DISCRETE SHOCKS AND GENUINE NONLINEARITY

M. S. Mock

1. INTRODUCTION
We consider the suitability of numerical methods for problems of the form
(1.1) u, +f =0, xeER,t>0, u(-,0) given,

where u= U™, u®, .., u™), f=(",f?, ., ™)' and each f? is a smooth
function of u. We restrict attention to problems for which u(x,t) € D C R™ for all
(x,t), and we assume throughout that (1.1) is strictly hyperbolic in D; ie., for
all u € D, the eigenvalues of f,(u) are real and distinct.

It is well known that smooth solutions in the large do not exist for (1.1), even
for smooth initial data, and that uniqueness fails when jump discontinuities are
permitted in weak solutions. '

Numerical methods seek to approximate particular weak solutions of (1.1) which
satisfy, in addition, an entropy condition, which may take any of several forms
[8,9,10,14]. We consider below the application of a one-parameter family of schemes
to such problems; our schemes are obtained from a finite element procedure, which
is known to work for linear symmetric problems, and contains the Lax-Friedrichs
scheme as a special case [13]. However, we use no very special properties of
these schemes, and our results are somewhat more general.

We consider necessary conditions on f for discrete approximations of jump
discontinuities in the solution of (1.1) (hereafter referred to as “discrete shocks”)
to have several properties, which appear to be essential for the success of numerical
methods, even if one restricts attention to the Riemann problem for (1.1), which
is thoroughly discussed in [8,10,11,15,16]. Specifically, we require that discrete
shocks exist for all pairs of points in D which can be connected by a shock; i.e.,
which satisfy the Rankine-Hugoniot relations. We require that the discrete shocks
converge in L, to shocks as the mesh is refined, that they be stable under suitable
perturbation of f, and that they exhibit a tolerance for inexact solution of the
discrete equations.

Our main result is that under these conditions, the shock speed between any
two points in D (which can be connected by a shock) must not be a characteristic
speed at either point. This may be viewed as a statement of genuine nonlinearity
of f, and of genuine coupling of the equations. For m = 1, it reduces to convexity
of f; for m = 2, it is almost equivalent to the usual nonlinearity condition [8];
for m > 2, it is stronger. Under this stronger condition on f, the entropy conditions
[8,9,10,14] are equivalent. Such discrete shocks are shown to exist only when
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the entropy condition is satisfied, using primarily the requirement of stability
under perturbation of f. Presumably, in practice one computes only solutions which
are stable under perturbation; thus our results provide a mechanism by which
discrete schemes impose an entropy selection rule on discontinuities. The require-
ment of discrete shock “tails” in L, is justified as necessary for their formation
in a finite time during a computation. It is used in an apparently essential way
in the proof of the main theorem. However, the requirement of tolerance for inexact
discrete solution is used only to analyze a pathological case, and is not even needed
for the case m = 1.

For m = 1, the existence of such discrete shocks is implied by the results of
Jennings [6]. For this case, much more is known; for example, it is shown in
[4] that whenever the solutions of a monotone difference scheme converge, the
limit satisfies an entropy condition. For m = 2, we show existence using ideas
and techniques similar to those of [1,3,12,2].

2. NONLINEARITY AND ENTROPY CONDITIONS

We call two distinct points u, v € D connected if they can be connected by
a shock; i.e, if for some scalar s(u,v), the shock speed, the Rankine-Hugoniot
relation holds:

(2.1) (f(u) — £(v)) = s(u,v)(u — v).

Let S(u) denote the set of points in D connected to a given point u. We assume
that

m

(2.2) S() = U Sy (u), S, () =Sy (U S, (v,

k=1

where each S; (u) is a smooth one-dimensional manifold with u as one endpoint
and no other endpoints within D. Primes are used to denote differentiation along
such manifolds, in the direction initially away from u. Let A\, (u), r,(u) denote
the eigenvalues (arranged in increasing order) and right-eigenvectors, respectively,
of f,(u); then S (u) (S} (u)) is, as usual, the manifold approaching u in the direction
of r, (u), such that \| = 0 (\;, = 0) near u. Finally, for u € D, v € S(u), let S(u,v)
denote that segment of S (u) between u and v; i.e., with u and v as its endpoints.

Our condition for genuine nonlinearity may be stated in either of the following
forms:

(N1) For all u € D, the manifolds S; (u), k=1,2,...,m are disjoint and
s"(u, ) #0.

(N2) For all u € D, v € S(u), s(u,v) is not an eigenvalue of f, (u) (or of f, (v)).

THEOREM 2.1. The statements (N1) and (N2) are equivalent.
Hereafter we call this condition N; it is assumed unless explicitly stated otherwise.

Proof. Differentiating (2.1), we have for all v € S(u),
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(2.3) (£, (v) = s(u,v))v/ = s'(u, v){(v — u),

from which it is immediate that (N1) implies (N2) and (N2) implies s’ # O.

Suppose that the S, (u) are not disjoint, that there exists v € S, (u), v € S;(u),
j # k. Let S, (u,v), S;(u,v) denote those segments of S, (u), S;(u) between u and
V.

Lax [7] showed that as w € S, (u) approaches u,

(2.4) lim s(u,w) =\,, and lims’ (u,w)=—1lim\}(w).

w-—u WwW—u w—u

Without loss of generality, we assume \;(u) < A, (u). Suppose first that
) A () < s(u,v) < A (u).

Then s’ < 0 along S, (u,v) towards v; from (2.4) and (N2), it follows that for all
w € S, (u,v), A (W) <s(u,w). In particular, A, (v) <s(u,v). A similar argument
shows \;(v) > s(u,v). But then strict hyperbolicity fails at some point between
u and v. Suppose next that \;(u) < X\, (u) <s(u,v); then similar arguments give
s(u,v) < \;(v) < Ay (v). But then along S, (u,v) towards v, s(u, -} increases from X, (u)
to s(u,v), while \; increases from A;(u) to \;(v). Thus (N2) is violated at some
point. A similar argument holds for the case s(u,v) < \;(u), and completes the
proof.

COROLLARY. Suppose condition N holds, u € D, and v € S, (u); then u €
S, (V).

For u near v, this is shown by Lax [8]; for u not near v, the result then
follows by continuity and the assumption of disjoint manifolds S, (u).

We next establish the connection between this nonlinearity condition and that
proposed in [8].

THEOREM 2.2. Suppose condition N holds; then for any k=1, ..., m,
T, V,\ cannot change sign within D.

Remark. If r, - V A, vanishes on an open ball, B C D, then so does s’(u,v),
for allu,v € B, v € S, (u).

Proof. Suppose for some k, r, - V A, does change sign and does not vanish
on any open ball within D; then it vanishes on a manifold q of dimension m — 1.
Let B denote a small open ball in D, with center in q. Then

. B=R,UBNQqQUR_,

where r, (u) - VA (u) >0 (<0) for u€ R, (R_); R, are not empty. If r,(u) is
tangent to q for all u € B N q, then for any u € B N q, a segment of S, (u) lies
within B N q and s’(u, ') vanishes on this segment [8]. Thus we may assume
the existence of a point w € B N q such that r, (w) crosses q at w. Thus the
two branches of S, (w) are on opposite sides of q, as shown in Figure 1. We
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r- AN (u) >0

Figure 1: Proof of Theorem 2.2

first choose a point v € R_ N S, (w). Then w € S (v), so s(v,w) <A, (v). Let q*
be the hyperplane through v perpendicular to r,(v). We next choose a point
u€ R, NS, (w). Then w & S, (u), and S, (u) intersects gq* at a point v*
close to v. We choose u close to w so that v* is sufficiently close to v that
s(u,v*) < A\, (v*). But by condition N, since s(u, -) decreases along S, (u) between
u and w, it decreases between u and v*, and so s(u,v*) > \, (v*), which is our de-
sired contradiction.

THEOREM 2.3. Suppose m = 2, and that for all u € D, the following hold:

(2.5) r (u) - VA () >0, k=1,2;
f(l) af(2)
(2.6) e W0 — () > 0;
(2.7) vPv®)>0 (<0 forallve S,(u) (S,(w);

then condition N holds.

Hereafter we use f;, for of ?/0u‘; (2.6) is a statement implying hyperbolicity

and genuine coupling of the equations, adopted by several authors [1,2,10]. The
hypothesis (2.7) is always true for v close to u; it may be regarded as a statement
of global solvability of the Rankine-Hugoniot relations (2.1) if one component
of v is given. Some such additional hypotheses are clearly necessary; it is otherwise
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possible for (2.5) to hold and condition N to fail, as in the case where the equations

are uncoupled, f, dependent only on u®” and f, dependent on u®®.

The proof of this theorem requires the following lemma, which is given for
v close to u by Lax [8] and with different hypotheses by Liu [10].

LEMMA 2.4. Forallv € S,(u) (v ES,(u)), s’ (u,v) > 0 if and only if s < A, (Vv)
(s <A (V).

Proof. 1t follows from (2.6) that for all v € D,

(2.8) AW <), (V) <N, (v).

Suppose v € S,(u), v’ >u® and v® > u® (the proof for v’ <u®,v®? <u®

is similar). We write (2.3) as

<u

(fr, =V +£f,v® =g (vP —u?)

(2.9) meu)' + (£, — v =g v® —u?)

For s’ > 0, in view of (2.8), it suffices to consider the case s >f,, and f,,.
Then (2.9) becomes

(2.10) (s = f v <f,v®
(2.11) (s — fo)v® < £, v,

multiplying (2.10) and (2.11), we easily obtain A; <s < A,.

For s’ < 0, the inequalities are reversed in (2.10) and (2.11). Then s > f,; or
f,,, and so s > X\,. We can again multiply the inequalities; solving the resulting
quadratic equation for s gives s > \,.

Finally, suppose v € S;(u), v’ > u?, v® <u®; for s’ > 0 we obtain
(2.12) f,v® > —f)v"
(2.13) £,, v < (s — fpu)v®

From v® < 0, we find s < f;, <\,.Then we can multiply (2.13) by the negative
of (2.12) and obtain s < X\, as above.

For the case s’ < 0, we wish to show s < \,; as above, it suffices to consider
the case s <f,, and f,,. The inequalities (2.12) and (2.13) are both preserved
in this case, and a similar argument applies.

Proof of Theorem 2.3. Consider the case v €S, (u), so that N\’ and s
are both positive for v sufficiently close to u. Let v, be the first point on S; (u)
such that s’(u,v,) = 0. From hypothesis (2.7), it follows that s(u, vy) = A, (v,), not
A, (Vy); then for all v € S(u,v,), s’(u,v) > 0ands(u,v) <A,(v). Thus A\, —sis a
decreasing function on S(u,v,) sufficiently near v,. But if s =\, at v, v/ =r,
and from (2.5), A}, (v,) > 0. Since s’(v,) = 0, we obtain A, — s an increasing function
on S(u,v,) near v,. Thus no such point v, exists. A similar argument applies
to the other cases and completes the proof.
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We next consider entropy conditions. Let u,,u, be two connected points in D.
Among others, the following conditions have been proposed for the admissibility
of a discontinuity in the solution of (1.1), with u, on the left and u, on the right
sides.

(E1) For some k, A, (u,) >s(u,,u,)>A, (u,), A _;(w) <s(u,u.) <\.,,u);

(E2) For all u € S(u,,u,), s(u,,u) <sfu,,u );

(E3) For all u € S(u,,u,), s(u,,u) >s(u,,u, );

(E4) s[U] — [F] <0, where U(u) is a strictly convex function of u, F is a
function of u such that differentiable solutions of (1.1) satisfy U, + F_ =0, and
[ ] denotes the variation of a quantity across the discontinuity.

Condition (E1) is the classical entropy condition of Lax {[8]; conditions (E2)
and (E3) are the Oleinik condition for m = 1 [14]; they have been applied to
systems by Liu [10,11}. Condition (E4) has been adopted by Hopf [5], Lax [9],
and Krushkov [7].

THEOREM 2.5. Suppose condition N holds; then conditions (E1)-(E4) are all
equivalent.

Hereafter we call this condition E.

Proof. The equivalence of (E1),(E2) and (E3) follows from the following two
lemmas:

LEMMA 2.6. Suppose condition N holds; then for all u € D and v € S, (u),
s(u,v) lies between \, (u) and A\, (v).

LEMMA 2.7. Suppose condition N holds; then for allu € D and v € S, (u),

(2.14) My (W) < 8 (W, V) < Apy s (W),

The equivalence of (E1) and (E4) for weak shocks is proved in [9]. To extend
this result to strong shocks, it suffices to show that s [U] — [F] does not change
sign as w moves along some branch of S(v). But in [8] it is shown that

dU(w)
(s[U] — [F]) =& (v,2w)(U (v) = U(w) — -

(v —w)),

the first factor of which is nonvanishing by condition N and the second nonvanish-
ing by the strict convexity of U.

Proof of Lemma 2.6. Suppose v € S, (u), and s(u,v) > A, (u). Then s(u,-)
increases along S(u,v); in particular, it increases on S(u,v) near u. From (2.4),
it follows that for w € S(u,v) sufficiently close to u, A\, (w) > s(u,w). But then
this holds for all w € S(u,v), in particular, for w = v.

Proof of Lemma 2.7. Suppose v € S, (u) and A\, ., (u) < s(u,v). By Lemma 2.6,
A, (V) > s(u,v). Furthermore, u € S, (v). As w moves along S(v,u) from v towards u,
s(u,w) decreases from A, (v) to s(u,v), while A, , (W) decreases from A\, ,(v) > A (V)
to Ay, ;) <s(u,v). Thus for some w € S(v,u), s(v,w) = A, ,, (W), contradicting
condition N. The case A, _, (u) > s(u,v) is entirely analogous.
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COROLLARY. Suppose condition N holds; then a discontinuity between any
two connected points in D satisfies condition E if and only if the points are properly
oriented.

Proof. Let u,veE€ D, v € S, (u). By Lemma 2.6 and (N2), it follows that
A (W) # N (V). Suppose A, (u) >\, (v); then condition E is satisfied if and only
if u is on the left and v on the right of the discontinuity.

3. DISCRETIZATION SCHEMES

We next consider the application of discretization schemes to very special
problems of the form (1.1), i.e., for two connected points u,, u, € D, the problem

(3.1) u, +f, —s(u,,u )u, =0;
u,, x<0

(3.2) u(x,0) = )
u, x=0

Thus if f is genuinely nonlinear and u,, u, are oriented so that an entropy
condition is satisfied, the solution to (3.1), (3.2) is a single stationary shock at
x = 0; i.e, u(x,t) = u(x,0).

t

We introduce a class of discrete schemes for (3.1) as follows: let h denote the
mesh spacing in x, i.e, x; = jh, j =0, =1, £2 ... Let 3t be the time step, t, = ndt,
n = 0,1,2, ..., and set B = 8t/h. Our approximation to u(jh,ndt) is denoted as usual
by u;j. Let X, denote the space of piecewise linear functions (in x) over this grid.
For each fixed n, u” € X,; i.e, u” is the piecewise linear interpolation of the
discrete values u} . Our discrete approximation to (3.1) is then given by

(8.3) u™'—ah®ull? —u"++yh*ul + hg ™)), — hsu,,u )ul L X,;
un+1(+00)=u‘_, un+1(_w)=u/.

In (3.3), a,y are parameters; presumably a = 1/6, so that (3.3) gives u}‘“
explicitly, and y < a, B sufficiently small, so that the scheme would be stable
if f were linear and symmetric [13]. For v= —1/3, this scheme is of the
Lax-Friedrichs type; for m = 1, —1/3 < y < 1/6, sufficiently small 8, this scheme
is monotone in the sense of Jennings [6] and Harten et al. [4], and their results
apply.

We are interested in solutions of (3.3) which resemble stationary shock waves;
i.e., for fixed h, B, functions ¢ € X, satisfying

(3.4) ah®’¢,, +hBs(u,,u)d, —hpEd), L X,, (4o =u,, ¢(—») =u,

where a = a — vy is positive and hereafter fixed; after an integration by parts,
this becomes '

h
(3.5) a—g¢x+s(¢—¢,)—(f(¢)—f,>le,,
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where we use s =s(u,,u,) and f, = f(u,), where no ambiguity arises; X, is the
space of derivatives of the elements of X, ; i.e.,, the space of piecewise constant
functions in (x;,x;,,) for all j. Denoting ¢(x;) by ¢;, the explicit form of (3.5)
is

( h) (¢j+1_¢'j) (¢j+1+ d)j )
(3.6) a— — )+t s|— —u,
B8 h 2 .

1

- g (1 — & d; + &b;,,)dE+ £, = 0.

We note that for fixed B, (3.6) is independent of h; thus we may describe
solutions of (3.4) as of the form ¢(x/h,B). From (3.6) it follows for sufficiently
small B that such solutions are uniquely specified by the values of § and ¢(0,8).

We will be interested in solutions of (3.4) satisfying several additional require-
ments, related to their use in more general computations. Let § denote the shock
at x =0; e,

u,, x <0
¢(X)={

u, x=0

It is essential that our discrete shocks satisfy ¢ — ¢ € L, (—o,). This is because
discrete schemes like (3.3) conserve \ u dx, and so cannot form shock “tails” for

which this quantity is infinite. We shall require a slightly stronger condition;
namely, the existence of ¢ satisfying (3.4) and

(37) "d)(yﬁ)—q""LlscOh/Ba

for some c, and sufficiently small . Obviously, such ¢ converge to ¥ in L, as
h — 0 with B and ¢(0,B) fixed; this is the natural limit of discretization schemes
of the form (3.3). Such ¢ describe shocks located at x = 0; the dependence of
(3.7) on h is then simply by homogeneity. The “viscous limit” is obtained as h — 0
with h/B fixed. In this limit, ¢ approaches the solution of the continuous form
of (3.5) (or (4.1) below). Although this limiting process is irrelevant to actual
computations, the existence of such “viscous profiles” is essential to the success
of this type of discretization scheme. The dependence of (3.7) on B may be expected
from (3.5); however, a bound as h— 0, with h/fB fixed, appears to be needed
for uniform approach in time of solutions of (3.3) to shocks as 8t — 0, with ndt
and h fixed.

Since discrete equations are not exactly satisfied in practice, we require the
following stability property:

(S1) For any ¢ € X,, satisfying (3.4) and (3.7), there exists a positive 3 such
that all n € X, which satisfy: n(x) = u, as x — 4+, n({x) - w.as x - —oo, and
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®, '+l+ i
(3.8) | (0,B) — m(0) | -+ 2 |:;"(nj+1—7]j)+s(ﬂj_——é—jl—-ut)

j=—

1
- S f((l - E)TIJ + gnj+1)d§ + frl < 8,

(1]
also satisfy m — ¢ € L, (—o,»). In (3.8) and below, we also use |-| for a norm
on m-dimensional vectors and matrices.

Practical discretization schemes must also tolerate appropriate perturbations
of the function f. The specific condition we require is as follows:

(S2) Suppose f is replaced by f in (3.4),(3.5),(3.6), and (3.8), with f satisfying

(3.9) [fv) —f(v)]=e and |f,(v) —f,(v)] =e¢ forallv €D;
(3.10) Fu) - Fu) = f(u,) — £(u,).

Then if ¢ is sufficiently small, (3.7) and (S1) are maintained.

From (3.10), it follows that u,,u, remain connected under such perturbations,
with unchanged shock speed s(u,,u,).

4. MAIN THEOREM

THEOREM 4.1. Suppose that for every pair of connected points (satisfying
the Rankine-Hugoniot relation (2.1)) u,, u, € D, and for all sufficiently small 3,
there exist solutions of (3.4), satisfying (3.7), uniformly bounded (within D) with
respect to x and B, and such that (S1) and (S2) are satisfied. Then condition
N holds in D. Furthermore, such solutions are obtained only if u,, u, are oriented
so that condition E is satisfied.

Remark. In the case that differentiable solutions of (1.1) satisfy an additional
conservation law U, + F, = 0, with U convex, Lax [9] shows that weak limits
of dissipative discrete schemes necessarily satisfy (E4), and thus condition E.

Proof. For a sequence of values of 3 approaching zero, we choose a sequence
of solutions of (3.4), also denoted by & = ¢(x/h,B), whose values at x = 0 converge
to some point u, € D.

For z € R, let 6 be the solution of

de
4.1) T +s@—u,)=10) —f, 0 (0) = u,,
z

where here and below s = s(u,,u,). For h/ fixed and z = xf3/ah, (3.6) is a second
order accurate difference approximation to (4.1). Thus as h — 0 with h/g fixed,

¢ (x/h,B)— 6(xp/ah), for every x,

and ¢ — 6 uniformly over bounded regions.
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Thus by the triangle inequality and (3.7),
4.2) 16 — Y, <o,

where the L, — norm is with respect to z. It follows that u, is not u, or u,; other-
wise the solution of (4.1) would be 6 = constant and (4.2) would fail. From the
pointwise convergence of ¢ to 0, it follows that 6 is uniformly bounded; then
from (4.1), so are its derivatives. It then follows from (4.2) that 0(z) — u, as
z— +oo and 0(z) — u, as z— —oo,

The essential step is to show that (4.2), or at least (S1), fails if s is an eigenvalue
of f,(u,) or f,(u,). Suppose s = A\, (u,); we expand (4.1) in a sufficiently small
neighborhood of u,. In view of (S2), the requirement of stability under perturbation
of f, we may alter the quadratic and higher order terms in such a neighborhood,
and it suffices to consider the system

(4.3) Vi. = ()\J - S)vj: j ?l; k)
(4.4) D AT T S

where v = T(8 — u,), and T the similarity transformation diagonalizing f,(u,).

For j > k, we must have v, = 0 in (4.3), or else v does not approach the origin
as z— + o, Since u, is not u,, we may exclude the case v identically zero. For
j <Kk, the v; decay exponentially as z — oo. If for all j <Kk,

lv;] = o (v ]"*)

as z— o,
then |v,,| = 0 (v3), |ve] = 0(1/2) as z— x, and (4.2) fails. However, there are
special orbits for which there exists j < k such that

(4.5) vl = 0(v});

for such orbits, we show that (S1) fails.

Note that (4.5) can hold for at most one value of j, the largest j < k for which
v; is not identically zero. The other values of j are unimportant below; they are
conveniently viewed as higher order terms in a two-dimensional autonomous system.

Our argument proceeds as follows: In Figure 2, no orbits leave region I, and
if v approaches the origin from region I, then |v,,| = O(v2) and (4.2) fails, as
above. No orbits approach the origin from regions II or IIL; in IIL, v, , =0 so
all orbits enter II; and in II, p = v, /v satisfies p, = p(\; — s + O (v,)), and so
decreases exponentially. Thus any orbit crossing the positive v; axis eventually
enters region I.

The existence of an orbit { approaching the origin from region IV can be proved
by continuity. We show its uniqueness; p = —v, /v, satisfies

(4.6) p,=(8— N\)p+ v -1+ o(v;)).

To approach the origin from region IV, p must be founded in [0,1] for all z.
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Figure 2: Proof of Theorem 4.1

But (4.6) obviously admits exponential growth of perturbations in p. Thus for
any z there are orbits arbitrarily close to {(z) which approach the origin, but
not from region IV; i.e, from region I. If 6 approaches u, along such an orbit
{, condition (S1) will therefore fail.

Thus condition N holds in D. To show that condition E is satisfied, let k be
such that u, € S, (u,). We claim that A\, (u,) > X, (u,). For the case m = 1, this
follows immediately from Lemma 2.6 and the asymptotic conditions on 6. An intu-
itive argument for any m is obtained by counting the number of degrees of free-
dom in the orbit 6 between u, and u, in D. For stability under perturbation, we
must have m + 1 degrees of freedom, since there are m components of f which
can be perturbed, and one for the location of the shock. But if A\, (u,) <\, (u,),
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using Lemma 2.7, we have only m — k degrees of freedom at u, (since
M(u) <s <N, ()

and k — 1 at u, (since A\, _,(u,) <s <A, (u,)), for a total of m — 1.

5. EXISTENCE OF DISCRETE SHOCKS

In this section we show the existence of discrete shocks satisfying the hypotheses
of Theorem 4.1, for a special case. Our results are summarized by the following
theorem.

THEOREM 5.1. Suppose m =2 and (2.5),(2.6), and (2.7) hold in D. Let
u,,u, €D, u, € S, (u,), be such that Q C D, where Q C R? is the closed rectangle

with sides parallel to the u”, u® axes and u, and u, are at opposite corners.
For any b € u,u'?) and sufficiently small B, there exists an element & € X,

satisfying (3.4),(3.7),(S1), and (S2), with &3’ = b, if and only if A\, (u,) >\, (u,).

Remarks. If Q C D for every connected pair; e.g., if D is a rectangle, half-plane,
etc., then the existence of discrete shocks satisfying these conditions is equivalent
to genuine nonlinearity. Since condition N holds (Theorem 2.3), necessity of the
entropy condition follows from Theorem 4.1, and it suffices to prove sufficiency.

We give a proof for the case k =2, u’’ > u”, u® > u®?; the other cases are

completely analogous. We first show that u,, u, can be connected by a viscous
profile [1,2,3,12].

LEMMA 5.2, Under the hypotheses of Theorem 5.1, there exists a smooth function
0:R—> Q, 00 =b, 8(+x)=u,, 6(—x)=u,,

satisfying

de
(5.1) — +5s(0 —u,)=1(0) - f,
dz

where s = s(u,,u,).

Proof. In this case',/ from Lemma 2.6, 2.7, it follows that with respect to the
system (5.1), u, is an attractive improper node and u, is a saddle. From (2.6)
and (2.7), no orbits can leave (), and since condition N holds, there are no other
critical points in Q. Also from (2.6) and (2.7), an orbit enters ) at u,; this orbit
must end at u,, and the first component must assume the value b at some point
(Figure 3).

Next for fixed small positive 3, let] = (0 :ﬁ,’ -3, B((ﬁ)’ + 8); we consider the solutions
of (3.5) with ¢ € X,,, bl =b, b € L. Throughout this discussion, we consider
h/B fixed. We choose h (or B) sufficiently small that all such & approach u,
as x — +oo, and all such ¢ enter the region

B={ue€ Q:|u—nu |<8}
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2)

1)

Figure 3

for sufficiently large negative x.

LEMMA 5.3. The solutions of (3.5) which enter B either cross d{) at some
finite value of x, or else approach u, as x — —oo.

Proof. Letv = T(¢ — u,), with T the similarity transformation diagonalizing
f,(u,); from (3.6), we obtain the explicit form

h p® @

(5.2) (a E) ('_J'—'i'l_—.l——) =(s—A\ 1 (u/ ))vj(l) + O(Ilez):
h v? —®

(53) (a ‘é") (‘_J—‘—h_J_) = (S "-‘)\2(1.1/ ))vj(m + 0([vjl2)'

From (5.3), vi” — 0 as j— —co. Then from (5.2), v{" either also approaches
zero, or else increases exponentially. In the latter case, the orbit will eventually
cross the boundary Q.

We can now show the existence of a ¢ € Xh satisfying (3.4) with ¢(1;
Fory € I, let G(y) be the point on 4Q where the solution of (3.5) satisfying ¢ ' o= b
d)}f,)) y crosses d{2, for some negative x depending on y; if this ¢ never crosses
0, set G(y) = u,. From (38.6), G is obviously continuous, except possibly where
G (y) = u,. Now reducing h if necessary, the two sets

{(yeELG(y) € u®=uP,u®< Uf)}}, and
yelLGy e P <ul,u?=u?))
are both nonempty. By the continuity of G, there existsay, € Isuch that G(y,) =u,.

Then the solution of (3.5) with ¢ () =b, ¢ =y, satisfies (3.4). Figure 4 is an
illustration.
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(2)

G(y)

1

Figure 4

Denote the obtained solution of (3.4) by &; we wish to show that (3.7) and
(S1) are satisfied by this solution. For u outside of B, ¢ is close to 6 and there
is no trouble. For u inside B, both (3.7) and (S1) follow from the following:

LEMMA 5.4. Suppose fork =1,2,j=0,1,2, ..., 'q;k’ satisfy

(5.4) n®, = (1 + % (s — xl(u,))> nP+e®+ 0@y
(5.5) Mjy = (1 + g— (s — h2(u,))) n;” + e + OB ),
(5.6) m{?1=3%, k=12 j=012 ..,

and

(5.7) 19 —>0 as j—ooo, k=12

Then

w 1 ®
(5.8) 2 jn;l =0 (E> (Z (lgjfl)l + |5§2’|) + 8).

Proof. Rearranging (5.4) and (5.5), and summing with respect to j, we obtain
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c B
> [(1 +— (s - xl<u,))) ") + In {2, ]
i=1 a
N
(5.9) = In2 — " + O (B3|, )|
i=1

(1 _E (s —A (u,))) i+ + O (B3|n;))

a

for any N. Since A\, (u,) < s < \,(u,), (5.9) becomes

B

a

N
—(s— X\ (u,»z n;®| +—(>\ (u,) 2 In3®|

i=

= bl + I+ Z (les”] + 1e”] + O(B3] ;1)
j=1

N

N
¢ j=1

using (5.6), from which (5.8) follows easily.

Perturbation of f as described in (S2) will not change the character of the
critical points u_, u,. It will also not cause condition N to fail. Thus the above
argument is maintained under such perturbation, and condition (S2) is satisfied.
This completes the proof of Theorem 5.1.
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