NORMAL DIRECT SUMMANDS OF HYPOREDUCTIVE OPERATORS

R. L. Moore

In [2], C. K. Fong showed that if S is a hyporeductive operator, N is normal, and if S is quasi-similar to N, then S is normal. In this paper we obtain an extension of Fong's result; in particular, we show that if there are any non-zero operators X and Y such that SX = XN and YS = NY, then S has a normal direct summand.

In what follows \mathcal{H} will be a separable complex Hilbert space, N will be a fixed normal operator in $\mathcal{B}(\mathcal{H})$, and S will be a fixed hyporeductive operator in $\mathcal{B}(\mathcal{H})$; that is, S has the property that every hyperinvariant subspace reduces S.

If A and B are any two operators we will use the following notation:

$$\mathcal{L}(A,B) = \{Y: YA = BY\}$$

 $\mathcal{R}(A,B) = \{X: AX = XB\}.$

(The letters $\mathscr L$ and $\mathscr R$ are chosen to reflect the position of Y or X with respect to A; in the defining equation Y appears on the left, X on the right of A.) For convenience we will refer to $\mathscr L(S,N)$ and $\mathscr R(S,N)$ as simply $\mathscr L$ and $\mathscr R$. $\mathscr L$ and $\mathscr R$ are not empty since the zero operator is in each. In addition, let $K_\mathscr L$ be the projection whose range is $\left[\bigcap_{i=1}^{n} \{\ker Y\colon Y\in\mathscr L\}\right]^{\perp}$ and let $R_\mathscr R$ be the projection

whose range is \bigvee {ranX: X $\in \mathcal{R}$ }. Evidently, ker Y \supseteq ker K_{\mathscr{L}} and ran X \subseteq ran R_{\mathscr{R}} for each Y in \mathscr{L} and X in \mathscr{R} .

THEOREM 1. With the above notation, if $K_{\mathscr{L}}$ and $R_{\mathscr{R}}$ are both equal to the identity, then S is normal.

Notice that Fong's result is a special case of Theorem 1, since if there exist quasiaffinities Y and X in $\mathscr L$ and $\mathscr R$ respectively, then $K_{\mathscr L}=R_{\mathscr R}=1$ trivially. The proof below is based on the proof in [2].

Proof. First observe that if Y and X are in $\mathscr L$ and $\mathscr R$ respectively, and if C commutes with S and D commutes with N, then DY and YC are in $\mathscr L$ and XD and CX are in $\mathscr R$.

Suppose that *M* is a hyperinvariant subspace of the normal operator N. Denote

Received January 6, 1978. Revision received May 20, 1978.

Michigan Math. J. 25 (1978).

by $\mathscr{R}\mathscr{M}$ the subspace $\bigvee \{X\mathscr{M}: X \in \mathscr{R}\}$. We assert that $\mathscr{R}\mathscr{M}$ is hyperinvariant for S, for if C commutes with S and X is in \mathscr{R} then $CX \in \mathscr{R}$ and hence

$$C(X\mathcal{M}) = (CX)\mathcal{M} \subset \mathcal{R}\mathcal{M}$$

and it follows that $C(\mathcal{RM}) \subseteq \mathcal{R}(\mathcal{M})$.

If \mathcal{M} is hyperinvariant for N so is \mathcal{M}^{\perp} and thus $\mathcal{R}(\mathcal{M}^{\perp})$ is hyperinvariant for S. Let P and Q be the projections with ranges $\mathcal{R}\mathcal{M}$ and $\mathcal{R}(\mathcal{M}^{\perp})$ respectively. We want to show that Q = 1 - P. Since S is hyporeductive, P and Q commute with S and since the range of Q is hyperinvariant, QPQ = PQ and thus PQ = QP. Now if $Y \in \mathcal{L}$ and $X \in \mathcal{R}$, we have NYX = YSX = YXN so YX commutes with N and thus \mathcal{M} is invariant for YX. It follows that $Y(\mathcal{R}\mathcal{M}) \subseteq \mathcal{M}$ for all Y in \mathcal{L} . Likewise $Y(\mathcal{R}(\mathcal{M}^{\perp})) \subseteq \mathcal{M}^{\perp}$ and thus

$$Y(\mathcal{R}\mathcal{M}) \cap Y(\mathcal{R}(\mathcal{M}^{\perp})) = \{0\} \text{ for all } Y \text{ in } \mathcal{L}.$$

By assumption \bigcap {ker Y: Y \in \mathscr{L} } = {0} and thus $(\mathscr{R}\mathscr{M}) \cap (\mathscr{R}(\mathscr{M}^{\perp})) = {0}$, that is, PQ = 0. Moreover,

$$(\mathcal{R}\mathcal{M}) \vee (\mathcal{R}(\mathcal{M}^{\perp})) \supseteq [\mathcal{R}(\mathcal{M} \vee \mathcal{M}^{\perp})] = \mathcal{R}\mathcal{H} = \mathcal{H}$$

since $R_{\mathscr{R}} = 1$. Hence PQ = QP = 0, P + Q = 1, and Q = 1 - P, that is, $\mathscr{R}(\mathscr{M}^{\perp}) = (\mathscr{R}\mathscr{M})^{\perp}$.

If σ is a Borel subset of the complex plane and if E is the spectral measure of N, denote by $F(\sigma)$ the projection with range $\mathscr{R}(\operatorname{ran} E(\sigma))$. The above paragraph shows that if $\sigma \cap \tau = \emptyset$, then $F(\sigma) F(\tau) = 0$. Hence if $\sigma \cap \tau = \emptyset$, then

$$F(\sigma \cup \tau) = F(\sigma) + F(\tau)$$
.

From the latter fact it follows readily that $F(\sigma \cap \sigma') = F(\sigma) F(\sigma')$ for any two Borel sets σ and σ' , and that if $\{\sigma_i\}$ is a disjoint family of Borel sets then $F\left(\bigcup \sigma_i\right) = \sum F(\sigma_i)$. Hence F is a spectral measure, and we can define

a normal operator
$$M$$
 by setting $M=\int \lambda\,dF\,(\lambda).$

We assert that for all Y in \mathscr{L} , $E(\sigma)Y = YF(\sigma)$. Recall that $Y(\mathscr{RM}) \subseteq \mathscr{M}$ for any subspace \mathscr{M} hyperinvariant for N, or in particular $Y(\operatorname{ran} F(\sigma)) \subseteq \operatorname{ran} E(\sigma)$, so that $E(\sigma)YF(\sigma) = YF(\sigma)$ for any σ . Thus it is also true that $E(\tilde{\sigma})YF(\tilde{\sigma}) = YF(\tilde{\sigma})$ and thus $E(\sigma)YF(\tilde{\sigma}) = E(\sigma)E(\tilde{\sigma})YF(\tilde{\sigma}) = 0$, where $\tilde{\sigma}$ is the complement of σ . We now have

$$YF(\sigma) = E(\sigma) YF(\sigma) = E(\sigma) YF(\sigma) + E(\sigma) YF(\tilde{\sigma}) = E(\sigma) Y,$$

and the assertion is proved. It now follows that the spectrum of N contains that

of M(i.e., E(
$$\sigma$$
) = 0 implies F(σ) = 0), since \bigcap {ker Y: Y \in \mathscr{L} } = {0}. Thus if

 ϕ is a step function on $\sigma(N)$ we have $\phi(N)Y = Y\phi(M)$, and by approximating we conclude that NY = YM for all $Y \in \mathcal{L}$. Since also YS = NY we know that Y(M - S) = 0 for all Y in \mathcal{L} , and again using the fact that $K_{\mathcal{L}} = 1$ we have shown that S = M and S is normal.

THEOREM 2. Let S be hyporeductive and N normal, and let $K_{\mathscr{L}}$ and $R_{\mathscr{R}}$ be defined as above. Then the ranges of $K_{\mathscr{L}}$ and $R_{\mathscr{R}}$ are reducing subspaces of S, $K_{\mathscr{L}}$ commutes with $R_{\mathscr{R}}$, and the restriction of S to ran $K_{\mathscr{L}} \cap \operatorname{ran} R_{\mathscr{R}}$ is normal.

Proof. First we show that ker $K_{\mathscr{L}}$ is hyperinvariant for S. Let CS = SC, and let Y be in \mathscr{L} . Then YC is in \mathscr{L} ; thus if Yf = 0 for all Y in \mathscr{L} , it must be that

$$YCf = 0$$
 for all Y in \mathscr{L} and thus that \bigcap {ker Y: Y $\in \mathscr{L}$ } is invariant under

C. Since
$$\ker K_{\mathscr{L}} = \bigcap \{\ker Y : Y \in \mathscr{L}\}, \ker K_{\mathscr{L}} \text{ is hyperinvariant for S, and }$$

therefore ker $K_{\mathscr{L}}$ and ran $K_{\mathscr{L}}$ reduce S. It is equally easy to show that ran $R_{\mathscr{R}}$ is hyperinvariant for S. Since $1-K_{\mathscr{L}}$ and $R_{\mathscr{R}}$ have ranges that are hyperinvariant for S, it follows as in the proof of Theorem 1 that $R_{\mathscr{R}}$ commutes with $1-K_{\mathscr{L}}$ and hence with $K_{\mathscr{L}}$.

Because of the above facts, $K_{\mathscr{L}}R_{\mathscr{R}}S$ is the restriction of S to ran $K_{\mathscr{L}}\cap$ ran $R_{\mathscr{R}}$. Notice that if Y is in \mathscr{L} , then $YK_{\mathscr{L}}=Y$: for if $K_{\mathscr{L}}f=0$, then

$$f \in \ker K_{\mathscr{L}} = \bigcap \{ \ker Y : Y \in \mathscr{L} \},$$

so Yf = 0 also; on the other hand, if $K_{\mathscr{L}}f = f$, then clearly $YK_{\mathscr{L}}f = Yf$. Likewise if X lies in \mathscr{R} , then for any f in \mathscr{H} , Xf lies in \bigvee {ran X: X $\in \mathscr{R}$ } and thus $R_{\mathscr{R}}Xf = Xf$, so that $R_{\mathscr{R}}X = X$.

We now show that if $Y \in \mathcal{L}(S, N)$, then $YR_{\mathscr{R}} \in \mathcal{L}(K_{\mathscr{L}}R_{\mathscr{R}}S, N)$. In fact, if YS = NY then of course $YSR_{\mathscr{R}} = NYR_{\mathscr{R}}$, and since $YK_{\mathscr{L}} = Y$ we have

$$YK_{\mathscr{L}}SR_{\mathscr{R}} = NYR_{\mathscr{R}}.$$

Finally since $R_{\mathscr{R}}^2 = R_{\mathscr{R}}$ and $R_{\mathscr{R}}$ commutes with S and $K_{\mathscr{L}}$, we have

$$(YR_{\mathscr{R}})(K_{\mathscr{L}}R_{\mathscr{R}}S) = N(YR_{\mathscr{R}}),$$

that is, $YR_{\mathscr{R}} \in \mathscr{L}(K_{\mathscr{L}}R_{\mathscr{R}}S, N)$. Similarly we can show that if $X \in \mathscr{R}(S, N)$, then $K_{\mathscr{L}}X \in \mathscr{R}(k_{\mathscr{L}}S, N)$.

In order to apply Theorem 1 we consider the operators $\hat{S} = (K_{\mathscr{L}}R_{\mathscr{R}}S) \oplus 0$ and $\hat{N} = N \oplus 0$ acting on the space $\mathscr{H} \oplus \mathscr{H}$. \hat{N} is normal, and in consequence of Lemma 5 of [1], \hat{S} is hyporeductive. The above paragraph shows that $\mathscr{L}(\hat{S},\hat{N})$ contains all operators of the form $YR_{\mathscr{R}} \oplus 1$ with Y in $\mathscr{L}(S,N)$; in addition, a simple matrix multiplication shows that the operator

$$\hat{\mathbf{Y}}_{\mathbf{o}} = \begin{pmatrix} 0 & 0 \\ 1 - \mathbf{K} \,_{\varnothing} \mathbf{R}_{\,\varnothing} & 0 \end{pmatrix}$$

is also in $\mathscr{L}(\hat{S}, \hat{N})$. (Recall that $K_{\mathscr{L}}$ and $R_{\mathscr{R}}$ commute.) Thus we know that

$$\bigcap \ \{\ker \hat{Y} \colon \hat{Y} \in \mathscr{L}(\hat{S}, \hat{N})\} \subseteq \ker \hat{Y}_{\circ} \cap \bigcap \ \{\ker (YR_{\mathscr{R}} \oplus 1) \colon Y \in \mathscr{L}(S, N)\}$$

$$= [\ker (1 - K_{\mathscr{L}}R_{\mathscr{R}}) \oplus \mathscr{H}]$$

$$\cap \left[\bigcap \ \{\ker YR_{\mathscr{R}} \colon Y \in \mathscr{L}\} \oplus 0\right]$$

$$= \left[\ker (1 - K_{\mathscr{L}}R_{\mathscr{R}}) \cap \bigcap \ \{\ker YR_{\mathscr{R}} \colon Y \in \mathscr{L}\}\right] \oplus 0$$

$$= \left[(\operatorname{ran} K_{\mathscr{L}}R_{\mathscr{R}}) \cap \bigcap \ \{\ker YR_{\mathscr{R}} \colon Y \in \mathscr{L}\}\right] \oplus 0.$$

On the other hand if $K_{\mathscr{L}}R_{\mathscr{R}}f$ lies in \bigcap {ker $YR_{\mathscr{R}}: Y \in \mathscr{L}$ }, then for all $Y \in \mathscr{L}$ we have $0 = YR_{\mathscr{R}}(K_{\mathscr{L}}R_{\mathscr{R}}f) = Y(K_{\mathscr{L}}R_{\mathscr{R}}f) = YR_{\mathscr{R}}f$, since $K_{\mathscr{L}}R_{\mathscr{R}} = R_{\mathscr{R}}K_{\mathscr{L}}f$ and $YK_{\mathscr{L}} = Y$. But this means that $R_{\mathscr{R}}f \in \bigcap$ {ker $Y: Y \in \mathscr{L}$ }, that is, $K_{\mathscr{L}}R_{\mathscr{R}}f = 0$. Hence $(\operatorname{ran}K_{\mathscr{L}}R_{\mathscr{R}}) \cap \bigcap$ {ker $YR_{\mathscr{R}}: Y \in \mathscr{L}$ } = 0 and so

Now let

$$\hat{\mathbf{X}}_{o} = \begin{pmatrix} 0 & 1 - \mathbf{K}_{\mathscr{L}} \mathbf{R}_{\mathscr{R}} \\ 0 & 0 \end{pmatrix}.$$

By a similar computation,

$$\bigvee \left\{ \operatorname{ran} \hat{X} : \hat{X} \in \mathcal{R}(\hat{S}, \hat{N}) \right\} \supseteq \left(\operatorname{ran} \hat{X}_{o} \right) \vee \left(\bigvee \left\{ \operatorname{ran} \left(K_{\mathscr{L}} X \oplus 1 \right) : X \in \mathcal{R}(S, N) \right\} \right)$$

$$= \left[\ker K_{\mathscr{L}} R_{\mathscr{R}} \vee \bigvee \left\{ \operatorname{ran} K_{\mathscr{L}} X : X \in \mathscr{R} \right\} \right] \oplus \mathscr{H}.$$

It is easy to see that $\bigvee \{ \operatorname{ran} K_{\mathscr{L}} X : X \in \mathscr{R} \} = \operatorname{ran} K_{\mathscr{L}} R_{\mathscr{R}};$ for instance,

$$\begin{aligned} \operatorname{ran} \, \mathrm{K}_{\mathscr{L}} \mathrm{R}_{\mathscr{R}} &= \, \mathrm{K}_{\mathscr{L}} (\operatorname{ran} \, \mathrm{R}_{\mathscr{R}}) = \mathrm{K}_{\mathscr{L}} \bigg(\bigvee \, \left\{ \operatorname{ran} \, \mathrm{X} \colon \mathrm{X} \in \mathscr{L} \right\} \bigg) \\ \\ &= \, \bigvee \, \left\{ \mathrm{K}_{\mathscr{L}} (\operatorname{ran} \, \mathrm{X}) \colon \mathrm{X} \in \mathscr{L} \right\} = \, \bigvee \, \left\{ \operatorname{ran} \, \mathrm{K}_{\mathscr{L}} \mathrm{X} \colon \mathrm{X} \in \mathscr{L} \right\}. \end{aligned}$$

Thus \bigvee {ran $\hat{X}: \hat{X} \in \mathcal{R}(\hat{S}, \hat{N})$ } is all of $\mathcal{H} \oplus \mathcal{H}$.

We have shown that the hypotheses of Theorem 1 apply to \hat{S} and \hat{N} . Hence \hat{S} is normal and we are done.

To show that Theorem 1 is really an extension of Fong's original result, we conclude with an example where S and N are not quasi-similar but $K_{\mathscr{L}}=R_{\mathscr{R}}=1$. Let \mathscr{H} be a three-dimensional Hilbert space, and let

$$S = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad N = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Quasi-similarity is the same as similarity for finite-dimensional spaces; S and N are clearly not similar since the multiplicities are wrong. On the other hand, $\mathcal{L}(S,N)$ contains the operators

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \text{and} \quad \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},$$

the intersection of whose kernels is 0. Hence $K_{\mathscr{L}} = 1$. Similarly, $\mathscr{R}(S,N)$ contains

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \text{and} \quad \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix},$$

and $R_{\mathcal{R}} = 1$.

REFERENCES

- 1. C. K. Fong, On operators with reducing hyperinvariant subspaces, preprint.
- 2. C. K. Fong, A sufficient condition that an operator be normal. Michigan Math. J. 21 (1974), 161-162.

Department of Mathematics Bucknell University Lewisburg, Pa. 17837

Current address: Department of Mathematics University of Alabama Tuscaloosa, Alabama 35486