TORUS KNOTS IN THE COMPLEMENTS OF LINKS
AND SURFACES

Herbert C. Lyon

Our major result is Theorem 2, which states that if S C S®is any nonsingular,
nonseparating orientable surface (possibly disconnected), then there exists a torus
knot ¢ with mirror image ¢’ such that (¢ # ¢t) N S = @ and S C F, where F
is a minimal spanning surface (fiber) for ¢ # t’. The basic construction gives
insight into the structure of closed 3-manifolds, and some important known results
follow as corollaries.

The notation and techniques are standard (cf. [3], [6], [10]). We work exclusively
in the PL category. The symbols d(...), N(...), and CL(...) denote, respectively,
the boundary, regular neighborhood, and closure of the object (...). We shall have
several occasions to move links and surfaces by ambient isotopies, making the
implicit assumption that each may be reversed when the construction is complete.

We begin by constructing torus knots in the complements of links.

THEOREM 1. Let &k C S® be a tame link. There exists a torus knot t C S*
such that t N k = @ and k C F, where F is a minimal spanning surface for
L.

Proof. We say that a link in R? is in square bridge position with respect to
the plane z = 0O if the projection onto the plane is regular and if each seg-
ment above the plane projects to a horizontal segment and each one below to a
vertical segment. Our link 2 C S® may be represented as a closed braid [1, p.
42], and we may assume k£ lies in a 3-cell which has been identified with
[0,1] X [0,1] X [-1,1] C R°®.It is now a simple matter to make each overcrossing
horizontal and each undercrossing vertical, and an additional ambient isotopy
(cf. figure 1) will put % into square bridge position with respect to the “plane”
[0,1] X [0,1] X {0}. (Note that the minimum bridge number of all such square
bridge representations is an integral link invariant; we call it the square
bridge number.)

Let T C S® be a torus which determines the genus one Heegard Splitting
(U,V) of S®>. We may assume T' N ([0,1] X [0,1] X [-1,1]) = [0,1] X [0,1] X {0}
and [0,1] X [0,1] X [0,1] C U. Each disk [0,1] X {4} X [0,1] thus lies in

a properly embedded, nonseparating disk DC U, so kNU C U D;. Simi-
i=1
larly, k. N V C U E;, where each E; C V is a properly embedded, nonseparat-
i=1
ing disk containing {a} X [0,1] X [-1,0] and each D, N E, is a singleton. If

(r,s) # 1, add more disks D, with D N k& = @, until (r,s) = 1. The curves D,
and 0E,; inherit an orientation from the coordinatization of [0,1] X [0,1] X {0}.
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Figure 1.

Within a small neighborhood, in T of each component of 4D, N 9E;,, 1 =i < r,

r

1 =j =< s add to (U Di) U (U E,-) a pair of triangular 2-cells as in
i=1 i=1

Figure 2.

The result is a 2-manifold F, 2 C F, and dF is the torus knot ¢ of type (r,s).
Since we have constructed F to have genus (/2) (r — 1)(s — 1), it must be a mini-
mal spanning surface for ¢.

If M is a 3-manifold fibered over S', then a polygonal simple closed curve
s C M is said to be perpendicular to the fibering if s is transverse to each fiber,
and thus intersects each fiber in the same finite number of points.

A

// N

Figure 2.
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COROLLARY 1. Let 7/ = U £ be a link of n components, and assign to
i=1
each component £ an integer s;. There exists a torus knot t C S® — / such that
Ik(t/) =s,1=<i=nlIfs;# 0, £ is perpendicular to the fibering of

CL(S® — N(®).

Proof. Construct ¢t and F as in the theorem, so that /7 C F. If 5; = 0, we
are finished with /, so we may assume s; # 0. Note from our construction that
we can draw an arc a; C F from /Z to t such that (a; N /) C da;. The torus
dN (t) inherits an S* X S' product structure from the fibering of CL (S® — N@©)),
and (N(e;) N F) N aN(t) is an arc §, in aN(¢). Let A, = 3, X S' C aN(¢) be
an annulus which is contractible in N(¢). Let 8; C F be a nonsingular arc which
begins in 94;, travels in daN(a;) to /£, proceeds in a positive direction along
£ — N(a;), and then returns to dA; along dN («;), and assume 3; has been parameter-
ized accordingly as B;(x), 0 = x = 1. Let 3; be parameterized as 3;(x), 1 = x = 2,
with B;(1) = 3,(1) and B,(0) = 5,(2), so that B, and J, together represent a new

simple closed curve in F which is isotopic, in S® — U 4, to 4. Without loss of
j#i

generality we may assume that s; > 0 and that each simple closed curve of the

form {a} X 8' C §, X S' = A, has linking number +1 with £ Since

CL (S® — N(¢t)) is fibered over S’, it contains a product of the form

(F N CL(S? — N(®))) X [0,],

where F N CL(S®> — N(t)) = (F N CL(S® — N(t))) X {0} and the increasing
second coordinate determines the positive direction on A;. Replace §3; by

~

Bi = (Bz (x)’ Ex)’
S0

B,C(FNCL(ES®-N@®) X [0e], 0=x=1,

and replace 3; by S,. = (;(x), 2ms; — e){x — 1) + ¢) - A;, where 1 = x = 2
and the second coordinate is taken modulo 27. Then Z, = 8, U 3§, is a simple

closed curve isotopic to £ in S° — U 4, Ik (Z;, t) = s;, and Z, is perpendicular

J i
to the fibering of CL (S® — N (t)). Similar constructions applied to each component
of / complete the proof.

COROLLARY 2. ([2], [9], [10, p. 340]) Every closed orientable 3-manifold
M has an open book decomposition.

Proof. By Hilden [4] and Montesinos[8] M is an irregular 3-fold branched
covering of S°, branched over a knot %. Letting /= %k and s, # 0, we see from
Corollary 1 that there exists a torus knot ¢ C S* — k such that CL(S®> — N(¢))
is fibered. Since % 1is perpendicular to the fibering, the fibering lifts to
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CL (M — N(p~'(t))), where p is the covering map. Hence M has the desired structure.

(Note that a stronger result is proved in Corollary 4.)

COROLLARY 8. IfZ C 8%is any link, then there exists a torusknott C S® - 7/
such that CL (S — N (£ U t)) is fibered over S*.

Proof. Follow the construction with H s; # 0.
i=1

THEOREM 2. Let S C S® be an orientable, nonseparating and nonsingular
surface. There exists a torus knot t with mirror image t’ such that

(t#t)NS=96, SCF,
where F is a fiber for t#1t', F —S is connected, and S is incompressible in

S? — (Bd(S) U (¢ # t)).

Proof. Since S is nonseparating, each component S; of S, 1 < i < n, must
have boundary. Hence, by standard arguments [7, pp. 43 ff.]), we may assume

S;=D; U (U b;; |, where D; is a disk and the b; are bands attached to 4.D,.
i

Let ¢, be a core of b, so ¢; C b, is an arc and ¢; N ab,; = ¢; N D, = dc; meets
each component of b; N D;. Using the notation of the proof of Theorem 1, we
move S by an ambient isotopy until S C [0,1] X [0,1] X [-1,1],

SN a(0,1] x [01] x [-1,1}) = J D, D,C [((—1)/n,i/n] x {0} x [0,1],

i=1

and
SN ([0,1] x {0} x (o)) = J (DN b,).
iJ
Temporarily ignoring the bands b,; and concentrating on the c;, we may, keeping

U dc; fixed, apply the construction of Theorem 1 to obtain a torus knot ¢ with

£

fiber F’ such that (J (D, U ¢;) C F’. The surface

ij

s'=(Lij D,.)u<F"nN(Ej) c,.,.))c F

is homeomorphic to S and differs from S only by twists in the bands b;. Our
construction assures us that we may draw an arc in F’ — U (D; U ¢,;) from
L

either side of each c;; to ¢. Hence neither U (D, U ¢;) nor S’ separate F’. Moreover,

LJ
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Figure 3.

we can introduce additional right-hand twists in any one of the bands b/ of S’
as follows. Replace a small horizontal segment of the projection of c; with the
projection shown in figure 3(a). The resulting right-hand twist in b, is indicated
in figure 3(b), where the perspective is from above, the solid and dotted lines
represent opposite sides of the band, and only the top side is indicated when
they lie above one another. Of course, this operation replaces the torus knot ¢
with another.

We encounter difficulty, however, if we attempt to introduce left-hand twists
in the bands b],. This is due to the inherent right-handedness of the surface F’,
which is in turn derived from the way the torus knot { was defined. We shall
surmount this difficulty by composing ¢ with its mirror image, which has a minimal
spanning surface in which all bands have left-hand twists.

Lety C F' — (t U ( U Di)) be an arc chosen so thaty meets and is trans-
i=1

verse to each c;. Let C = N(y) and let L C CL(S? — C) be a properly embedded
disk chosen so that L N dC = F’ N aC. Note that each component of

G= (F -J b, u ci,.)) N CL(S®-C)
i
must meet dC, because if not, U (D; U ¢;;) would separate F'. Next, staying

i
within the 3-cell C = N(y), we apply our previous construction with the complex
(U (c,-an)UL)CSS
i

replacing U (D; U c;;). This time, however, replace the instructions in figure

i
2 for the construction of the torus knot with those in figure 4. The result will
be a torus knot ¢ C C of the form (r’,s’), with r* > 0 and s’ < 0, and with
a spanning surface (fiber) F” such that
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Figure 4.

(U (c; N C)UL)CF"

i

and F” N 9C = F' N aC. As before | (c; N C) U L does not separate F” and
ij
H = (F" - U cij) N C is connected because we can draw an arc in H from
i
either side of each component of ¢;; N C to ¢’. This time, however, we may presume
to have inserted any number of left-hand twists in each of the bands N (c; N C) N F”.
Thus, if we let F”” denote the surface

(F"N C)U (F' n CL(S® - C)),

each band N(c;) N F” may be twisted an arbitrary number of times in either
direction, so we may assume each b, C F”, and hence, S C F”. By adding disks
again, we may also assume that this construction has been carried out with r’ =r
and s’ = —s, so t’ is the mirror image of ¢. Now

F"—|J (D;U¢;))=GUH,
iy
H is connected, and each component of G meets H, so U (D; U c;), and hence

i
S, cannot separate F'”. It is thus possible for us to find an arc § in F” — S
which begins in ¢, meets 0C once, and ends in ¢’. Now ¢t C CL(S®—-C) and
t’ C C, soreplacing (¢ U t') N N®) by F” N 3a(N(d)), and F"” by

F=CL(F” - N@)),



TORUS KNOTS 45

we obtain the knot ¢ # ¢’ = 0F with fiber F, and S C F. But § does not discon-
nect F” —S, so F—S must be connected. If S were compressible in
S% — (Bd(S) U (t # t")), there would exist, by standard arguments, a nonsingular
disk o such that JN F = J NS = dJ would be noncontractible in S. Since F
is incompressible, dJ would have to bound a disk J’ C F, and since S does

not separate F, we would have J’ C S, a contradiction. Thus S is incompressible
in S® — (Bd(S) U (t # t')).

COROLLARY 4. ([21,[9],[10, p. 341]). Every closed orientable 3-manifold M
has an open book decomposition with a connected binding.

Proof. According to Lickorish ([5], cf. also [10, p. 273]) M may be obtained

from S® by framed surgery on a link / = U /;, where each /; is unknotted
i=1

and has surgery coefficient +1. Assume each /; C A,, where A, is an annulus

such that each component of A; N d(NN(/;)) is a longitude (that is, is contractible

in 8% — N(4,)), Z, is noncontractible in A, and A, N A;= @ ifi+# j. Apply theorem

2toS= U A,;, yielding a knot ¢ # ¢’ with fiber F and S C F. But then surgery
i=1

is merely a twist [10, p. 274] along each A, the fibering is maintained, and

t # t’ remains the connected binding.

Note added in proof. Related results, using different methods are described
in J. R. Stallings, Constructions of fibered knots and links. Algebraic and geometric
topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) part
2, pp. 55-60. Proc. Sympos. Pure Math., XXXII. Amer. Math. Soc., Providence,
R.I., 1978.
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