NORMAL DIRECT SUMMANDS OF HYPOREDUCTIVE
OPERATORS

R. L. Moore

In [2], C. K. Fong showed that if S is a hyporeductive operator, N is normal,
and if S is quasi-similar to N, then S is normal. In this paper we obtain an
extension of Fong’s result; in particular, we show that if there are any non-zero
operators X and Y such that SX = XN and YS = NY, then S has a normal direct
summand.

In what follows /# will be a separable complex Hilbert space, N will be a
fixed normal operator in Z(#), and S will be a fixed hyporeductive operator

in & (#); that is, S has the property that every hyperinvariant subspace reduces
S. '

If A and B are any two operators we will use the following notation:

Z(A,B) = {Y: YA =BY}

Z(A,B) = {X: AX = XB}.
(The letters .# and £ are chosen to reflect the position of Y or X with respect
to A; in the defining equation Y appears on the left, X on the right of A.) For

convenience we will refer to .#(S,N) and Z#(S,N) as simply .# and %#. . and
Z are not empty since the zero operator is in each. In addition, let K be the

iR
projection whose range is ﬂ {ker Y: Y € .} ] and let R, be the projection

whose range is V {ranX:X € % }. Evidently,ker Y D ker K , andranX C ranR,,

for each Y in .£and X in #.

THEOREM 1. With the above notation, if K . and R, are both equ-al to the
identity, then S is normal.

Notice that Fong’s result is a special case of Theorem 1, since if there exist
quasiaffinities Y and X in .& and &% respectively, then K, =R = 1 trivially.
The proof below is based on the proof in [2].

Proof. First observe that if Y and X are in . and % respectively, and if
C commutes with S and D commutes with N, then DY and YC are in . and
XD and CX are in 4.

Suppose that .# is a hyperinvariant subspace of the normal operator N. Denote

Received January 6, 1978. Revision received May 20, 1978.
Michigan Math. J. 25 (1978).

345



346 R. L. MOORE

by Z.# the subspace V {(XA:.X € #}. We assert that Z.# is hyperinvariant

for S, for if C commutes with S aﬂd X is in Z then CX € 4% and hence
CEXA)=(CX)H C ZH

and it follows that C(2#) C P2 (H).

If # is hyperinvariant for N so is .#* and thus #Z(#") is hyperinvariant
for S. Let P and Q be the projections with ranges Z# and 2 (.# ") respectively.
We want to show that @ =1 — P. Since S is hyporeductive, P and Q commute
with S and since the range of Q is hyperinvariant, QPQ = PQ and thus PQ = QP.
Now if Y € £and X € &, we have NYX = YSX = YXN so YX commutes with
N and thus .# is invariant for YX. It follows that Y(#Z#) C .# for all Y in
.Z. Likewise Y(2(# ")) C .#" and thus

Y(ZA#)NYX(B(A)) = {0} forall Y in &

By assumption n {ker Y: Y € .} = {0} and thus (Z#) N (Z(# ")) = {0},

that is, PQ = 0. Moreover,
(BMYN (R M) D [ R(M N M) = BH =X

since R, = 1. Hence PQ = QP = 0, P + Q = 1, and Q = 1 — P, that is,
RB(M") = (BH)" .

If o is a Borel subset of the complex plane and if E is the spectral measure
of N, denote by F (o) the projection with range 4 (ran E (o). The above paragraph
shows that if c N 7= ¢, then F(o) F(t) = 0. Hence if o N v+ = @, then

F(oU~r)=F(o)+ F(7).

From the latter fact it follows readily that F(oc N o’) = F(c) F(c’) for any
two Borel sets o and o¢’, and that if {o;} is a disjoint family of Borel sets

then F( U ()'i) = 2 F(o;). Hence F is a spectral measure, and we can define

a normal operator M by setting M = S AdF (M),

We assert that for all Y in .&, E(0) Y = YF (0). Recall that Y(Z#) C .# for
any subspace .# hyperinvariant for N, or in particular Y (ran F (o)) C ran E(o),
so that E (o) YF (o) = YF (o) for any o. Thus it is also true that E (¢) YF (¢) = YF (o)
and thus E(o) YF(6) =E(c)E(6) YF(6) = 0, where & is the complement of o.
We now have

YF (o) = E(0) YF(0) = E(0) YF(0) + E(0) YF(6) = E(0) Y,
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- and the assertion is proved. It now follows that the spectrum of N contains that
of M(i.e,, E(oc) =0 implies F (o) = 0), since n {ker Y: Y €.} = {0}. Thus if

¢ is a step function on o(N) we have $(N)Y = Y¢ (M), and by approximating
we conclude that NY = YM for all Y € .& Since also YS = NY we know that
YM—S)=0 for all Y in .&, and again using the fact that K, =1 we have
shown that S = M and S is normal.

THEOREM 2. Let S be hyporeductive and N normal, and let K, and R,
be defined as above. Then the ranges of K . and R are reducing subspaces of
S, K . commutes with R 5, and the restriction of S toran K . N ran R, is normal.

Proof. First we show that ker K _is hyperinvariant for S. Let CS = SC, and
let Y be in .Z Then YC is in .&; thus if Yf =0 for all Y in .%, it must be that

YCf=0 for all Y in .# and thus that n {ker Y: Y € .} is invariant under

C. Since kerK , = n {ker Y: Y € .2}, ker K. is hyperinvariant for S, and

therefore ker K . and ran K .. reduce S. It is equally easy to show that ran R,
is hyperinvariant for S. Since 1 — K . and R, have ranges that are hyperinvariant
for S, it follows as in the proof of Theorem 1 that R, commutes with 1 — K.
and hence with K ..

Because of the above facts, K RS is the restrictionof Storan K . N ran R .
Notice that if Y is in .%, then YK , = Y: for if K . f = 0, then

fekerK, = n {ker Y: Y € .7},

so Yf = 0 also; on the other hand, if K .f = f, then clearly YK _f = Yf. Likewise
if X lies in #, then for any f in #, Xf lies in V {franX: X € #Z} and thus

R, Xf = Xf, so that R, X = X.

We now show that if Y € .#(S,N), then YR, € AK_ RS, N). In fact, if
YS = NY then of course YSR, = NYR_,, and since YK . = Y we have

YK_.SR_, = NYR,,.
Finally since R% = R, and R, commutes with S and K ., we have
(YRLZ)KR_S) =N(YR,),

that is, YR, € AK .R, S, N). Similarly we can show that if X € #Z(S,N),
then K .X € % (k.. S, N).
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In order to apply Theorem 1 we consider the operators S = (K .R_,S) ® 0 and
N = N @ 0 acting on the space #® # N is normal, and in consequence of Lemma
5 of [1], S is hyporeductive. The above paragraph shows that .#(S, N) contains
all operators of the form YR, ® 1 with Y in .#(S,N); in addition, a simple matrix
multiplication shows that the operator

) 0 0 ,
Y, =

is also in .Z(S,N). (Recall that K . and R, commute.) Thus we know that

n {(kerY: Y € Z8,N)} C ker¥Y_n n {ker(YR, ® 1): Y € .Z(S,N)}
= [ker (1 — K_R,)®Z]

N [n {kerYRﬁ:YE,S”}(BO]

-
= | kerl1-K_.R,)N ﬂ {kerYRgf,:YEf}:l@O

= | (ranK_ R,) N n {kerYR%:YEX}]@O.

On the other hand if K R_f lies in n {ker YR, :Y € .}, then for all
Ye.£wehave 0 = YR (K R_,f) = Y(K . R_,f) = YR_f since K, R, =R, K.

and YK, = Y. But this means that R,f & n {ker Y:Y € .}, that is,

K_.R_,f = 0. Hence ran K _.R_) N n {ker YR,: Y €.} =0 and so

ﬂ (ker V: ¥ € #6,N)} = 0.

Now let

>
Il

) (o 1—K_Z,R9?)
* \o 0 '

By a similar computation,
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\ GanX:X € Z(8,N)) 2 @anX,) v (V {ran (KX ® 1): X E%(S,N)})

= [ker K. R, v V {ranK_ X:X € 9?}] @ Z.
It is easy to see that V {franK . X: X € #} = ran K _R,; for instance,

ranK_R, = K_ (ranR,) = KY(V {franX: X € X})

= V (Ko(ranX): X € L} = V {franK _X: X € _.#}.

Thus V {ran X:X € #2(§,N)} is all of #® #

We have shown that the hypotheses of Theorem 1 apply to S and N. Hence
S is normal and we are done. '

To show that Theorem 1 is really an extension of Fong’s original result, we
conclude with an example where S and N are not quasi-similarbut K . =R, = 1.
Let # be a three-dimensional Hilbert space, and let

0 0O 0 0 O
S={0 0 O and N={10 1 O
0 01 0 0 1
Quasi-similarity is the same as similarity for finite-dimensional spaces; S and

N are clearly not similar since the multiplicities are wrong. On the other hand,
Z(S,N) contains the operators

10 0 010 00 0
o 0 0], 0 0 0], and 0 0 11,
0 0 O 0 0 O 0 0 O
the intersection of whose kernels is 0. Hence K . = 1. Similarly, #(S,N) contains
1 0 O 0 0 O 0 0 O
0 0 01, 1 0 0}, and 0O 0 0],
0 00 0 0 O 010

andR_ = 1.
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