CHAINS OF PRIMES IN R(x)
Evan G. Houston

INTRODUCTION

Let R be a commutative semilocal (Noetherian) domain with 1, and let R<x>
denote the quotient ring of R[x] with respect to the multiplicative system

R[x] - U {Q: Q is a maximal ideal of R[x] with Q@ N R maximal in R}

(here, x is an indeterminate). As is pointed out in [6], when studying chain condi-
tions, R<x> is essentially R[x] with all maximal ideals of R[x] whose intersec-
tion with R is nonmaximal having been discarded. The main result of [6] is that
R <x> is taut-level (height P + depth P = altitude R <x> for all primes P of

R < x> ) if and only if R< x> satisfies the first chain condition (every maximal
chain of prime ideals of R< x> has length equal to altitude R <x > ). This work
represents a further study of chains of prime ideals in R< x> .

The paper is.divided into two sections. In section I our main result is as fol-
lows. If K is prime in R{x) with K N R =0 and depth K =d > 1, then there are
infinitely many primes p in R with height p =1 and depth p =d - 1. A number of
consequences of this result are then derived. For instance, we show that if i is a
positive integer, then R is a D; ring (every depth i prime ideal has height equal to
altitude R - i) if and only if R <x> is a Dj;; ring. Another example is that the in-
tegral closure R' of R is shown to be an H; ring (every height one prime ideal of
R' has depth equal to altitude R' - 1) if and only if R <x> is H; . We close section
I by proving a strong converse to the first result mentioned above. Specifically, if
there is a height one prime ideal p in R with depth p =d, then in R <x> there are
infinitely many primes K satisfying K MR =0 and depth K=d + 1.

In the second section, we extend to R < x> a major result of Ratliff [8, Proposi-
tion 2.2]. We show that if 0 C P| C --- C Py, is a saturated chain of primes in
R <x> with depth P, =d > 0, then for each j =0, 1, ---, d - 1, there are infinitely
many primes P in R{ x) with height P = h+j and depth P =d - j. In fact if
height P;, = h and N is a maximal ideal of R< x> containing P}, then for each
=1, --,d- 1, we may require the primes P to satisfy P, C P ¢ N with P con-
tained in no other maximal ideals of R <x > . Several applications of this are given
to the case where R < X> is assumed to be an H; ring. For example, if there is a
saturated chain of length h from 0 to a prime P in R<x> with depth P =d > 0,
and if h+d < altitude R{ x ), then either h>i or h+d <i.

Received April 21, 1977. Revision received June 29, 1977.
This work was supported in part by funds from the Foundation of the University
of North Carolina at Charlotte and from the University of North Carolina.

Michigan Math. J. 24 (1977).

353



354 EVAN G. HOUSTON

Preliminaries. Let T be a commutative semi-quasilocal integral domain with

1. If x is an indeterminate and Q is a prime ideal of T[x] with Q # (Q N T) T [x],
then we shall call Q an upper to Q N T. A maximal ideal Q of T[x] is said to be
a type I maximal if Q N'T is maximal in T; otherwise Q is called a type II maxi-
mal. Following [6] we shall use T <x> to denote the quotient ring of T[x] with re-
spect to the multiplicative system T [x] - U {Q: Q is a type I maximal ideal of

x]} A discussion of facts about T ( X> is given in [6]. In particular it is pointed
out that if M, ---, M, denote the maximal ideals of T, then a maximal ideal Q of
T [x] is a type I maximal if and only if Q > M, T[x] N --- N M T [x]. From this and
[1, Lemma 3], it follows that the maximal ideals of T { x ) are precisely the ideals
QT <x> where Q is a type I maximal ideal of T [x]. As T <x> is essentially

T [x] with the type II maximals discarded, we shall frequently refer to a prime P of
T< > as being an upper to P N T. Our meaning is that the prime P N T [x] of

T [x] is an upper to (P N T[x]) N T. Throughout the paper we shall freely use facts
about uppers in T x > ; these facts follow easily from [4, Section 1-5] and from ele-
mentary knowledge of quotient rings.

The terminology in this paper is fairly standard, and definitions of unfamiliar
terms may be found in [2], [4], or [8]. We do wish to point out that when using the
terms “local” and “semilocal”, we are assuming “Noetherian” also. Also, we shall
use T' to denote the integral closure of a domain T.

SECTION 1

We begin with a result which will quite often be needed in what follows and for
which we know of no reference (although it follows qu1te readily from known results).

LEMMA 1.0. Let T be an integrval extension domain of a semilocal domain R,
and let 0 C Q| C -+ C Q, (n > 1) be a saturated chain of pvime ideals in T. If
depth Q,=d > 0, then there exist infinitely many prime ideals q in R with
height q = n and depth q = d.

Proof. There exists one such q by [3, Theorem 1,11]. If n =1 then the con-
clusion holds by [5, Proposition 2]. If n > 1 then we may choose a prime ideal p in
R such that p C q, height p=n - 1, and height q/p = 1. Then, applying [5, Proposi-
tion 2] to R/p yields infinitely many primes q' 2 p with height q'/p = 1 and depth
q' =d. For all but finitely many of the ¢q', we have by [5, Theorem 1] that
height q' = 1 + height p = n, and the proof is complete.

PROPOSITION 1.1. In the semilocal domain R, let M be a maximal ideal, and
let Q be an upper to M in R[x]. Assume that theve is an upper K to 0 in R[x]
with K C Q, height Q/K=d> 1, and K £ MR[X]. Then theve ave infinitely imany
primes p in R with height p =1 and depth p=d - 1.

Proof. Since K & MR [x], by [3, Theorem 1.3], there is a prime N in R' with
N NR =M and height N = d. Since R is semilocal, R' has only finitely many maxi-
mal ideals N; =N, N,, ---, Ny and we may choose u€ N -N, U *-- UN,. If
N'=NnN R[u]1 then height N' = d since R[u] C R' is an integral extension and N is
the only prime of R' lying over N'. By the principal ideal theorem, we may shrink
N' to a prime P' minimal over u with height N'/P' =d - 1. Of course
height P' = 1. Since u € P', N is the only maximal of R [u] containing P', so that
depth P' =d - 1. The conclusion now follows from Lemma 1.0.
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Remark. In Theorem 1.3 we shall remove the requirement K ¢ MR [x] from
Proposition 1.1. On the other hand, we shall have to assume that depth K = d rather
than merely requiring height (Q/K) = d.

LEMMA 1.2. If R is a domain and the maximal ideal Q of R [x] contains a
monic polynomial, then Q N R is maximal in R.

Proof. Since Q contains a monic polynomial, the extension R/Q NR C R[x}/Q
is an integral extension. However, R [x]/Q is a field, whence R/Q N R is a field [4,
Theorem 16]. Thus Q N R is maximal.

THEOREM 1.3 (c¢f. [5, Theorem 3]). If R is a semilocal domain and theve is an
upper K| to 0 in R<x> with depth K| =d > 1, then in R theve are infinitely many
primes p with height p =1 and depth p=d - 1.

Proof. Choose a maximal ideal Q; in R<x> with Q; © K, and
height Ql/Kl =d.

Let Q=Q; NR[x] and K =K; N R[x]. Also, le¢ M =Q N R. Then M is maximal
in R and Q = (M, f)R[x] for some monic polynomial f irreducible modulo M. By
Proposition 1.1 we may as well assume K € MR [x], so that f ¢ K. (Alternatively, if
f € K then R[x]|/K is an integral extension of R of altitude d, in which case R has
altitude d, and the theorem is trivial.) Use the principal ideal theorem to shrink Q
to a prime Qg minimal over (K, f) with height Q/Q¢=d - 1 and height Qo/K = 1.
If N is any type I maximal of R [x] with Qy C N, then

height N/Qq < height N/K - 1 < d- 1.

By Lemma 1.2, Qg lies in no type II maximals, whence depth Qp=d - 1. Let
P,=QyNR, then R/PyC R([x]/Qq is an integral extension. Thus

depth P = altitude R/P( = altitude R[x]/Q¢ = d - 1.

Moreover, since height Qg/K = 1, K & PoR[x], so that by [3, Theorem 1.3] there is
a height one prime Py of R' with Py N R = Py. Of course,

depth Py = depth Py = d - 1.
Therefore, by Lemma 1.0 there are infinitely many primes p of R with
height p=1 and depthp=d-1,

as desired.

Remark. Let R be a semilocal domain with maximal ideals M;, M,, =, M

0
In R[x] let s denote the multiplicatively closed set

R [x] - U {(Mi, x)R[x):i=1, ---, n}.
Then Theorem 1.3 remains true if we replace R <x> by R [x]s . In the proof of the
theorem, one need only take f(x) = X.

As a first application of Theorem 1.3 (and the remark above), we generalize the
domain case of [2, Theorem 12].
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PROPOSITION 1.4. Let R be a semilocal domain, and leti be a positive in-
tegev. Then the following statements ave equivalent:

1) R is Dy

2) R(x) is Di

3) R[x]s is Dyyy

Proof. The proofs of 2) implies 1) and 3) implies 1) are routine and therefore
omitted. We shall prove 1) implies 2); the proof that 1) implies 3) is similar. Let P
be a prime of R {x ) with height P =h and depth P =i+ 1. If P=(P NR)R{x)
then height (P N R) =h and depth (P N R) =depth P - 1 =1i. Since R is D; we have

h+(i+1)=(h+1i)+ 1= altitude R + 1 = altitude R{ x ). Hence we assume
P+ (PNR)R <x > . Since i +1>1 we may apply Theorem 1.3 to

R{(x)/(PNRIR{x) = R/PNRIx).

This yields infinitely many primes p> P N R in R with height (p/P NR) = 1 and
depth p =i. By [5, Theorem 1] there is such a p with

height p = height (P N R) +1 = height P = h.

Again, since R is D;, we have h +i = altitude R and h+1i+ 1 = altitude R < x> .

By considering the integral closure R' of R, we can add several equivalences
to the above.

PROPOSITION 1.5. Let R be a semilocal domain, and let i be a positive in-
teger. Then the following statements ave equivalent:

1) Ris D

2) R'is D;

3) R'(x) is Dy,

Proof. Assume that R is D; and let P be prime in R' with height P = h and
depth P =i. Since i > 0 there is by [3, Theorem 1.11] a prime in R of height h and

depth i, whence h +i = altitude R = altitude R'. Hence 1) implies 2). That 2} im-
plies 1) follows easily from the going up and incomparability theorems.

We next prove that 2) implies 3). Accordingly, let P be a prime of R'[x] with
height PR'(x ) = height P = h and depth PR'(x) =i+1. Let Py =P NR' and
pick u € Py with u in no other prime of R' which lies over Py (1 R. Let
Qo=PyNR[u] and Q=P N R[u][x]. Now if P =PgR'[x] then Q = QyR[u][x] and
height P = height Q¢ = height Q > height P = h. Thus height Py = h. Of course
depth P = depth Qg = depth QR< x> - 1 = depth PR < x> - 1 =1, and the result fol-
lows from the fact that R' is D;. Thus we assume that P # PyR'[x], whence
Q # QoR[u][x]. Thus Q is an upper to Qo and depth QR [u] <x> =i+1>1. Ap-
plying Theorem 1.3 to R{u]/Qq we find a prime q in R[u] with q D Qq,
height (q/Qg) = 1, and depth q = i. Since height Qo = h - 1 there is by [5, Theorem
8] a prime p of R with height p = h and depth p =i. Therefore, since R is D; we
have h+i = altitude R and h+ i+ 1 = altitude R'{ x ).

Finally, 3) implies that R < X) is D,,, by integral dependence, whence R is
D, by Proposition 1.4.
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We now turn to what can be said concerning the H; condition in R ( x> .

PROPOSITION 1.6. If R is a semilocal domain, and R{x) is H;, then R is
both I‘I-1 and Hi-—l .

Pyroof. If P is a height i prime of R, then height PR <x> =1i, whence
i +depth P =i +depth PR (x ) - 1= altitude R{x ) - 1 = altitude R, as desired. On
the other hand, if Q is a height i - 1 prime of R and depth Q = d, we must show
that i - 1+d = altitude R. If d =0 then Q is maximal and (Q, x)R{x) isa
height i maximal ideal of R{ x), whence altitude R{ x ) =i and altitude R =i - 1.
We therefore assume d > 0. Let M D Q be a maximal ideal of R with

height (M/Q) = d.

Then height (M, ) R{x ) /QR{ x)) =d+ 1 >1 and by [8, Proposition 2.2], together
with [5, Theorem 1], there is a prime Q' O QR{x ) of R{x ) with height Q' =1i

and height (M, x)R{x ) /Q') = d. Since depth QR (x) = 1+depth Q=d +1 we
have depth @ =d. Thus, since R{x ) is H;,

i-1+d = altitude R{x) - 1 = altitude R .

This completes the proof.

PROPOSITION 1.7. (¢f. [7, Theorem 2.6]). Let R be a semilocal domain and
assume that i < altitude R. Then R < x> is H; if and only if R is H, and there are
no maximal chains of primes of length 1+ 1 in R( X> .

Proof. Assume that R<x> is H;. By Proposition 1.6 R is also H;. Let
0cP, C..-CP;y; be amaximal chain of primes in R(x] with P;;; N R a maxi-

mal ideal of R. By [3, Corollary 1.5] we may assume that height P; =i and that P;

is an upper to P; N R. By [6, Theorem 3] applied to R/P; N R we may assume that

P.., is the only type I maximal ideal containing P;. Hence depth P1R<x> =1. Of

course, height P,R{ x) =i so that i+ 1 = altitude R{x ) and altitude R =1, a con-
tradiction.

Conversely, assume that R is H; and that there are no maximal chains of
primes of length i +1 in R<x> . In R<x> let P be prime with height P =i and
depth P =d. Since R is H; we may assume that P is upper to P N R. Also we
have d > 1 by hypothesis. Thus by Theorem 1.3 applied to R/P N R there are in-
finitely many primes p of R with P N R C p, height (p/P N R) =1, and

depthp =d- 1.
Hence by [5, Theorem 1], there is such a prime p with
height p = height (P " R) +1 = height P = i.

Since R is H;, we have i +d - 1= altitude R and i +d = altitude R{ x ) .
PROPOSITION 1.8. Let R be a semilocal domain. Then R < x> is H; if and
only if R[x],is Hj.
Proof. Assume that R(x> is H; and let P be a prime of R[x] with height
P =i and depth PR [x] = d. We must show that i +d = altitude R[x]5. The result



358 EVAN G. HOUSTON
being trivial if d = 0, we assume d > 0. Also, if P = (P N R)R[x] then
d = depth PR[x]; = depth PR{x ),

whence i+ d = altitude R <x> = altitude R [x]s. Consequently, we take P to be an

upper to P N R. Choose M maximal in R so that height (M, x)R[x]/P) =d. If
d =1 we may use [6, Theorem 3] to replace P by an upper P' to P N R with
P' ¢ (M, x)R[x], height (M, x)R[x]/P') =1, and P' contained in no other type I

maximal ideal of R[x]. Thus
height P'R{ x ) = height (P A" R)R{x ) + 1 = height P = i
and depth P’ R<x > = 1. Since R<x> is H; we have
i+d=1i+1 = altitude R{ x) = altitude R[x]_.

Finally, if d > 1 we may use the remark following Theorem 1.3 (applied to
R/P N R), together with [5, Theorem 1], to produce a prime p> P N R in R with
height p =i and depth p =d - 1. Thus, since R is H., we have that

1?

i+d = altitude R + 1 = altitude R [x] .

Conversely, assume that R[x]; is H;. Let Q be a prime of R [x] with
height @ =i and depth QR {x ) =d. Let Qy=Q NR; if Q= Q,R[x] then

height Qp =i and depth Qg =d - 1. Thus height QR [x], =i and

depth QR [x], = depth QpR[x], = d,

whence i +d = altitude R [x]s = altitude R < X > . Hence we may as well assume that
Q is an upper to Qq. The result is trivial if d = 0. If d = 1 there is by [9, Theo-
rem 5.1 and Proposition 5.3] a maximal ideal N of R and an upper Q' to Qg with
Q' < (N, x)R[x] and height ((N, x)R[x]/Q") = 1. By [6, Theorem 3] we may assume
Q' to be contained in no other type I maximal of R[x], whence depth @'R[x], = 1
and the result follows. Now assume d > 1. Applying Theorem 1.3, together with [5,
Theorem 1], to R/Qp, we find a prime q 2 Qg in R with height g = height Qyt1=i
and depth ¢ = d - 1. Therefore, height qR [x]5 =1, depth qR[x] = d, and the conclu-
sion follows easily.

We would now like to prove the H; analogues of Propositions 1.4 and 1.5. As we
have already seen in Proposition 1.7, R and R < x ) do not necessarily share the H,
property. In fact the situation is even less tractable, for in Theorem 1.9 we are
forced to settle for the H, case.

THEOREM 1.9. The following statements arve equivalent for a semilocal
domain R:

1) Rl[x] s Hj.

2) R' s H, .

3) R{x) is H, .
4) R'(x) is H,.
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Proof. Assume that R[x]S is H; and let P' be prime in R' with height P' =1
and depth P' =d. If d =0 choose u in P', such that u lies in no other maximal
ideal of R'. Let K be the kernel of the natural map from R[x] to R[u]. Then if
P' N R =M we have that (M, x)R[x]; is the only maximal ideal of R[x], which con-
tains Kg (since P' N R[u] is the only maximal ideal of R [u] which contains u).
Thus in R[x]; height K; =1 and depth Kg = 1. Since R|[x]; is H;, this implies
that altitude R' = altitude R[x]s - 1 =1, as required. Thus assume d > 0. By [3,
Theorem 1.11], there is a prime p of R with height p =1 and depth p = d. Since R
is obviously H; we get 1 +d = altitude R = altitude R'. Thus (1) implies (2).

We next show that 2) implies 1). Accordingly, let K be a height one prime of
R [x] with depth K, = d. The result being easy if K = (K N R)R[x], we assume that
K is an upper to 0. If d =0, then R is a field and there is nothing to prove. If
d = 1, then by [3, Theorem 1.3] there is a height one maximal ideal in R', and the
result follows since R' is H; . We therefore assume d > 1 and choose a maximal
M of R such that height ((M, x)R[x]/K) =d. If x € K then, since K is the only
height one prime of R[x] containing x, we have height (M, x)R[x] =d + 1 by the
principal ideal theorem. It follows easily that altitude R[x], =d+ 1. If x ¢ K use
the principal ideal theorem to shrink (M, x)R[x] to a prime @ minimal over
(K, x)R [x] with height (M, x)R[x]/Q) =d - 1. Clearly depth Q =d - 1, and if
P =Q NR, then, since R/P = R[x]/Q, we have depth P =d - 1. Again, by [3, Theo-
rem 1.3] since height K = 1 and height (Q/K) = 1, we find a height one prime P' in
R' with P' N R =P. Of course, depth P' = depth P =d - 1. Thus since R' is Hj,
altitude R[x], = altitude R' +1=1+d- 1+1=d+1, as desired.

The equivalence of 1) and 3) was established in Proposition 1.8. Thus we need
only show the equivalence of 3) and 4). As 4) implies 3) by integral dependence, we
confine ourselves to showing that 3) implies 4). Accordingly, let XK' be prime in

R'[x] with height K' = 1 and depth K' R'<x> =d. As usual we distinguish two
cases. If K' = (K' N R')R' [x] then K' N R' is a height one prime of R' whose depth
is d-1. If d=1 then K' N R' is maximal and the result follows easily, since 3)
implies 2). Thus assume d > 1 sothat d - 1> 0. By [3, Theorem 1.11], this yields
in R a height one prime q with depth q =d - 1. In this case the result follows from
the fact that R is H;. On the other hand, if K' is an upper to 0 in R'[x], then

K =K' NR[x] is an upper to 0 in R[x], whence height K = 1. Of course
depth KR x ) = depth K'R'{x ) = d.

Thus d + 1 = altitude R{ x ) = altitude R' { x ). This completes the proof.

Remavk. If in Proposition 1.9 “H;” is replaced by “H;”, then, as noted in
Proposition 1.8, 1) and 3) are equivalent. Moreover, it is not difficult to show that
4) implies 3) and that 1) implies 2). The author does not know whether these implica-
tions can be reversed.

We now wish to prove a strong converse to Theorem 1.3. For this we shall need
a generalization of [5, Proposition 2]. As a proof of Proposition 1.10 requires only
trivial modifications in the proof of [5, Proposition 2], we omit it and merely state
the result.

PROPOSITION 1.10. Let R be a Noethevian domain with primes P C P, such
that height P = 1 and depth P = depth Py + 1 = d. Assume that P does not contain
the Jacobson vadical of R. Finally, let A = {M: M is a maximal ideal of R with

P M}, and assume that P ¢ U {M: M € A}. Then theve ave infinitely many
height one primes p C Py with depth p = d.
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THEOREM 1.11 (¢f. [5, Theorem 4]). In the semilocal domain R, let P be a
height one prime with depth P =d > 0. Then in R <x> theve ave infinitely many
uppers K to 0 with depth K =d + 1.

Proof. If d =0, choose any upper Q to P. Then QR<X> is maximal in R <x>
with height QR <x> = 2. By [6, Theorem 1] there are infinitely many uppers K to 0
in R[x] with KC Q and K contained in no other type I maximal ideal of R[x]. For
each such K we have depth KR <x> = height (Q/K) = 1, as required. Now assume
d> 0. Let My, -+, My, -+, M,, denote the maximal ideals of R with P ¢ M; for
i=1, -, k. One verifies easily that a maximal ideal Q of R <x> satisfies
Q7 PR{x) ifand only if QO M;R{x ) n - A M R{x). Thus A = {Q: Q is
maximal in R{x) and Q@ PR{x )} is closed in Spec R{x ), and by [1, Lemma

3] PR<x> Z U {Q: Qe A}. Also, since the Jacobson radical of R <x> is just
=M R{x) N NMR{x), clearly J ¢ PR{x) . If Py = (P, x) R{x ) then
depth Py = depth PR <x> - 1 =d. Therefore, the requirements of Proposition 1.10
are met and there are infinitely many primes K of R <x> with height K =1,

K C Py, and depth K = d + 1. We assert that for the infinitely many K # PR{ x ),
we have K an upper to 0. For K C Py implies that KN R C Py N R = P, whence,
if K # PR< x> ,» we have KN R = 0. This completes the proof.

SECTION 2

In this section we wish to extend [8, Proposition 2.2] to R < x> and to cite a few
consequences of this extension. We shall require the following lemma.

LEMMA 2.1. Let R be a semilocal domain with maximal ideals

M,, -, M -, M

m? n?

and in R[x] let Qp, -+, Qm be uppers to My, ---, My, , vespectively. Then there
is a polynomial £(x) € R[x] with f(x) € Q N - N Qu dut in no other type I maxi-
mal ideals of R[x].

Pyoof. For each j =1, --+, m, we have Q; = (M;j, fj(x))R [x] for some monic
polynomial fj(x) of R[x]. Write fj(x) = aj. x* + aj, 1 XF L+ +aj0 , where
aj;; = 0 for i > deg fj. For each £ =1, -+, r, use the Chinese Remainder Theorem
to choose by € R with by = ajy (mod Mj) for j=1, ---, m,and by = 0 (mod Mj) for
j=m+1, -+, n. Also choose by such that by = a9 (mod MJ-) for j=1, .-, m, and
by = 1 (mod Mj) for j=m+1, .-+, n. If £(x) =b. X" + -+ + by, then {(x) = fj(x)
(mod M;) for j=1, -+, m,and f(x) = 1 (mod M;) for j =m +1, ---, n. Thus
f(x) € Q; N -+ N Qy,. Clearly f(x) lies in no upper to M; for j =m +1, ---, n.
Moreover, if f(x) € Q for some upper Q to M;, 1<i<m, then f;(x) € Q also,
whence (M;, f;(x))R[x] = Q; € Q and Q = Q;. This completes the proof.

LEMMA 2.2. Let R be a semilocal domain, and in R< x> let 0OCKCP bea
saturated chain of primes with depth P =d > 1. Then lheve ave infinitely many
primes p in R with height P = 2 gnd depthp=4d - 1.

Proof. Let Po =P NR. If P=PyR < x> then by [5, Theorem 6], there is a

saturated chain 0 C py C Py in R. Since depth Py = d - 1, the result follows easily
from Lemma 1.0. Thus we assume that P is an upper to Py. By [3, Theorem 1.3]
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there is a prime Pj in R' with P, N R = P, and height P = 1. Choose u € P, but
in no other prime lying over P, and contract to R[u]. If Py = Py N R[u] then
height P(')' = 1. By going up in the integral extension R < x> C R [u] <x> there is a
prime P" in R[u] (x) with height (P"/PR[u]{x)) =1 and P" N R{x) = P. Of
course P" is an upper to Pj whence height P" = 2. Since also

depth P" = depth P = d > 1

we may apply Theorem 1.3 to R[u]/Pj to obtain a prime q 2 Py in R[u] with
height (q/Pg) =1 and depthq =d - 1. By Lemma 1.0, this yields an infinitude of
primes p in R with height p =2 and depthp=d - 1.

THEOREM 2.3. Let R be a semilocal domain, and in R <x> let P be a prime
with depth P =d > 0. If theve is a salurated chain of primes in R < x> of length

h >0 from 0 to P, then theve ave infinitely many primes Q in R < x> with
height Q = h and depth Q = d.

Proof. Let p=P 0 R and first assume that P =pR {x ). If d = 1, then p is
maximal. By [5, Theorem 6] there is a saturated chain 0 Cp; C ---Cp,_, Cp in
R and by [5, Theorem 8} we may assume that height p, , =h - 1. Let N be any
upper to p in R<x> . Then height (N/p,,_1 R < x> ) = 2, and by [6, Theorem 3] ap-
plied to R/py,_; there are infinitely many uppers P' to p,_; in R<x> with P' C N
but in no other maximal ideal of R < x> . For each such P' we have depth P' = 1
and height P' =1 + height p, _; = h.

We next assume that d > 1. Thenin R we have depthp =d - 1 > 0, whence by
Lemma 1.0 there are infinitely many primes q in R with height q = h and
depth q =d - 1. For each such q we have height qR < x> = h and depth qR < x> =d,
completing the proof in this case.

To complete the proof, we attack the case where P is upper to p. If d =1 then,
in the given saturated chain 0 C P; C --- C P,,_; C P, we may assume by [3, Corol-

lary 1.5] that height P, 1 =h - 1. Choose a maximal ideal N D P in R<x> ;

clearly height (N/P) = 1. Thus P, _; C P C N is saturated and by {8, Proposition
2.2] there are infinitely many primes P' with Py,_; € P' CN saturated. If

P' = (P' NR)R{x) then we have NN R =P' N R. Thus infinitely many of the P'
are uppers. By [5, Theorem 1] we may select such a P' with

height P' = 1 +height P, ;| = h .

For this P' we apply [6, Theorem 3] to R/P' N R to product infinitely many uppers
Q to P' N R with Q C N but in no other maximal ideal of R <x> and

height (N/Q) = 1.

For each such Q we have depth Q@ =1 and height Q = 1 + height (P' N R) = h.

Finally, assume d > 1. If h =1 the result follows easily from Theorem 1.3.
Also, if h = 2, the result follows from Lemma 2.2. Hence, we assume that h > 2.
By [3, Corollary 1.5] we may pick P;_; C P with P, _; upperto p=P,_; NR and
height P, , =h - 1. Applying Lemma 2.2 to R/p we find a prime q D p in R with
height (q/ps =2 and depth q =d - 1. Since there is a saturated chain of length
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height p+2 =h from 0 to q in R, we may apply Lemma 1.0 to find infinitely many
primes q' in R with height q' =h and depth q' =d - 1. For any such q’, if
Q=q'R{x), then height Q =h and depth Q =d. This completes the proof.

THEOREM 2.4. Le! R be a semilocal domain, and in R<x> let P be prime
with depth P =d > 1. If there is a saturated chain of primes in R <x> of length
h >0 from 0 to P, then for each j =1, ---, d - 1, there are infinitely many primes
Q in R<x> with height Q =h +j and depth Q =d - j. In fact, if height P = h and
N is any maximal ideal of R <x> with N D P and height (N/P) = d, then we may
pick the primes Q in such a way that P C QC N and Q lies in no other maximal
ideal of R <x> .

Proof. By Theorem 2.3 we may assume that height P = h. Let N be as hypoth-
esized. By induction it suffices to produce infinitely many primes Q with
PCQCN, height Q=h+ 1, depth Q =d - 1, and Q contained in no other maximal
ideals of R < x> . By Lemma 2.1 there is an element f € N with f in no other maxi-
mal ideals of R <x> . If f € P the result follows easily from [8, Proposition 2.2]
and [5, Theorem 1]. Thus we assume f ¢ P. We wish to produce a prime Q; with
P C Q; € N, height (Q; /P) = 1, height (N/Q;) =d - 1, and with Q; not contained in
the union of the other maximal ideals of R <x> . By the principal ideal theorem, we
may shrink N to a prime Q; minimal over (P, f)R< x> with height (N/Q;) =d - 1.
Of course height (Q; /P) = 1, also by the principal ideal theorem. Finally, since
f € Q), we have Q; € N but not in the union of the other maximal ideals of R<x> .
Inductively, suppose that primes Q;, -, Qx have been chosen such that for each
i=1, -, k,we have P C Q; C N, height (Q; /P) = 1, height (N/Q;) =d - 1, and Q;
not contained in the union of the other maximal ideals of R < x> . For each
i=1, -+, k,choose g; € Q; with N the only maximal ideal of R <x> containing g;.
Then g=g;g2 gk € Q) N--- N Qr and g € N but in no other maximal ideals of
R <x> . Also, since for each i =1, ---, k, height (N/Q;) =d - 1 > 0 we have
MR<x> ¢ Q; for each maximal ideal M of R. Thus the Jacobson radical J of
R{ x) (which is N {MR{x):M is a maximal ideal of R}) satisties J ¢ Q; for

each i, and by prime avoidance [4, Theorem 81), J Z Q; U --- UQy. Pick
hedJ-QU:-+UQg and note that g+h ¢ Q) U +- U Qg andthat g+h € N but

g + h lies in no other maximal ideal of R <x> . Use the principal ideal theorem
again to find a prime Qy,; minimal over (P, g+ h)R <x> with Qs+ € N and
height (N/Qj.;;) =d - 1. One verifies easily that Q4 satisfies the conditions im-
posed on Q;, ***, Qk, whence by induction there are infinitely many primes Q of
R{x ) satisfying P C QC N, height (N/Q) =d - 1, height (Q/P) = 1, and Q con-
tained in no maximal ideal of R < x> except N. Moreover, by [5, Theorem 1}
height @ = 1 + height P = h + 1 for all but finitely many of the primes @Q, so the proof
is complete.

COROLLARY 2.5 (cf. [2, Theorem 2]). Let R be a semilocal domain. In
R <x> let P be a prime with depth P =d > 0 and let h be the length of some
saturated chain of primes in R< x> from 0 to P. If R < x> is an H; ving and
h +d < altitude R{ x ), then either h>1i or h+d < i.

Proof. For each j=0, 1, ---, d - 1 we may use Theorem 2.3 and 2.4 to find a
prime Q with height Q =h +j and depth Q =d - j. Suppose h<i and h+d>1i. I
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j=i-h then 0<j<d-1 sothat height Q=1 and depth Q =d - i +h. Since
R< > is H;, we have alt1tudeR<x> =i+d-1i+h=h+d, as desired.

COROLLARY 2.6 (¢f. [2, Proposition 8]). Let R be a semilocal domain, and
assume that R(x) is Hy. If 2i +1 > altitude R< > then R< ) is Dy for
j>i. If 2i+1<altitude R{x ), then R(x) is D for j > altitude R(x) -i-1

Proof. Assume 2i + 1 > altitude R< > and let j > i. Let P be prime in
R (x) with depth P = j and height P=h>0. If h>i then

h+j > 2i+1 > altitude R(x ),
and we have h +j = altitude R< > . Thus we assume h<i. Since h+j >i, we

have h + j = altitude R<x> , by Corollary 2.5.

Now suppose that 2i + 1 < a = altitude R <x > . Let Q be a prime with
height Q=h and depthQ=j>a-i-1. If h>i then h+j>i+a-i-1=a-1,
and h+j = a, as desired. On the other hand, if h <i, then

h+j>h+a-i-1>h+2i+1-i-1=h+1i>1i.

Thus again by Corollary 2.5, we have h+j = a.

COROLLARY 2.7 (cf. [2, Proposition 10}). Let R be a semilocal domain, and
assume that R<x> is H; for each i =i} =0 <i, < - <j, = altitude R<x> If
i >y - iy for k=1, -, n, then R{x) is D;.

Proof. Let P be a prime in R < x> with height P =h > 0 and depth P =j.
Then i, _; <h <i, for some k > 1, whence

h+] 2 ik_ik—l +h > ik_ik—l +ik-1 = ik'

Also h <ig. Thus by Corollary 2.5, h+j = altitude R{x ) .
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