JORDAN C*-ALGEBRAS

J. D. Maitland Wright

INTRODUCTION

In his final lecture to the 1976 St. Andrews Colloquium of the Edinburg Mathematical Society, Professor Kaplansky introduced the concept of a Jordan C*-algebra (see below for definitions), pointed out its potential importance, and made the following conjecture. Let \mathcal{A}_1 , \mathcal{A}_2 be unital Jordan C*-algebras and let ϕ : $\mathcal{A}_1 \to \mathcal{A}_2$ be a surjective isometry with $\phi 1 = 1$; then ϕ is a Jordan *-isomorphism. In verifying this conjecture [15], extensive use was made of the deep results of Alfsen, Schultz, and Störmer [2] on JB-algebras.

It is easy to see that the self-adjoint part of a Jordan C*-algebra is a JB-algebra. The main part of this paper, Section 2, is devoted to establishing a converse result. Each JB-algebra is the self-adjoint part of a unique Jordan C*-algebra. First we establish the result for finite-dimensional algebras. This is not entirely straightforward and seems to require quite delicate arguments. Once this is accomplished; in particular, when we know of the existence of an exceptional Jordan C*-algebra, \mathcal{M}_3^8 , whose self-adjoint part is M_3^8 (the exceptional Jordan algebra discovered by von Neumann, Jordan, and Wigner [6]), then the general result can be obtained quite quickly.

In the final section we consider ideals and quotients of Jordan C*-algebras and, applying the results of Section 2 and the main theorem of [2], show that for each Jordan C*-algebra $\mathscr A$ there exists a unique *-ideal $\mathscr I$ such that (i) $\mathscr A/\mathscr I$ can be isometrically *-isomorphically embedded into the special Jordan *-algebra of bounded operators on a complex Hilbert space and (ii) each 'factorial' representation of $\mathscr A$ which does not annihilate $\mathscr I$ is onto $\mathscr M_3^8$.

I would like to draw the attention of the reader to an interesting recent paper by Bonsall [3] in which he obtains a generalization of the Vidav-Palmer Theorem to special Jordan *-algebras.

1. BASIC PROPERTIES OF JORDAN C*-ALGEBRAS

Definition (Kaplansky). Let \mathscr{A} be a complex Banach space and a complex Jordan algebra equipped with an involution *. Then \mathscr{A} is a Jordan C*-algebra if the following four conditions are satisfied.

- (i) $\|\mathbf{x} \circ \mathbf{y}\| \le \|\mathbf{x}\| \|\mathbf{y}\|$ for all \mathbf{x} and \mathbf{y} in \mathbf{A} .
- (ii) $\|\mathbf{z}\| = \|\mathbf{z}^*\|$ for all \mathbf{z} in \mathbf{A} .
- (iii) $\|\{zz*z\}\| = \|z\|^3$ for all z in \mathscr{A} .

(Here {abc} is the Jordan triple product as defined on page 36 [5].)

(iv) Each norm-closed, associative *-subalgebra of ℳ is a C*-algebra

Received November 9, 1976. Revision received April 21, 1977.

Michigan Math. J. 24 (1977).

We can dispense with condition (iv) because, if z and z* lie in a norm-closed, associative *-subalgebra of \mathscr{A} , then the Jordan triple product $\{zz*z\}$ reduces to $(z\circ z*)\circ z$. Hence, by (i) and (iii), $\|z\|^3 \le \|z\circ z*\| \|z\|$. But, by (i) and (ii), $\|z\|^2 = \|z\| \|z^*\| \ge \|z\circ z^*\|$. Thus $\|z\circ z^*\| = \|z\|^2$.

A Jordan C*-algebra is said to be a JC^* -algebra if it is isometrically *-isomorphic to a norm-closed, Jordan *-subalgebra of the Jordan *-algebra of all bounded operators on a complex Hilbert space; e.g., the three-dimensional Jordan *-algebra of 2×2 symmetric matrices over \mathbb{C} . Clearly, every JC^* -algebra is a special Jordan algebra but, as we shall see presently, there exist Jordan C^* -algebras which are exceptional and so are not JC^* -algebras. In all that follows we shall only consider Jordan C^* -algebras which are unital; that is, possess a multiplicative identity.

Definition (Alfsen-Schultz-Störmer [2]). Let A be a real Banach space and a real Jordan algebra equipped with a multiplicative unit 1. Then A is a JB-algebra if the following conditions are satisfied.

- (i) $\|x \circ y\| < \|x\| \|y\|$ for all x and y in A.
- (ii) For each a ϵ A, the norm-closed, associative subalgebra of A generated by 1 and a is isometrically isomorphic to the self-adjoint part of a commutative C*-algebra.

Let \mathscr{A} be a Jordan C*-algebra and let $A = \{x \in \mathscr{A} : x = x^*\}$. Since $\|z\| = \|z^*\|$ for all z in \mathscr{A} , A is a closed (real) subspace of \mathscr{A} . It is straightforward to verify that $\mathscr{A} = A \oplus iA$ and that A is a JB-algebra.

A Jordan *-algebra is a complex (unital) Jordan algebra equipped with an involution *.

LEMMA 1.1. Let \mathscr{A} be a Jordan *-algebra over \mathbb{C} . Let $\| \|$ be any norm for \mathscr{A} such that $\| \{ \mathbf{z}\mathbf{z} * \mathbf{z} \} \| = \| \mathbf{z} \|^3$ whenever $\mathbf{z} \in \mathscr{A}$. Let $\| \|_1$ be an equivalent norm such that $\| \{ \mathbf{z}\mathbf{z} * \mathbf{z} \} \|_1 \leq \| \mathbf{z} \|_1^3$ for all $\mathbf{z} \in \mathscr{A}$. Then, for every $\mathbf{w} \in \mathscr{A}$, $\| \mathbf{w} \|_1 \geq \| \mathbf{w} \|$.

Proof. Suppose that, for some w, $\|\mathbf{w}\|_1 < \|\mathbf{w}\|$. Since we could replace w by $\mathbf{w}/\|\mathbf{w}\|$, we lose no generality by requiring that $\|\mathbf{w}\| = 1$. Let us construct a sequence (\mathbf{z}_n) $(n=1,2,\cdots)$ by setting $\mathbf{z}_0 = \mathbf{w}$ and $\mathbf{z}_{n+1} = \{\mathbf{z}_n \mathbf{z}_n^* \mathbf{z}_n\}$ for $n=0,1,2,\cdots$. Then $\|\mathbf{z}_n\|_1 \le \|\mathbf{w}\|_1^3$. Thus $\|\mathbf{z}_n\|_1 \to 0$ as $n\to\infty$. Since $\|\cdot\|_1$, and $\|\cdot\|$ are equivalent, it follows that $\|\mathbf{z}_n\| \to 0$ as $n\to\infty$. But this is impossible, because $\|\mathbf{z}_n\| = \|\mathbf{w}\|^{3^n} = 1$ for each n. Thus $\|\mathbf{w}\|_1 \ge \|\mathbf{w}\|$ for all \mathbf{w} in $\mathbf{\mathscr{A}}$.

LEMMA 1.2. Let \mathscr{A} be a Jordan *-algebra over \mathbb{C} . Let $\| \|$ be a norm for \mathscr{A} and $\| \|_1$ a seminorm for \mathscr{A} such that, for each $z \in \mathscr{A}$, $\| z \| = \| z^* \|$ and $\| z \|_1 = \| z^* \|_1$. Furthermore, let $\| x \| = \| x \|_1$ whenever $x = x^*$. Then $\| \|$ and $\| \|_1$ are equivalent norms and, whenever x and y are self-adjoint,

$$\max(\|x\|, \|y\|) \le \|x + iy\|_1 \le \|x\| + \|y\|$$
.

Proof. For x, y ϵ A we have,

$$\|x\| = \frac{1}{2} \|(x + iy) + (x - iy)\|_1 \le \frac{1}{2} (\|x + iy\|_1 + \|x - iy\|_1) = \|x + iy\|_1.$$

$$\max(\|\mathbf{x}\|, \|\mathbf{y}\|) \le \|\mathbf{x} + i\mathbf{y}\|_1 \le \|\mathbf{x}\|_1 + \|\mathbf{y}\|_1 = \|\mathbf{x}\| + \|\mathbf{y}\|.$$

Let $(x_n + iy_n)$ $(n = 1, 2, \cdots)$ be a sequence in $\mathscr A$ with x_n and y_n self-adjoint for each n. Then $\|x_n + iy_n\|_1 \to 0$ if, and only if, $\|x_n\| \to 0$ and $\|y_n\| \to 0$, that is, if, and only if, $\|x_n + iy_n\| \to 0$. Hence $\| \cdot \|$ and $\| \cdot \|_1$ are equivalent norms.

PROPOSITION 1.3. Let $\mathcal A$ be a Jordan C*-algebra with respect to the norm $\| \ \|$. Let $\| \ \|_1$ be another norm for $\mathcal A$ such that the following conditions hold.

- (i) $\|\{\mathbf{z}\mathbf{z}^*\mathbf{z}\}\|_1 = \|\mathbf{z}\|_1^3$ for all $\mathbf{z} \in \mathcal{A}$.
- (ii) $\|\mathbf{z}\|_1 = \|\mathbf{z}^*\|_1$ for all $\mathbf{z} \in \mathcal{A}$.
- (iii) $\|\mathbf{z} \circ \mathbf{w}\|_1 \le \|\mathbf{z}\|_1 \|\mathbf{w}\|_1$, whenever the *-subalgebra of $\mathcal A$ generated by \mathbf{z} , \mathbf{w} and 1 is associative. Then $\|\mathbf{w}\| = \|\mathbf{w}\|_1$ for all $\mathbf{w} \in \mathcal A$.

Proof. Let a ϵ A and let $\mathbb{C}(a)$ be the $\| \|$ -closed, associative *-subalgebra of \mathscr{A} generated by 1 and a. Then $\mathbb{C}(a)$ is a commutative C*-algebra with respect to the norm $\| \|$. By (iii), $\| \|_1$ is an algebra norm on $\mathbb{C}(a)$. Furthermore, (i) implies that $\| \mathbf{z} \circ \mathbf{z}^* \|_1 = \| \mathbf{z} \|_1^2$ for all $\mathbf{z} \in \mathbb{C}(a)$. Hence by a well-known theorem of Kaplansky [7] (see Theorem 1.2.4 and Corollary 1.2.5 of Sakai [13]) we have $\| \mathbf{a} \| = \| \mathbf{a} \|_1$. Hence by Lemma 1.2, $\| \| \|$ and $\| \|_1$ are equivalent. So, by Lemma 1.1, for any $\mathbf{w} \in \mathscr{A}$, $\| \mathbf{w} \| < \| \mathbf{w} \|_1 < \| \mathbf{w} \|_1$.

COROLLARY 1.4. Let $\mathcal A$ and $\mathcal B$ be Jordan C^* -algebras and let $\Phi \colon \mathcal A \to \mathcal B$ be an injective Jordan *-homomorphism. Then Φ is an isometry.

COROLLARY 1.5. Let $\mathcal A$ and $\mathcal B$ be Jordan C*-algebras and let $\Phi \colon \mathcal A \to \mathcal B$ be any Jordan *-homomorphism. Then Φ is a contraction.

Proof. Let us consider the algebraic direct sum $\mathscr{A} \oplus \mathscr{B}$ and let a norm be defined on $\mathscr{A} \oplus \mathscr{B}$ by setting $\|a \oplus b\| = \max(\|a\|, \|b\|)$. Then $\mathscr{A} \oplus \mathscr{B}$ is a Jordan C*-algebra. The map $a \to a \oplus \Phi(a)$ is an injective *-homomorphism of \mathscr{A} into $\mathscr{A} \oplus \mathscr{B}$ and hence, by Corollary 1.4, is an isometry. So $\|\Phi(a)\| \leq \|a\|$.

2. COMPLEXIFICATIONS OF JB-ALGEBRAS

Let A be any algebra over \mathbb{R} (associative or not). Let us define the *complexification* of A to be a pair (h, \mathcal{A}) where \mathcal{A} is an algebra over \mathbb{C} equipped with an involution *, and h: $A \to \mathcal{A}$ is a monomorphism (\mathcal{A} being regarded, at this point, as an algebra over \mathbb{R}) such that h[A] is the self-adjoint part of \mathcal{A} . The existence of a complexification is trivial, for we may take \mathcal{A} to be the set $A \times A$, equipped with addition, scalar multiplication, product and involution defined in the obvious way, and may take h(a) to be (a, 0) for each a $\in A$. When A comes equipped with a topology we shall suppose its complexification to be equipped with the product topology. When A is a Jordan algebra over \mathbb{R} then \mathcal{A} can be shown to be a Jordan *-algebra over \mathbb{C} [5; Section 6, Chapter 1].

For the remainder of this section A shall be a JB-algebra. We shall identify A with the self-adjoint part of its complexification \mathscr{A} , and shall always suppose \mathscr{A} equipped with the product topology induced by A. The object of this section is to prove that \mathscr{A} can be equipped with a norm which organizes \mathscr{A} as a Jordan C*-algebra.

PROPOSITION 2.1. Let A be a JB-algebra. Let E_0 be the subalgebra of A generated by 1, a and b; let E be the norm closure of E_0 . Then E is isometrically isomorphic to a Jordan algebra of self-adjoint operators on a complex Hilbert space.

Proof. Clearly, E is, itself, a JB-algebra. Thus, by the Alfsen-Schultz-Störmer structure theorem [2], either E is isometrically isomorphic to a Jordan algebra of self-adjoint operators on a complex Hilbert space, or, there exists a surjective homomorphism h from E onto M_3^8 , the exceptional Jordan algebra of hermitian 3×3 matrices over the Cayley numbers [6]. Let us suppose the latter possibility holds. Then, since M_3^8 is finite dimensional, h[E₀] is a finite dimensional, and hence closed, subspace of the Banach space M_3^8 . Thus $h^{-1}[h[E_0]]$ is a closed subspace of E which contains E_0 . So $E = h^{-1}[h[E_0]]$. Hence

$$h[E_0] = h[E] = M_3^8$$
.

Thus M_3^8 is generated by 1, h(a) and h(b). So, by the Shirshov-Cohn theorem [4], M_3^8 is special but, by Albert's theorem [1, 5], M_3^8 is exceptional. This contradiction establishes the proposition.

The following corollary will be very useful to us. Whenever $\mathscr G$ is a subset of $\mathscr A$, let $\mathrm{Jord}(\mathscr G)$ be the smallest closed *-subalgebra of $\mathscr A$ which contains 1 and $\mathscr G$.

COROLLARY 2.2. Let $\mathcal A$ be the complexification of a JB-algebra A. Let a and b be any self-adjoint elements of $\mathcal A$. Then Jord(a, b) is *-isomorphic and homeomorphic to a JC^* -algebra.

Unitaries. An element u of \mathscr{A} is said to be unitary if u o u* = 1 and u² o u* = u, in other words, u* is the inverse of u [5; Section 11, Chapter 1]. We have Jord(u) = Jord(u, u*) is *-generated by the self-adjoint elements (u + u*)/2 and (u - u*)/2i. Thus, by Corollary 2.2, there exists a complex Hilbert space H, a JC^* -algebra of operators on H, \mathscr{D} , and a *-isomorphism h from Jord(u) onto \mathscr{D} . Then, see [5; Section 11, Chapter 1] h(u) and h(u)* are inverses in $\mathscr{L}(H)$, that is, h(u) is a unitary operator. Hence \mathscr{D} is a commutative C^* -algebra. In particular, when Jord(u) is finite-dimensional, finite-dimensional spectral theory shows that there exists a self-adjoint a in Jord(u) such that $u = \exp ia$.

Throughout the rest of this section, $E = \{ \exp ia \colon a \in A \}$ and U is the convex hull of E in \mathscr{A} .

LEMMA 2.3. (i) U is absolutely convex.

- (ii) Let $a \in A$. If ||a|| < 1 then $a \in U$. If $a \in U$ then $||a|| \le 1$.
- (iii) U is absorbent.
- (iv) There exists a seminorm ρ on \mathcal{A} such that

$$\big\{z \in \mathscr{A} \colon \rho(z) < 1\big\} \, \subset \, U \, \subset \, \big\{z \in \mathscr{A} \colon \rho(z) \leq 1\big\} \, .$$

- (v) Whenever $a \in A$ then $\rho(a) = ||a||$.
- (vi) For each $z \in \mathcal{A}$, $\rho(z) = \rho(z^*)$.
- (vii) ρ is a Banach space norm for $\mathcal A$ and the norm topology induced on $\mathcal A$ by ρ is the same as the product topology induced by A. Furthermore, for each x and y in A, $\max(\|x\|, \|y\|) \leq \rho(x+iy) \leq \|x\| + \|y\|$.

Proof. (i) A typical element of the absolutely convex hull of E is

$$z = \sum_{j=1}^{n} \beta_{j} \exp(ia_{j}),$$

where $\sum_{1}^{n}|\beta_{j}|\leq 1$ and $a_{j}\in A$ $(j=1,\,2,\,\cdots,\,n).$ For each j, the complex number β_{j} is of the form $|\beta_{j}|e^{i\,\theta_{j}}$, so that $z=\sum_{1}^{n}|\beta_{j}|\exp i(a_{j}+\theta_{j}\,1).$ Let

$$\sum_{j=1}^{n} |\beta_{j}| = \cos \phi.$$

Then, either z=0 and so is certainly in U, or else we may put $\lambda_j=\frac{\left|\beta_j\right|}{\cos\phi}$

 $(j=1,\,2,\,\cdots,\,n)$, so that $\sum_{j=1}^{n}\lambda_{j}=1$ and $\lambda_{j}\geq0$ $(j=1,\,2,\,\cdots,\,n)$. In the latter event, we see that z is a convex combination of $\exp i(a_{j}+\theta_{j}\,1\pm\phi1)$ $(j=1,\,2,\,\cdots,\,n)$.

(ii) If $\|a\| < 1$ then $a \pm i(1-a^2)^{1/2} = \exp i(\pm \arccos a)$ and so a is the average of two elements of E.

If a ϵ U then a = $\sum_{1}^{n} \lambda_{j} \exp i a_{j}$, where $\sum_{1}^{n} \lambda_{j} = 1$ and $\lambda_{j} \geq 0$ (j = 1, 2, ..., n). Since a is self-adjoint, a = $\frac{1}{2}$ (a + a*) = $\sum_{1}^{n} \lambda_{j} \cos a_{j}$. So

$$\|a\| \, \leq \, \textstyle\sum\limits_{l}^{n} \, \lambda_{j} \, \|\cos \, a_{j} \, \| \, \leq \, 1 \, . \label{eq:alpha}$$

(iii) Let a and b be any elements of A. Then, for large enough n, $\|a\| < n/2$ and $\|b\| < n/2.$

So, by (ii), 2a/n and 2b/n are in U. Hence $\frac{1}{2}\left(\frac{2}{n}a+i\frac{2}{n}b\right) \in U$, that is

$$\frac{1}{n}(a+ib) \in U.$$

Hence U is absorbent.

- (iv) Let ρ be the Minkowski seminorm associated with the absolutely convex and absorbent set U. [11, Section 4, Chapter 1.]
- (v) For any positive ϵ , $\rho\left(\frac{1}{\rho(a)+\epsilon}a\right)<1$. So, by (iv), $a/(\rho(a)+\epsilon)\in U$. Thus, by (ii), $\|a\|\leq \rho(a)+\epsilon$. Hence $\|a\|\leq \rho(a)$.

Conversely, for any positive ϵ , $\left\|\left(\frac{1}{\|a\|+\epsilon}\right)a\right\|<1$ and so, by (ii),

$$\rho\left(\frac{1}{\|\mathbf{a}\| + \epsilon} \mathbf{a}\right) < 1$$
. Thus $\rho(\mathbf{a}) \le \|\mathbf{a}\|$.

(vi) Clearly $w \in U$ if, and only if, $w^* \in U$. A routine argument now shows that $\rho(w) = \rho(w^*)$.

(vii) This follows from (v), (vi) and Lemma 1.2.

LEMMA 2.4. Let $\mathcal B$ be a finite dimensional JC^* -algebra of operators on a complex Hilbert space H. Let z be an invertible element of $\mathcal B$ with $\|z\| \leq 1$. Then there exist unitaries w and v in $\mathcal B$ such that $z=\frac12(w+v)$. Furthermore, if a is an element of $\mathcal B$ with $\|a\| < 1$, then there exist unitaries u_1 , u_2 , u_3 , u_4 in $\mathcal B$ such that $a=\frac14(u_1+u_2+u_3+u_4)$.

Proof. Let r be a positive self-adjoint operator on H and u a partial isometry on H such that z = ru. Since z is invertible in the special Jordan algebra \mathcal{B} , it is invertible in $\mathcal{L}(H)$ [5, Section 11, Chapter 1]. Hence r is invertible and u is unitary. Moreover, $||r|| = ||ru|| \le 1$.

We have $r^3u = \{zz*z\} \in \mathcal{B}$. By repeating this argument we find that $r^3{}^nu \in \mathcal{B}$ for $n=0,1,2,\cdots$. Since \mathscr{A} is finite-dimensional $\sum_{j=0}^n c_j r^{3^j}u = 0$ for some constants (not all zero), c_0 , c_1 , \cdots , c_n . Multiplying on the right by u^* , we see that r satisfies a nontrivial polynomial identity and so r has finite spectrum. Thus there exist orthogonal projections p_1 , p_2 , \cdots , p_n and positive real numbers

 λ_1 , λ_2 , ..., λ_n , with $0 < \lambda_1 < \lambda_2 < \cdots < \lambda_n$ such that $\mathbf{r} = \sum_1^n \lambda_j \, \mathbf{p}_j$ and $\sum_1^n \, \mathbf{p}_j = 1$. Since $\left(\frac{\mathbf{r}}{\lambda_n}\right)^{3k} \mathbf{u} \in \mathcal{B}$ for $k = 0, 1, 2, \cdots$, it follows that $\mathbf{p}_n \, \mathbf{u} \in \mathcal{B}$. On replacing \mathbf{z} by $\mathbf{z} - \lambda_n \, \mathbf{p}_n \, \mathbf{u}$ and repeating the above argument we find that $\mathbf{p}_{n-1} \, \mathbf{u} \in \mathcal{B}$. Similarly $\mathbf{p}_j \, \mathbf{u} \in \mathcal{B}$ for each j. It now follows that

$$w = (r + i\sqrt{1 - r^2})u$$
 and $v = (r - i\sqrt{1 - r^2})u$

are both in \mathscr{B} . Being products of unitaries, w and v are unitaries. Clearly $z=\frac{1}{2}(w+v)$.

Let C(a) be the smallest closed subalgebra of $\mathscr B$ which contains 1 and a. Then C(a) is a finite dimensional Banach algebra. Thus the spectrum of a, with respect to C(a), is finite. Hence, for large enough n, $a+\frac{1}{n}1$ and $a-\frac{1}{n}1$ are both invertible and, since $\|a\|<1$, for large enough n are of norm less than 1. Since

$$a = \frac{1}{2} \left(\left(a + \frac{1}{n} 1 \right) + \left(a - \frac{1}{n} 1 \right) \right),$$

the required result follows from the first part of this lemma.

LEMMA 2.5. Let A be finite dimensional. Then the following hold.

- (i) Each unitary u in \mathcal{A} is of the form exp in for some $a \in A$.
- (ii) Let u and v be unitaries in A. Then $\rho(u\circ v)\leq 1.$ Also $\{uvu\}$ is unitary and $\{u*\{uvu\}u*\}=v.$
 - (iii) For each unitary u, $\rho(u) = 1$.
 - (iv) For any z and w in \mathcal{A} , $\rho(z \circ w) < \rho(z) \rho(w)$.
 - (v) For any $z \in \mathcal{A}$ and any unitary $u \in \mathcal{A}$, $\rho(\{uzu\}) = \rho(z)$.

- (vi) For any unitary $V \in \mathcal{A}$; and any z and w in \mathcal{A} , $\rho(\{zv^2w\}) \leq \rho(z)\rho(w)$.
- $\text{(vii)} \ \ \textit{For any} \ \ z_1 \ , \ z_2 \ , \ z_3 \ \ \textit{in} \ \ \mathscr{A} \ , \ \ \rho(\{z_1 \ z_2 \ z_3\}) \leq \rho(z_1) \, \rho(z_2) \, \rho(z_3).$

Proof. (i) See the remarks after Corollary 2.2.

(ii) For some a and b in A, $u = \exp ia$ and $v = \exp ib$. Hence

$$Jord(u, v) \subseteq Jord(a, b)$$
.

By Corollary 2.2, there exist a JC*-algebra & of bounded operators on a Hilbert space H and a Jordan *-isomorphism h from Jord(a, b) onto &. Choose any positive $\delta < 1$. Then $h(\delta u \circ v) = \delta h(u) \circ h(v) = \frac{\delta}{2}(h(u)\,h(v) + h(v)\,h(u))$. Thus

$$\|h(\delta u \circ v)\| < 1$$
.

Thus, by Lemma 2.4, there exist unitaries u_1 , u_2 , u_3 , u_4 in Jord(a, b) such that $\delta u \circ v = \frac{1}{4}(u_1 + u_2 + u_3 + u_4)$. Hence $\rho(u \circ v) \leq 1$.

We have $h\{uvu\} = \{h(u) \, h(v) \, h(u)\} = h(u) \, h(v) \, h(u)$, which is unitary. Hence $\{uvu\}$ is unitary. A similar argument shows that $\{u^*\{uvu\}u^*\} = v$.

(iii) $1 = \rho(u \circ u^*) < \rho(u) \rho(u^*) = \rho(u)^2$. Thus $1 \le \rho(u)$.

But, since $u \in E$, we have $\rho(u) \le 1$.

(iv) It suffices to show that when $\rho(z) < 1$ and $\rho(w) < 1$ then $\rho(z \circ w) \le 1$.

We have $z=\sum_{1}^{n}\lambda_{j}u_{j}$ and $w=\sum_{1}^{m}\mu_{k}\,v_{k}$ where $\sum_{1}^{n}\lambda_{j}=\sum_{1}^{m}\mu_{k}=1$, $\lambda_{j}\geq0$ and $\mu_{k}\geq0$ for each j and k, and u_{j} and v_{k} are unitaries for each j and k. Then $z\circ w=\sum_{j=1}^{n}\sum_{k=1}^{m}\lambda_{j}\mu_{k}u_{j}\circ v_{k}$. Thus

$$\rho(z \circ w) \leq \sum_{j=1}^{n} \sum_{k=1}^{m} \lambda_{j} \mu_{k} \rho(u_{j} \circ v_{k}) \leq \sum_{j=1}^{n} \sum_{k=1}^{m} \lambda_{j} \mu_{k} = 1.$$

- $\begin{array}{l} \text{(v) Choose } \epsilon > 0 \text{ and let } w = z/(\rho(z) + \epsilon). \text{ So } w = \sum_{1}^{n} \lambda_{j} v_{j}, \text{ where } \lambda_{j} \geq 0 \text{ and } \\ v_{j} \in E \text{ for } j = 1, 2, \cdots, n \text{ and } \sum_{1}^{n} \lambda_{j} = 1. \text{ Thus } \{uwu\} = \sum_{1}^{n} \lambda_{j} \{uv_{j}u\}. \text{ So } \\ \rho(\{uwu\}) \leq 1. \text{ Hence } \rho(\{uzu\}) \leq \rho(z). \text{ Hence } \rho(z) = \rho(\{u^{*}\{uzu\}u^{*}\}) \leq \rho(\{uzu\}). \end{array}$
- (vi) The identity $\{v\{zv^2w\}v\} = \{vzv\} \circ \{vwv\}$ is valid in any special Jordan algebra and hence, by Macdonald's theorem [8], [4], in every Jordan algebra.

$$\rho(\{zv^2w\}) = \rho(\{v\{zv^2w\}v\}) = \rho(\{vzv\} \circ \{vwv\})
\leq \rho(\{vzv\}) \rho(\{vwv\}) \leq \rho(z) \rho(w).$$

(vii) Choose $\epsilon > 0$, let $\delta = (\rho(z_2) + \epsilon)^{-1}$. Thus $\rho(\delta z_2) < 1$.

Thus $\delta z_2 = \sum_1^n \lambda_j v_j^2$, where $\lambda_j \ge 0$ (j = 1, 2, ..., n), $\sum_1^n \lambda_j = 1$, and $v_j = \exp(ia_j/2)$, for self-adjoint a_1, a_2, \cdots, a_n . Thus $\{z_1(\delta z_2)z_3\} = \sum_1^n \lambda_j \{z_1 v_j^2 z_3\}$.

Thus $\rho(\{\mathbf{z}_1(\delta\mathbf{z}_2)\,\mathbf{z}_3\}) \leq \sum_1^n \lambda_j \, \rho\{\mathbf{z}_1\,\mathbf{v}^2\,\mathbf{z}_3\} \leq \rho(\mathbf{z}_1) \, \rho(\mathbf{z}_3).$ Hence $\rho(\{\mathbf{z}_1\,\mathbf{z}_2\,\mathbf{z}_3\}) \leq \rho(\mathbf{z}_1) \, (\rho(\mathbf{z}_2) + \epsilon) \, \rho(\mathbf{z}_3).$

Since this holds for all $\varepsilon > 0$, the lemma is established.

THEOREM 2.6. Let $\mathcal A$ be the complexification of a finite dimensional JB-algebra A. Then $\mathcal A$ is a Jordan C*-algebra with respect to the norm ρ .

Proof. Let z be any element of $\mathscr A$ and let $\| \ \|_1$ be the norm ρ restricted to Jord(z). By Corollary 2.2, there exists a norm $\| \ \|$ for Jord(z) which organizes Jord(z) as a JC*-algebra.

Let $w \in Jord(z)$ such that ||w|| < 1. Then, by Lemma 2.4,

$$w = \frac{1}{4}(u_1 + u_2 + u_3 + u_4),$$

where u_1 , u_2 , u_3 , u_4 are unitary in Jord(z). This implies that $\rho(w) \leq 1$, that is, $\|w\|_1 \leq 1$. Hence, for any $y \in Jord(z)$, $\|y\|_1 \leq \|y\|$.

By Lemma 1.2, $\| \|_1$ and $\| \|$ are equivalent norms for Jord(z). Hence, by Lemma 1.1 and Lemma 2.5, (vii), $\| \mathbf{w} \|_1 \ge \| \mathbf{w} \|$ for all $\mathbf{w} \in \text{Jord}(\mathbf{z})$. Thus $\| \mathbf{w} \|_1 = \| \mathbf{w} \|$ for all $\mathbf{w} \in \text{Jord}(\mathbf{z})$. Hence, in particular, $\rho(\{\mathbf{zz}*\mathbf{z}\}) = \rho(\mathbf{z})^3$. Then Lemma 2.5, (iv), and Lemma 2.3, (vi) and (vii), show that when $\mathscr A$ is equipped with the norm ρ it becomes a Jordan C*-algebra.

In [2] it is pointed out that the exceptional (real) Jordan algebra M_3^8 of von Neumann, Jordan, and Wigner [6], is a JB-algebra.

COROLLARY 2.7. Let \mathcal{M}_3^8 be the complexification of M_3^8 . Then there is a unique norm for \mathcal{M}_3^8 which organizes it as an (exceptional) Jordan C*-algebra.

From this point onwards \mathcal{M}_3^8 shall be the unique Jordan C*-algebra whose self-adjoint part is M_3^8 .

Let (\mathscr{A}_{λ}) $(\lambda \in \Lambda)$ be a family of Jordan C*-algebras. The direct sum $\bigoplus_{\lambda \in \Lambda} \mathscr{A}_{\lambda}$ is constructed as follows. First, the elements of $\bigoplus_{\lambda \in \Lambda} \mathscr{A}_{\lambda}$ are all families (a_{λ}) $(\lambda \in \Lambda)$ in $\prod_{\lambda \in \Lambda} \mathscr{A}_{\lambda}$ for which $\sup_{\lambda \in \Lambda} \|a_{\lambda}\| < +\infty$. Secondly, the algebraic operations $\lim_{\lambda \in \Lambda} \|a_{\lambda}\|$ and involution are defined pointwise and $\|(a_{\lambda})\|$ is defined to be $\sup_{\lambda \in \Lambda} \|a_{\lambda}\|$. A routine verification shows that $\bigoplus_{\lambda \in \Lambda} \mathscr{A}_{\lambda}$ is a Jordan C*-algebra.

THEOREM 2.8. Let A by any JB-algebra and let $\mathcal A$ be its complexification. Then there exists a unique norm on $\mathcal A$ which organizes $\mathcal A$ as a Jordan C*-algebra.

Proof. The uniqueness of such a norm follows from Corollary 1.4.

By Corollary 5.7 and Theorems 8.6 and 9.5 of [2], there exists a family \mathscr{F} of homomorphism $\phi\colon A\to B$ such that (i) for each non-zero a in A there can be found a ϕ in \mathscr{F} such that $\phi(a)\neq 0$ and (ii) for each ϕ in \mathscr{F} , $B_{\phi}=M_3^8$ or B_{ϕ} is a norm-closed Jordan algebra of self-adjoint operators on a complex Hilbert space. For each ϕ in \mathscr{F} , let \mathscr{B}_{ϕ} be the complexification of B_{ϕ} . Then either, by Corollary 2.7, we can identify \mathscr{B}_{ϕ} with \mathscr{M}_3^8 or else \mathscr{B}_{ϕ} is a JC*-algebra.

Consider the direct sum $\bigoplus_{\phi \in \mathscr{F}} \mathscr{B}_{\phi}$. Then we can construct a Jordan *-homo-

morphism H: $\mathscr{A} \to \bigoplus_{\phi \in \mathscr{F}} \mathscr{B}_{\phi}$, by, for each a, b in A, letting H(a + ib) be

 $(\phi(a)+i\phi(b))$ $(\phi\in\mathscr{F})$. By property (i) of \mathscr{F} we see that H is injective. Then, by Lemma 9.3 [2], H is an isometry on A. Let us norm \mathscr{A} by setting $\|z\|=\|Hz\|$. Then, by Lemma 1.2, \mathscr{A} is a Banach space. The other conditions for \mathscr{A} to be a Jordan C*-algebra are clearly satisfied since $\bigoplus \mathscr{B}_{\phi}$ is a Jordan C*-algebra. $\phi\in\mathscr{F}$

3. IDEALS AND QUOTIENTS OF JORDAN C*-ALGEBRAS

Let $\mathscr A$ be a Jordan C*-algebra with self-adjoint part A. A Jordan ideal $\mathscr J$ of $\mathscr A$ is said to be a *-ideal if, whenever $z \in \mathscr J$ then $z^* \in \mathscr J$. Let J be the self-adjoint part of a norm-closed *-ideal $\mathscr J$ of $\mathscr A$, then $\mathscr J = J + iJ$ and J is a norm-closed ideal of A.

Since a quotient of a special Jordan algebra may be an exceptional algebra, the following lemma may have some mild independent interest.

LEMMA 3.1. Let \mathcal{A} be a JC^* -algebra and let \mathcal{J} be a proper norm-closed *-ideal in \mathcal{A} . Then \mathcal{A}/\mathcal{J} is a JC^* -algebra.

Proof. Let $\widetilde{\mathcal{A}}$ be a C*-algebra in which \mathscr{A} is embedded and which is generated by \mathscr{A} ; let $\widetilde{\mathscr{A}}$ " be the second dual of $\widetilde{\mathscr{A}}$ and let us identify $\widetilde{\mathscr{A}}$ " with the von Neumann envelope of $\widetilde{\mathscr{A}}$ on the universal representation space of $\widetilde{\mathscr{A}}$.

Since J (the self-adjoint part of \mathscr{J}) is a norm-closed Jordan ideal of the JB-algebra A, there exists an upward directed net $\langle u_{\lambda} \rangle_{\lambda \in \Lambda}$ of elements of J with $0 \le u_{\lambda} \le 1$ and such that $\|(1 - u_{\lambda})a(1 - u_{\lambda})\| \to 0$ for each $a \in J$ [2; Lemma 9.1]. Hence, for each $b \in J$, $\|(1 - u_{\lambda})b^2(1 - u_{\lambda})\| \to 0$ and so $\|b(1 - u_{\lambda})\| \to 0$. Let f be the strong limit in \mathscr{A} " of the increasing net $\langle u_{\lambda} \rangle$. Thus $0 \le f \le 1$. Now, for any $b \in J$, $b(1 - u_{\lambda}) \to b(1 - f)$ (strongly). Thus b(1 - f) = 0 and, on taking adjoints, $bf = b = b^* = fb$.

Let \overline{J} be the weak closure of J in $\widetilde{\mathcal{A}}$ " and let \overline{A} be the weak closure of A in $\widetilde{\mathcal{A}}$ ". Then \overline{J} is a weakly closed Jordan ideal of the JW-algebra \overline{A} . Thus, see Topping [14; Propositions 3 and 5], there exists a central projection \overline{A} such that $\overline{J} = \overline{A}e$.

Let x be any element of \overline{J} , then there exists a net $\langle x_{\gamma} \rangle$ in J which converges strongly to x. Thus xf = x = fx. In particular, $f^2 = f$, that is, f is a projection. Also, putting e = x, ef = e = fe. But, since $\overline{J} = \overline{A}e$ and f is in \overline{J} , f = fe. Thus f = e.

Let $\mathscr{M} = \{ a \in \widetilde{\mathscr{A}} : a(1 - e) = 0 \}$. Since e is central, \mathscr{M} is a norm-closed two-sided ideal of the C*-algebra $\widetilde{\mathscr{A}}$. Clearly $\mathscr{J} \subset \mathscr{M}$.

Let $v_{\lambda}=1$ - u_{λ} . Then, on identifying the self-adjoint part of $\widetilde{\mathscr{A}}$ with the space of real valued, affine, continuous functions on the state space X of $\widetilde{\mathscr{A}}$, the net $\left\langle v_{\lambda} \right\rangle$ decreases pointwise to 1 - e. Thus, for any $z \in \mathscr{M}$, $\left\langle z^*v_{\lambda}\,z \right\rangle$ decreases pointwise to $z^*(1-e)z=0$. Hence, by Dini's theorem $\left\|z^*v_{\lambda}\,z\right\| \to 0$. So $\left\|v_{\lambda}^{1/2}\,z\right\| \to 0$. But $\left\|v_{\lambda}\,z\right\| \le \left\|v_{\lambda}^{1/2}\,z\right\| \le \left\|v_{\lambda}^{1/2}\,z\right\| \to 0$. On replacing z by z^* and taking adjoints we see that $\left\|zv_{\lambda}\right\| \to 0$.

From [4; Proposition 1.8.2] we have that, for each $z \in \mathcal{A}$,

$$\inf_{\mathbf{a} \in \mathcal{M}} \|\mathbf{z} + \mathbf{a}\| = \lim_{\lambda} \|\mathbf{z} - \mathbf{u}_{\lambda} \mathbf{z}\| = \lim_{\lambda} \|\mathbf{z} - \mathbf{z}\mathbf{u}_{\lambda}\|.$$

So, for any $z \in \mathcal{J}$,

$$\begin{split} \inf_{a \, \epsilon \, \mathscr{J}} \, \| z + a \| \, & \leq \, \underline{\lim} \, \left\| z - u_{\lambda} \circ z \right\| \leq \, \overline{\lim} \, \left\| z - u_{\lambda} \circ z \right\| \\ & \leq \, \frac{1}{2} \! \lim \left(\left\| z - z u_{\lambda} \right\| + \left\| z - u_{\lambda} \, z \right\| \right) \, = \, \inf_{a \, \epsilon \, \, \mathscr{M}} \left\| z + a \right\| \, . \end{split}$$

Thus
$$\inf_{a \in \mathcal{J}} \|\mathbf{z} + \mathbf{a}\| = \lim_{\mathbf{z} \to \mathbf{u}_{\lambda}} \|\mathbf{z} - \mathbf{u}_{\lambda} \circ \mathbf{z}\| = \inf_{a \in \mathcal{M}} \|\mathbf{z} + \mathbf{a}\|.$$

It follows that $\mathscr{J}=\mathscr{A}\cap\mathscr{M}$ and that the natural map of \mathscr{A}/\mathscr{J} into $\widetilde{\mathscr{A}}/\mathscr{M}$ is an isometry. Hence \mathscr{A}/\mathscr{J} is a JC*-algebra.

THEOREM 3.2. Let $\mathscr A$ be a Jordan C*-algebra; let $\mathscr I$ be a closed *-ideal. Then $\mathscr A/\mathscr I$, when equipped with the quotient norm, is a Jordan C*-algebra. Furthermore, if $\mathsf J$ is the self-adjoint part of $\mathscr I$, then the self-adjoint part of $\mathscr A/\mathscr J$ is isometrically isomorphic to $\mathsf A/\mathsf J$.

Proof. Trivially, \mathscr{A}/\mathscr{J} is a Jordan *-algebra. For $x \in A$,

$$||x + \mathcal{J}|| = \inf \{ ||x + a + ib|| : a, b \text{ in } J \} \ge \inf \{ ||x + a|| : a \in J \},$$

(see Lemma 1.2). But
$$||x + J|| = \inf \{ ||x + a|| : a \in J \} \ge ||x + \mathcal{J}||$$
.

Thus the self-adjoint part of \mathcal{A}/\mathcal{J} is isometrically isomorphic to A/J and hence is, see [2; Lemma 9.2], a JB-algebra. Thus, by Theorem 2.8, there exists a unique Jordan C*-norm ρ on \mathcal{A}/\mathcal{J} .

Let H: $\mathscr{A} \to \mathscr{A}/\mathscr{J}$ be the canonical quotient homomorphism. For any $z \in \mathscr{A}$, Hz = H(z + a), for any $a \in \mathscr{J}$. Thus $\rho(Hz) = \rho(H(z+a)) \leq \|z+a\|$, by Corollary 1.5. Thus $\rho(Hz) \leq \inf_{a \in \mathscr{J}} \|z+a\| = \|Hz\|$.

Fix any $z \in \mathcal{A}$. Then, by Corollary 2.2, Jord(z) is a JC^* -algebra. Hence $\mathscr{E} = Jord(z)/(\mathscr{J} \cap Jord(z))$ is a JC^* -algebra, with respect to the quotient norm. Let us consider the natural map $h : \mathscr{E} \to \mathscr{A}/\mathscr{J}$ given by

$$h(w + \mathcal{J} \cap Jord(z)) = w + \mathcal{J} = Hz$$
.

Clearly, h is a *-isomorphism of & into \mathscr{A}/\mathscr{J} and so, by Corollary 1.4, $\rho(\operatorname{Hz}) = \|\mathbf{z} + \mathscr{J} \cap \operatorname{Jord}(\mathbf{z})\| \geq \inf_{\mathbf{a} \in \mathscr{J}} \|\mathbf{z} + \mathbf{a}\| = \|\operatorname{Hz}\|$. Hence $\rho(\operatorname{Hz}) = \|\operatorname{Hz}\|$, as required.

A Jordan C*-algebra \mathcal{B} is a *factor* if its self-adjoint part is a JB-factor [2]. A factorial representation of a Jordan C*-algebra \mathcal{A} is a *-homomorphism h: $\mathcal{A} \to \mathcal{B}$, where \mathcal{B} is a factor Jordan C*-algebra. It follows from Theorem 2.8 and [2; Corollary 5.7] that each Jordan C*-algebra has a faithful family of factor representations.

Theorem 3.2 and Corollary 2.7 enable us to obtain an analogue, for Jordan C^* -algebras, of the main theorem of [2].

THEOREM 3.3. Let \mathcal{A} be any Jordan C*-algebra. Then there exists a unique norm-closed *-ideal \mathcal{J} such that \mathcal{A}/\mathcal{J} is a JC*-algebra and every factorial representation of \mathcal{A} which does not annihilate \mathcal{J} is onto \mathcal{M}_3^8 .

By [2; Theorem 9.5], there exists a unique closed JB-ideal J in A such that A/J is the self-adjoint part of a JC*-algebra and each factorial JB-representation of A which does not annihilate J is onto M_3^8 . Let $\mathcal{J} = J + iJ$ and then apply Theorem 3.2 and Corollary 2.7.

REFERENCES

- 1. A. A. Albert, On a certain algebra of quantum mechanics. Ann. of Math. (2) 35 (1934), 65-73.
- 2. E. M. Alfsen, F. W. Schultz and E. Störmer, A Gelfand-Neumark Theorem for Jordan Algebras, to appear.
- 3. F. F. Bonsall, Jordan algebras spanned by Hermitian elements of a Banach algebra, preprint.
- 4. J. Dixmier, Les C*-algèbres et leurs représentations. Cahiers Scientifiques, Fasc. XXIX, 2nd ed. Gauthier-Villars, Paris (1969).
- 5. N. Jacobson, Structure and Representations of Jordan Algebras. American Mathematical Society Colloquium Publications, Vol. XXXIX. AMS, Providence, R. I., 1968.
- 6. P. Jordan, J. von Neumann and E. Wigner, On an algebraic generalization of the quantum mechanical formalism. Ann. of Math. (2) 35 (1934).
- 7. I. Kaplansky, Normed algebras. Duke Math. J. 16 (1949), 399-418.
- 8. I. G. Macdonald, Jordan algebras with three generators. Proc. London Math. Soc. (3) 10 (1960), 395-408.
- 9. T. W. Palmer, Characterizations of C*-algebras. II. Trans. Amer. Math. Soc. 148 (1970), 577-588.
- 10. A. G. Robertson, A note on the unit ball in C*-algebras. Bull. London Math. Soc. 6 (1974), 333-335.
- 11. A. P. and W. J. Robertson, *Topological vector spaces*. Cambridge Tracts in Mathematics and Mathematical Physics, No. 53, Cambridge University Press, New York, 1964.
- 12. B. Russo and H. A. Dye, A note on unitary operators in C*-algebras. Duke Math. J. 33 (1966), 413-416.
- 13. S. Sakai, C*-algebras and W*-algebras. Springer-Verlag, Berlin, (1971).

- 14. D. M. Topping, Jordan algebras of self-adjoint operators. Mem. Amer. Math. Soc. 53 (1965), 48 pp.
- 15. J. D. M. Wright and M. A. Youngson, *On isometries of Jordan algebras*. J. London Math. Soc., to appear.

Department of Mathematics
The University
Reading, England