:the componentof X — F (P (w(x))) containing
x meets C}. Since Fo®ox is usc and X is locally connected, each of U, and
U, is open; clearly U, NUz=® and (A-2Z)C U, (B-Z)CUs.
Finally, X - Z= U, U Up.

This proposition and its proof were supplied to me by John Walsh. The proof
greatly simplifies my original one.

4. INTERSECTION OF SEPARATORS

Let @ denote the Hilbert cube and refer to the notation at the first of Section
5. Given a sequence {S;:i = 1} of separators of opposite pairs of faces of @, we
may find it necessary to select another sequence of separators {S;:i = 1} so that
N {F(S)):i=1} € N {S;:i = 1)}. This section is designed to show how to accom-
plish this.

For the next few lemmas, assume S is a separator of A =A4, and B=B,,
in @. In general, let A (S),B(S) denote the respective complementary domains
of S (i.e., components.of @ — S) containing A and B. Let Fr U denote the topological
boundary of U.

LEMMA 4.1. The separator S contains a closed subset S’ which is minimal
with respect to being a separator of A and B.

Proof. Let S’ be the intersection of a maximal nest of separators of A and
B that are contained in S.

LEMMA 4.2. If U is an open neighborhood of a point p € S such that
UnN B(S) =8, then S, = S — U is also a separator of A and B in Q.

Proof. Suppose there is an arc [a,6] in @ — S, from A to B. Let g be the

last point of [a,6] N S. Then q lies in U. It is clear that the half open interval
g <t = b is contained in B(S).

LEMMA 4.3. Let U be a closed neighborhood in ClB(S) of a point pES,

UNB=%W.Then S, = (SUU)—IntU is a separator of A and B in @ (Int
denotes the interior in Cl B(S)).

Proof. Suppose [a,b] is an arc in @ — S, from A to B. Let g be the last point of
[a,6] N S. Then ¢ lies in Int U, and so the arc q = t = b must intersect Fr U.
But Fr U C S, so this is a contradiction, and the lemma is proved.

L.EMMA‘ 4.4. Suppose K is a compact subset of B(S). Then there exists a
continuum in B(S) containing K U B in its interior.

LEMMA 4.5. Assume S is minimal and let P be a compact subset of S. Let
U be a closed neighborhood in Cl1B(S) of P, U N B = O and suppose D is a
complementary domain of S that does not intersect A U B and that there exists
a peEFrDNP. Then S;=(SU U)—Int U (interior taken in ClB(S)) is «
separator of A and B in Q, D C A(S;), A(S) C A(S;). Choosing S, C S} to be
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minimal with respect to separating A and B, then it is also true that D C A(S,)
and A (S) C A(S,).

Proof. By 4.3, S; is a separator of A and B in Q. Since p& S/, there is a
closed ball neighborhood E of p such that E N S; =W¥. Clearly D N S, =19, so
for any ¢ € D, there is an arc L C D from g to some point in E. On the other
hand, since S is minimal, 4.2 implies E contains a point ¢’ of A(S). Since
A(S) N S, =9, thereisanarc L’in A (S) from A to ¢’ missing S;. ThenL U E U L’
is a continuum meeting ¢ and A and not intersecting S;. Therefore, any ¢ € D
lies in A (S,).

Example 4.6. One might expect that a minimal separator of A and B in @
would have the property that each of its complementary domains intersects A
or B. That this is not necessarily the case is demonstrated as follows.

Let Y be a triod as in Figure 1.

Figure 1

By [9], ¥ X @ = Q. On the other hand, A = {a} X @ and B = {b} X @ are Z-sets
[2] in @, and by applying Theorem 11.1 of [2], we may assume A = A,, B = B,
are opposite faces of . Then clearly S = {c¢} X @ is a minimal separator of A,
and B,, while V X @ is a complementary domain of S that does not intersect
A, or B,. On the other hand, it is clear that S is not a Z-set in @ by the next
lemma.

LEMMA 4.7. If K C Qisa Z-set, then @ — K is connected.

Proof. Applying Theorem 11.1 of [2], there is no loss of generality in assuming
KCA,.

LEMMA 4.8. Suppose {n,:i= 1} is a nonredundant list of positive integers
and for each i = 1, S; is a separator of A, and B, in Q. Then N {S;:i= 1}
is a Z-set in Q.

Proof. For € > 0, choose n; so large that the canonical projection of § onto
A, is an e-map. Then note that S, N A, =, since S, separates A, from B,, .

THEOREM 4.9. Let{n;: i = 1} be a nonredundant sequence of positive integers,
and for each i, let S, be a separator of A, and B, in Q. There exists a sequence
{S7:i = 1} of separators S] of A, and B, in Q such that
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N{FS):i=z1} Ccn{S;:i=1).

Proof. For each i, let S; C S, be minimal, and let NF(S;) designate a small
closed neighborhood of F(S;) so that NF(S]) is a separator of A, and B, and
F(NF(S;)) = NF(S)). Let

K,=n{S/:i=1}) C K=n {(NF(S)):i=1).

Define H; to be K—(S/U A, (S)). Our object is to construct S7 so that
F(S%) C NF(S) and F(S}) N H="%. If we can do this, we then can construct
S’ similarly for each i. Then we would have

N{FS):i=1}y Cc N {NF(S)):i=1} =K.

However, for each x € K — K, there is at least one i so that x lies in the H,
corresponding to S.. This would show that x & F(S?). In turn, this would imply
that N {F(S}):i= 1} C K,, completing the proof of the theorem. Therefore, we
only need to show how to construct S7.

To reduce notation, let S=S;, A=A,, B=B,, H=H,. Then H is a locally
compact space. For each x € H there is a compact neighborhood E, of x in H
and a complementary domain D, of S such that E, C D,. Write H= U {H;:i= 1},
a countable cover consisting of sets E..

Let M, denote the closure of A(NF(S)) and M, denote the closure of B(NF(S)).
We note that M, C A(S), M, C B(S). If H=1W, let S7=S. Otherwise, let
H; = H, — B(S) (Note that either H; = H, or H} =Q..). LetT, be a continuum in
B(S) containing M, U (H, N B(S)) = My U (H, — H]) in its interior. If H, = Q,
let S(1) = S. If not, then there is a complementary domain D, of S containing
H,=H, in its interior. Since K is a Z-set (4.8), use 4.7 to find a point
p € FrD, — K. Choose £ > 0 so small that the closed e-neighborhood U of p is
contained in the interior of NF (S) and does not intersect X U T',. Apply 4.5 to replace
S by S(1). Then we have M, C A(S) C A(S(1)), D, C A(S(1)), T, N S(1) ="A.
From this and the above it follows that M, U M, U H, C A(S(1)) U Int T,.

Our next step will establish a recursion process. Let

H,=H,— [B(S(1)) U A(S(Q))].

Let T, be a continuum in B(S(1)) containing 7, U (H, N B(S,)) in its interior.
If H,=49, let S(2)=S(). If not, then there is a set D, consisting of a
finite union of complementary domains of S(1) such that H, C D,. Let P be
a finite subset of S(1) that contains a boundary point of each component of D,
and such that P N K =¥8,. Choose € > 0 so small that the closed e-neighborhood
U of P does not intersect K U T,. Apply 4.5 to replace S(1) by S(2). Then we
have M, C A(S)) C A(S(1)) C A(S(2)),D, CAS2), T, CIntT,, T, N S(2) =X.
It follows that M, U M, U H, U H, C A(S(2)) U Int T3,

We continue this construction, producing a sequence S(1), S(2),....
Let S7 be the limit of some convergent subsequence. Then for each i,
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S7N T;=8. Clearly A(S) C A(S}). Hence, (M, UM,) N F(S}) =¥, sothat
F(ST) CNF(S).

On the other hand, for any i, H, C A(S(Z)) U Int T; C A(S7) U B(SY), so that
F(S7) N H; =Y. This implies F'(S7) N H =9, completing the proof of the theorem.

5. ROTATING CONTINUUM-WISE SEPARATORS

The constructions of Section 3 and Section 4 will be useful to us only if we
can relate them to each other, as will be seen in subsequent developments. The
proper relation will be obtained when we see how to construct the maps & of
Section 3.

For each n=1, let I, = [~1,1]; then @ =TI {I,: n = 1} is the Hilbert cube
and 7,: @ — I, is the n-th coordinate projection. The sets A, = w,'(—1) and
B, = w,' (1) are called the opposite faces of @ in the I, direction. Using the proof
on p. 49 of [5], one sees that {(4,,B,) : n = 1} is an essential family in . Hence
the Hilbert cube is strongly infinite dimensional.

Foreachn=1,1let @, ==,  (0); form # n,let A> =A, N Q,,B =B, N Q,.
As a standard notation, whenever A C I,is a Cantor set,welet A=A U {—1} U {1}.
We use X, to designate the collection of all continuum-wise separators of A”
and B;, in @, endowed with the Hausdorff metric. It is not difficult to see that
3 is a compact metric space.

5.1. Suppose m # n, m > 1, n > 1, and A C IntI, is a Cantor set. Let
B:A— F(Z.) be a function satisfying,

5.1.1 If (a,b) is a component of I, — A, then B (a) = B (d),
5.1.2 B is usc,
513 B(-1)=BQ1) = Q,.

The idea of the next operation is to take ¢t € A, rotate 8 (¢) counterclockwise
through w/2 radians, make a linear adjustment to get back into @, and then
project into §),. The resulting set « (£) will.be an element of F(Z7).

To begin, let a(—1) = a(1) = @,. For the sequel, treat @ as being embedded
in the topological product of countably many ccpies of the real line. Let £ € A.
For simplicity we define the operation of changing from B to « in three steps,
following a point u = (u,,u,,...) € ().

First, u -» v = (v,,v,,...), where v, = ¢t — u,, v, = t + u,, v, = u, otherwise. This
operation corresponds to a re-embedding of B (#) via a counterclockwise rotation
of = /2 radians in the (1,n)-coordinates around the point (0,#) in I, X I,. Most
important is that (u,,u,) = (0,?) if and only if (v,,v,) = (0,£); i.e., in this case
u— u.

Unless ¢t = 0, the first operation maps B(f) outside @; our second operation
adjusts this, sending points back into @ (because u € @,). Send v = (v,,v,,...) to
w = (w,w,,...) where w;=v,ifi=2, w,=v, /A - ifv,=0, w, = v,/ + )
if v; = 0. Note v, = 0 if and only if w, = 0; i.e., in this case v— v.
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The third operation is simply projection into Q,, given by
w = (Ww,,Ww,,...) = 2= (2,,2,,...)

where 2, = w, for 1 # n, 2z, = 0.

We see that [a(¢) X I,] N @' (£) N @, = B(£) N« (¢t). Also, all three opera-
tions described above are continuous. We therefore have the following result.

PROPOSITION 5.2. Let A,B be as in 5.1. Then there exists a function
a:A—- FE") such that of—1) = a(l) = Q, and satisfying 5.1.1, 5.1.2, with
a in place of B. Furthermore, for each t € A,

fa@) X L] N (6) N Q, =B N ' (¢).

5.3. Let us conclude this section with a lemma indicating how we might find
functions B as in 5.1. Assume A C IntI, is a Cantor set and B,:A— X} is a
continuous function with B(—1) = (1) = @,. Let {(a;,b;) : i = 1} be a nonredundant

list of the complementary open intervals of Ain I,. Define B,: A — =% by B,(¢) = B,(¢)
ift & {a;,b;:i =1}, B,(t) = By(a) U By(b) if t € {a;b,}.
5.3.1 B, is usc.

Proof. In fact, what occurs is that {B,(¢,):i= 1} converges to §,(¢) in =},
and since $3,(f) C B,(¢), the result follows from the nature of the Hausdorff metric.

Define B : A — F(Z}) by the rule B(£) = F(B,(?)).
5.3.2 B is usc.
Proof. See the proof of 3.1.

We summarize this information in the following lemma.

LEMMA 5.4. Suppose A C Int I, is a Cantor set and B, : A— =} is a continuous
function with B,(—1) = B,(1) = Q,. Then there exists B:A— F(Z) such that
B(t) = F(B,(t)) except perhaps when t is an endpoint of a component of I, — A .
Furthermore, we may choose f3 to satisfy 5.1.1, 5.1.2, 5.1.3. That is, if (a,b) is
a component of I, — A, then B(a) = B(d), B is usc, B(—1) = B(1) = Q,.

6. CONSTRUCTION OF X, MAIN RESULT

Let 777 be a countable base for the topology of [—1,1]. For each W € %/
let Ay, be a Cantor set in W— {—1,1}. Let Z = {(W,n): WeE %, n=2}, and
choose a function \: {m =3} - £ to be a surjection such that each \™'(W,n)
is countably infinite and n & A\""(W,n).

We have the essential family, {((A,,B,): m = 2} in @, as in Section 2, where
Q, is playmg the role of @. For each (W,n) € &, let Ay, be the compactum,
II { =, :mE N1 (W,n)}. Choose a continuous surjection B, : A,,— A, so that
B, (x) is uncountable for each x, B,(—1) = B,(1) = (@,,Q,,...). For m € \"Y(W,n),
let p,.: Ay, — =, be the coordinate projection. Define B* to be p, B,; thus
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BX : Ay — X, satisfies the requirements of B, of 5.4. Let B, : A, — F (21) be
as in the conclusion of 5.4; then m, n, A, C Int I, B8,, are as in 5.1.

Let a,, : Ay, — F(27) be as o in 5.2. Now extend a,, to all of I, by o, (£) = «,,(a)
whenever ¢t lies in a complementary interval (a,b) of A, in I,. Then
a, : I.—> F(Z}) is also usc. Let .%/,, denote the space of all continuum-wise
separators of A4,, and B,, in Q. Define ® : I, —» F(%,,) by ®(f) = a,,(t) X I ; again,
® is usc. Using 5.3.1 and the construction preceding 3.2, and using X = @ and
w=m,:Q—>1I,letZ, € &, beasZin3.2. ThenZ, = Z! N @, liesin =}, We have
the important formula for ¢ a nonendpoint of A, :

Z,Nw ' (t)=F(p,Bo®) N w, (2).

This comes from the conclusion of 5.2 and the choice of 38,,.

Define thespace X C @, byX =N {Z,: m = 3}. Thenby 2.4, {(42 N X,B} N X)}
is an essential family in X. Applying II.4.A of [5], we have the following result.

PROPOSITION 6.1. dim X # 0.
We now state and prove our main result.
THEOREM 6.2. If G C X and G # 0, then G is strongly infinite dimensional.

Proof. Since G C @, and dim G # 0, there exists n > 1 such that w,(G) contains
aWe 7 (It is easy to show that a countable product of 0-dimensional spaces
is O-dimensional). For each m € \™"(W,n), let &, ==_.'[-1,-1/2] N Q,,
B=7,11/21]1 N Q,.LetF ={, N G, #, NG):m €N (W,n)}. We want
to show that # is an essential family for G. It is clear that each element of
& isadisjoint pair of closed subsets of G. NotethatA, N GC .«,,, B NGC £,,.
Suppose for each m € \"'(W,n), S,, is a separator of .«Z/,, N G and #,, N G in
G. Write G — S,, = H,, U K,, where H,, K, are disjoint and open in G,

“,NGCH, #,nNGCK,,

Let H); = H,, U Int &, K = K, UInt %, (interior taken in @,). Then
H?%, and K}, are separated in @,, so there exist disjoint open sets U,,V, of @,
such that H* C U,,, K} C V,. Define S, to be @, — (U, U V,). Note that
S.NGCS,,. Since A,, C U,,B, CV,, S, separates Al and B in @,
Thus S, € ...

For each m, let S, be chosen as in 4.9, with @, replacing @, and S, replacing
S,, there. Thus N (F(S,):m € A" (W,n)} C N {5, : m € A\ (W,n)}. There
is a point r € Ay, such that p, (r) = F(S]) for each m. Choose a nonend-
point ¢t € A, such that By(¢) = r. Hence BX (¢) = p,.Bo(£) = F(S.) = B,,(t). From a
previously noted formula, we conclude that

Z, N a (&) =p,Bo(t) N mw, (&) = F(S7) N m,(¢t).

Therefore,
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%ﬂ;l(t) NGCcnN {F(S:;):me)\_l(W',n)} NGCnN {Sm:mE}\_I(VV,n)} naGg
=n{S,.,NG:meN (Wn)} cni{S,:meN"(Wn)}

giving us the desired result.

COROLLARY 6.3. The only finite dimensional subsets of X are those of

dimension 0, X contains no countable dimensional sets, and X itself is infinite
dimensional.

10.
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