JORDAN C*-ALGEBRAS
J. D. Maitland Wright

INTRODUCTION

In his final lecture to the 1976 St. Andrews Collogquium of the Edinburg Mathe-
matical Society, Professor Kaplansky introduced the concept of a Jordan C*-algebra
(see below for definitions), pointed out its potential importance, and made the follow-
ing conjecture. Let 1, 2 be unital Jordan C*-algebras and let ¢: | — A,
be a surjective isometry with ¢1 = 1; then ¢ is a Jordan *-isomorphism. In verify-
ing this conjecture [15], extensive use was made of the deep results of Alfsen,
Schultz, and Stérmer [2] on JB-algebras.

It is easy to see that the self-adjoint part of a Jordan C*-algebra is a JB-alge-
bra. The main part of this paper, Section 2, is devoted to establishing a converse
result. Each JB-algebra is the self-adjoint part of a unique Jovdan C*-algebra.
First we establish the result for finite-dimensional algebras. This is not entirely
straightforward and seems to require quite delicate arguments. Once this is ac-
complished; in %articular, when we know of the existence of an exceptional Jordan
C*-algebra, - 3, whose self-adjoint part is Mg (the exceptional Jordan algebra
discovered by von Neumann, Jordan, and Wigner [6}), then the general result can be
obtained quite quickly.

In the final section we consider ideals and quotients of Jordan C*-algebras and,
applying the results of Section 2 and the main theorem of [2], show that for each
Jordan C*-algebra .# there exists a unique *-ideal / such that (i) /.7 can be
isometrically *-isomorphically embedded into the special Jordan *-algebra of
bounded operators on a complex Hilbert space and (ii) each ‘factorial’ representa-

tion of « which does not annihilate Z is onto .« § .

I would like to draw the attention of the reader to an interesting recent paper by
Bonsall [3] in which he obtains a generalization of the Vidav-Palmer Theorem to
special Jordan *-algebras.

1. BASIC PROPERTIES OF JORDAN C*-ALGEBRAS

Definition (Kaplansky). Let «/ be a complex Banach space and a complex
Jordan algebra equipped with an involution *. Then  is a Jovdan C*-algebra if
the following four conditions are satisfied.

@) |xoyl <lx|l Iyl forall x and y in .
(i) |z] = ||z*| for all z in .
(iii) || {zz*2z}| = ||z]|> for all z in .
(Here {abc} is the Jordan triple product as defined on page 36 [5].)

(iv) Each norm-closed, associative *-subalgebra of . is a C*-algebra
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We can dispense with condition (iv) because, if z and z* lie in a norm-closed,
associative *-subalgebra of ., then the Jordan triple product {zz*z} reduces to
(z o z*) o z. Hence, by (i) and (iii), |z|3 < ||z o z*|| ||z|. But, by (i) and (ii),
2] = llz|l [|z*] > [z o 2*[|. Thus [z oz*| = ||z .

A Jordan C*-algebra is said to be a JC*—algebm if it is isometrically *-iso-
morphic to a norm-closed, Jordan *-subalgebra of the Jordan *-algebra of all
bounded operators on a complex Hilbert space; e.g., the three-dimensional Jordan
*-algebra of 2 X 2 symmetric matrices over C. Clearly, every JC*-algebra is a
special Jordan algebra but, as we shall see presently, there exist Jordan C*-alge-
bras which are exceptional and so are not JC*-algebras. In all that follows we shall
only consider Jordan C*-algebras which are unital; that is, possess a multiplica-
tive identity.

Definition (Alfsen-Schultz-Stormer [2]). Let A be a real Banach space and a
real Jordan algebra equipped with a multiplicative unit 1. Then A is a JB-algebra
if the following conditions are satisfied.

@ |x oyl <] ||yl for all x and y in A.

(ii) For each a € A, the norm-closed, associative subalgebra of A generated
by 1 and a is isometrically isomorphic to the self-adjoint part of a commutative
C*-algebra.

Let . be a Jordan C*-algebra and let A = {x € & :x =x*}. Since
|]z|| = Hz*“ for all z in «¢, A is a closed (real) subspace of . It is straight-
forward to verify that « = A @ iA and that A is a JB-algebra.

A Jordan *-algebra is a complex (unital) Jordan algebra equipped with an
involution *.

LEMMA 1.1. Let A be a Jordan *-algebra over C. Let || | be any norm for
& such that “{zz*z}“ = “2“3 whenever z € . Let H “1 be an equivalent novm
such that “{zz*z} ||l < ||z“§ Sfor all z € . Then, for every W € A,
hwily = lhwl-

Proof. Suppose that, for some w, ||w|; < ”w“ Since we could replace w by
W/“W “, we lose no generality by requiring that “w“ = 1. Let us construct a se-
quence (z,) (n=1, 2, ---) by setting zg =w and zn+] = {zZnzhz,} for

n
n=0,1,2 . Then |z.|, < [|w|} . Thus |z,]; =0 as n — . Since | |,
and “ “ are equivalent, it follows that ||zn“ — 0 as n — ., But this is impossible,
because ||z,.| = [w||3" =1 for each n. Thus ||w|; > ||w| for all w in .
LEMMA 1.2. Let £ be a Jovdan *-algebra over C. Let || “ be a norm for
o and ” “1 a seminovm fov A such that, for each z € A, ||z“ = “z*“ and
“z“l = “z*“l . Furthermore, let ||x“ = “XHI whenever x = x*, Then “ || and

||1 ave equivalent noyms and, whenevey x and y ave self-adjoint,
max (|[x[|, [ly[) < lx+ivfy, < =]+l -

Proof. For X,y € A we have,

< (llx+iyly +lx - iyl = [x+iyl,; -

) = 316 +iy) +x - 1))

So
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max (x|, |yl < lx+ivlly < lxlly + vl = Il + Dyl -

Let (x,+iy,) (n=1, 2, -**) be a sequence in «/ with x, and y _ self-adjoint
for each n. Then ||xn+ iyn“ 1 — 0 if, and only if, “Xn“ — 0 and Hyn“ — 0, that is,

if, and only if, ”xn+iyn“ — 0. Hence “ “ and “ “1 are equivalent norms.

PROPOSITION 1.3. Let « be a Jordan C*-algebra with respect to the norm
“ “ Let “ [[1 be another norm fov « such that the following conditions hold.

i) | {zz*z}], = |z]3 for all z € A.

(i) fz], = llz*|| , forall z € A.

(iii) “z o w“ 1 < “z“ 1 Hw “ 1» Whenever the *-subalgebva of A genevated by
z, w and 1 is associative. Then ||w| = ||w| | for all w e A.

Proof. Let a € A and let C(a) be the ” ” -closed, associative *-subalgebra of
«+/ generated by 1 and a. Then C(a) is a commutative C*-algebra with respect to
the norm | ||. By (iii), || ||, is an algebra norm on C€(a). Furthermore, (i) implies
that Hz o z*||1 = ||z||‘i‘ for all z € C(a). Hence by a well-known theorem of Kaplan-
sky [7] (see Theorem 1.2.4 and Corollary 1.2.5 of Sakai [13]) we have |al = ||a| ;.
Hence by Lemma 1.2, |[ || and H ||1 are equivalent. So, by Lemma 1.1, for any

we of, |wl <lwl <lwl.

COROLLARY 1.4. Let «Z and B be Jordan C*-algebras and let &: A — B
be an injective Jovdan *-homomorphism, Then ® is an isomelry.

COROLLARY 1.5. Let & and #B be Jovdan C*-algebras and let &: A — R
be any Jovdan *-homomorphism. Then & is a contraction.

Proof. Let us consider the algebraic direct sum « (3 &£ and let a norm be de-
fined on «Z @ & by setting ||a D b|| = max(||af|, |b]]). Then & @ & is a Jordan
C*-algebra. The map a — a@ &(a) is an injective *-homomorphism of +/ into
« D % and hence, by Corollary 1.4, is an isometry. So [|®(a)| < ||a].

2. COMPLEXIFICATIONS OF JB-ALGEBRAS

Let A be any algebra over R (associative or not). Let us define the complexi-
fication of A to be a pair (h, /) where  is an algebra over C equipped with an
involution *, and h: A — &7 is a monomorphism ( being regarded, at this point, as
an algebra over IR) such that h[A] is the self-adjoint part of . The existence of a
complexification is trivial, for we may take . to be the set A X A, equipped with
addition, scalar multiplication, product and involution defined in the obvious way, and
may take h(a) to be (a, 0) for each a € A. When A comes equipped with a topology
we shall suppose its complexification to be equipped with the product topology. When
A is a Jordan algebra over IR then . can be shown to be a Jordan *-algebra over
C [5; Section 6, Chapter 1].

For the remainder of this section A shall be a JB-algebra. We shall identify A
with the self-adjoint part of its complexification «Z, and shall always suppose
equipped with the product topology induced by A. The object of this section is to
prove that . can be equipped with a norm which organizes  as a Jordan C*-
algebra.
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PROPOSITION 2.1. Le! A be a JB-algebva. Let E be the subalgebrva of A
genevated by 1, a and b; let E be the norm closure of Eq. Then E is isometri-
cally isomorphic to a Jovdan algebra of self-adjoint opevators on a complex Hilbert
Space.

Proof. Clearly, E is, itself, a JB-algebra. Thus, by the Alfsen-Schultz-
Stdrmer structure theorem [2], either E is isometrically isomorphic to a Jordan
algebra of self-adjoint operators on a complex Hilbert space, or, there exists a sur-

jective homomorphism h from E onto Mg, the exceptional Jordan algebra of
hermitian 3 X 3 matrices over the Cayley numbers [6]. Let us suppose the latter
possibility holds. Then, since Mg is finite dimensional, h[E,] is a finite dimen-
sional, and hence closed, subspace of the Banach space Mg . Thus h ! [h[Ey]] is a
closed subspace of E which contains E;. So E =h~![h[E;]]. Hence

8
h[E,] = h[E] = M5 .
Thus Mg is generated by 1, h(a) and h(b). So, by the Shirshov-Cohn theorem [4],
Mg is special but, by Albert’s theorem [1, 5], Mg is exceptional. This contradic-
tion establishes the proposition.

The following corollary will be very useful to us. Whenever ¢ is a subset of
o« , let Jord(¥) be the smallest closed *-subalgebra of . which contains 1 and
&

COROLLARY 2.2. Let A be the complexification of a JB-algebra A. Let a
and b be any self-adjoint elements of . Then Jord(a, b) is *-isomovphic and
homeomovphic to a JC*—algeb'm.

Unitavies. An element u of « is said to be unitary if uo u* =1 and

u2 o u* =y, in other words, u* is the inverse of u [5; Section 11, Chapter 1]. We
have Jord(u) = Jord(u, u*) is *-generated by the self-adjoint elements (u + u*)/2
and (u - u*)/2i. Thus, by Corollary 2.2, there exists a complex Hilbert space H, a
JC*-algebra of operators on H, @, and a *-isomorphism h from Jord(u) onto @.
Then, see [5; Section 11, Chapter 1] h(u) and h(u)* are inverses in Z(H), that is,
h(u) is a unitary operator. Hence @ is a commutative C*-algebra. In particular,
when Jord(u) is finite-dimensional, finite-dimensional spectral theory shows that
there exists a self-adjoint a in Jord(u) such that u = exp ia.

Throughout the rest of this section, E = {exp ia: a € A} and U is the convex
hull of E in 7.

LEMMA 2.3. (i) U is absolutely convex.
(ii) Let a e A. If |a|]| <1 then a€ U. If a€ U then |a] < 1.
(iii) U is absorbent.

(iv) There exists a seminorm p on <€ such that

{ze A:p(z) <1} c U {z ¢ oA:p(z) <1}.
(v) Whenever a € A then p(a) = “a“
(vi) For each z € A, p(z) = p(z*).

(vii) p is a Banach space novm fov A and the norm topology induced on < by
p is the same as the product topology induced by A. Furvthevmove, for each x and y

in A, max([|x|, |ly]) <p&x+iy) < x| +|y].
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Proof. (i) A typical element of the absolutely convex hull of E is

n
7z = 2 B; exp(iaj),
i=1

where Erll ]le <1 and a; € A (j=1,2, -, n). For each j, the complex number
1 . n
B; is of the form |le8163, so that z = 27 |B;| exp i(a; + 651). Let

n

27 Ile = ¢os ¢.
1

B; |
cos ¢

n
(=1, 2, -, n), sothat 27, A;=1and 2 >0 (j=1,2, -, n). Inthe latter event,
we see that z is a convex combination of exp i(aj +05;1+¢1) (j=1,2, -, n).

Then, either z = 0 and so is certainly in U, or else we may put AJ- =

(i1) If ||a]] <1 then a +i(1 - a2)1/2 = exp i(+ arc cos a) and so a is the aver-
age of two elements of E.

n n
If a € U then a = EI kj exp ia;j, where El Aj =1 and 7\320 G=1,2, -, n).

n
Since a is self-adjoint, a =%(a +a%*) = 21 xj COS a; . So

n

lall < 222 [cos ayf} < 1.
1
(iii) Let a and b be any elements of A. Then, for large enough n, ||a|| <n/2
and |b|| <n/2.

So, by (ii), 2a/n and 2b/n are in U. Hence %(%aJri%b) € U, thatis

1 .
n(a+1b) € U.

Hence U is absorbent.
(iv) Let p be the Minkowski seminorm associated with the absolutely convex
and absorbent set U. [11, Section 4, Chapter 1.]
<o 1 ) .
(v) For any positive &, p(—p(a) Tz 2) <1. So, by (iv), a/(p(a) +¢) € U.
Thus, by (ii), ||al| <p(a) +&. Hence ||a| < p(a).

I( uan1+ J)e

1
p(—“a"—+5 a) < 1. Thus p(a)s Ha“

Conversely, for any positive ¢, < 1 and so, by (ii),

(vi) Clearly w € U if, and only if, w* € U. A routine argument now shows that
p(w) = p(w*).
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(vii) This follows from (v), (vi) and Lemma 1.2.

LEMMA 2.4. Let & be a finite dimensional JC*-algebva of operators on a
complex Hilbert space H. Let z be an invertible element of B with ||zl| < 1. Then

theve exist unitavies w and v in & such thal z = —l-(w +v). Furthevymove, if a is an

2
element of #B with “a” < 1, then theve exist unitavies u;, uy, us, uy in B such
that a = %(ul +u, + uz +uy).

Proof. Let r be a positive self-adjoint operator on H and u a partial isometry
on H such that z = ru. Since z is invertible in the special Jordan algebra &, it is
invertible in Z(H) [5, Section 11, Chapter 1]. Hence r is invertible and u is uni-

tary. Moreover, ||r| = [|ru] < 1.

We have r3u = {zz*z} € %. By repeating this argument we find that r3nu € B

3 -
jroou= 0 for some con-
stants (not all zero), cg, €1, ***, ¢, - Multiplying on the right by u*, we see that r
satisfies a nontrivial polynomial identity and so r has finite spectrum. Thus there
exist orthogonal projections p;, p,, ***, p, and positive real numbers

n n
X5 Az, ty Ap, with 0 <X <Ay <o+ < A, such that r = 27, A;p; and 21 py=1.
3k

Since (}\L) uezp for k=0, 1, 2, ---, it follows that p,u € #. On replacing z by
n

Z - Ay ppu and repeating the above argument we find that p,_;u € &#. Similarly
pju € # for each j. It now follows that

+iv1l-r2u and v=(r-iv1l-ra)u

n
for n=0,1, 2, -*-. Since & is finite-dimensional Z)j:o c;

are both in &#. Being products of unitaries, w and v are unitaries. Clearly
z= 1w +v)

3 .

Let C(a) be the smallest closed subalgebra of # which contains 1 and a. Then
C(a) is a finite dimensional Banach algebra. Thus the spectrum of a, with respect to
C(a), is finite. Hence, for large enough n, a+%1 and a - %1 are both invertible and,

since IIaH < 1, for large enough n are of norm less than 1. Since

3 (1) + (1)),

the required result follows from the first part of this lemma.
LEMMA 2.5. Let A be finite dimensional. Then the following hold.
(i) Each unitary u in & is of the form exp ia for some a € A.

(ii) Let u and v be unitavies in . Then p(uov) < 1. Also {uvu} is uni-
tary and {u*{uvu}u*} =v.

(iii) For each unitary u, p(u) = 1.
(iv) For any z and w in o, p(z o w) < p(z) p(w).
(v) For any z € A and any unitary u € «, p({uzu}) = p(z).
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(vi) For any unitary V € «Z; and any z and w in A, p({zv2 w}) < p(z) plw).
(vii) For any z,, 2, 23 in <, p({z) z;23}) < plz)) plz) plz3).
Proof. (i) See the remarks after Corollary 2.2.

(ii) For some a and b in A, u = exp ia and v = exp ib. Hence
Jord(u, v) C Jord(a, b).
By Corollary 2.2, there exist a JC*-algebra & of bounded operators on a Hilbert

space H and a Jordan *-isomorphism h from Jord(a, b) onto &. Choose any posi-
o
tive 6 < 1. Then h(6u o v) = 6h(u) o h(v) = E(h(u) h(v) + h(v) h{u)). Thus

n(duov)| < 1.

Thus, by Lemma 2.4, there exist unitaries u;, uz, uz, ug in Jord(a, b) such that
duov =l(u1 +u, +u3 +uy). Hence p(uov) <1.

We have h{uvu} = {h(u) h(v)h(u)} = h(u) h(v) h(u), which is unitary. Hence
{uvu} is unitary. A similar argument shows that {u*{uvu}u*} =v.

(iii) 1 = plu o u*) < p(u) p(u*) = p(u)2. Thus 1 < p(u).
But, since u € E, we have p(u) < 1.

(iv) It suffices to show that when p(z) < 1 and p(w) < 1 then p(z o w) < 1.

We have z = E?)\juj and w = El Ui Vk where E Aj= El By =1, 7\ >0
and p, > 0 for each j and k, and u; and vy are unltarles for each j and k. Then

n m
Zow= Ej:l Ek:l AjHiuy 0 V. Thus

MB
=
I

n m n
p(z ow) < Zi kzl A5 kpluy o vy) < .E
J: = J:

[—

k

H
—

n

(v) Choose € > 0 and let w =z/(p(z) +€). So w = El A;vj, where X; > 0 and

v;€E for j=1, 2, - ,nandE Aj=1. Thus {uwu} = E?\{uvu} So
p({uwu}) < 1. Hence p({uzu}) <p(z) Hence p(z) = {u*{uzu}u*} < p({uzu}).

(vi) The identity {v{zv2w}v} = {vzv} o {vwv} is valid in any special Jordan
algebra and hence, by Macdonald’s theorem [8], [4], in every Jordan algebra.

p{zvew}) = p({v{zviw}v}) = p({vav} o {vwv})
< p({vav})p({vwv}) < plz) p(w) .

(vii) Choose & >0, let 6 = (p(z,) +€)"!. Thus p(6z;) < 1.

n 2 n
Thus 6z, = El Aj Vi, where 2; >0 j=1,2, -, n), 2, A; =1, and v =exp(iaj/2),
— 3 3 aes = n 2
for self-adjoint a , a,, **, a . Thus {21(622)23} = El N {zl v Z3 }.
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n
Thus p({z,(0z,)z;}) < 21 )\jp{zl v2z,} <plzy)p(z;).
Hence p({z) 2z, 23 }) < plz) (p(z,) + €) p(z3).
Since this holds for all € > 0, the lemma is established.

THEOREM 2.6. Letl £ be the complexification of a finite dimensional JB-
algebva A. Then < is a Jovdan C*-algebva with vespect to the norm p.

Proof. Let z be any element of 7 and let || “1 be the norm p restricted to
Jord(z). By Corollary 2.2, there exists a norm | | for Jord(z) which organizes
Jord(z) as a JC*-algebra.

Let w € Jord(z) such that ||w|| < 1. Then, by Lemma 2.4,

(u; +up +u3 +uy),

W |

W:

where u;, u,, us, uy are unitary in Jord(z). This implies that p(w) < 1, that is,
|wli < 1. Hence, for any y € Jord(z), |yll1 < |y|-

By Lemma 1.2, || ||1 and “ “ are equivalent norms for Jord(z). Hence, by
Lemma 1.1 and Lemma 2.5, (vii), |w|; > ||w]|| for all w € Jord(z). Thus
|wly=llwl| for all w € Jord(z). Hence, in particular, p({zz*z}) = p(z)3. Then

Lemma 2.5, (iv), and Lemma 2.3, (vi) and (vii), show that when / is equipped with
the norm p it becomes a Jordan C*-algebra.

In [2] it is pointed out that the exceptional (real) Jordan algebra Mg of von
Neumann, Jordan, and Wigner [6], is a JB-algebra.

COROLLARY 2.7. Let - A g be the complexification of Mg . Then there is a
unique norm fov i § which ovganizes it as an (exceptional) Jordan C*-algebra.

From this point onwards ../ g shall be the unique Jordan C*-algebra whose
self-adjoint part is M§ .
Let (;) (A € A) be a family of Jordan C*-algebras. The direct sum @ 73
A€

is constructed as follows. First, the elements of (® £, are all families (a))
AEA

AeA)in Il /5 for which sup I ay | <+=. Secondly, the algebraic operations
AEA
and involution are defined pointwise and | (ay) | is defined to be sup I ay . A rou-
AEA
tine verification shows that @ ~Z 5 is a Jordan C*-algebra.
XEA

THEOREM 2.8. Let A by any JB-algebva and let 7 be its complexification.
Then theve exists a unique novm on <Z which ovganizes < as a Jovdan C*-algebra.

Pyoof. The uniqueness of such a norm follows from Corollary 1.4.

By Corollary 5.7 and Theorems 8.6 and 9.5 of [2], there exists a family ¥
of homomorphism ¢: A — B such that (i) for each non-zero a in A there can be
found a ¢ in ¥ such that ¢(a) # 0 and (ii) for each ¢ in #, By = Mg or By is a
norm-closed Jordan algebra of self-adjoint operators on a complex Hilbert space.
For each ¢ in #, let #,; be the complexification of B¢ . Then either, by Corollary

2.7, we can identify % with A § or else By is a JC*-algebra.
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Consider the direct sum @ 38¢,. Then we can construct a Jordan *-homo-

e s
morphism H: «# = @ g, by, for each a, b in A, letting H(a +ib) be
e F
(p(a) +ip(b)) (¢ € F). By property (i) of & we see that H is injective. Then, b
Lemma 9.3 [2], H is an isometry on A. Let us norm - by setting Hz“ “HZ W’

Then, by Lemma 1.2, & is a Banach space. The other conditions for / to be a
Jordan C*-algebra are clearly satisfied since ® % is a Jordan C*-algebra.
oeF

3. IDEALS AND QUOTIENTS OF JORDAN C*-ALGEBRAS

Let Z be a Jordan C*-algebra with self-adjoint part A. A Jordan ideal £ of
4 is said to be a *-ideal if, whenever z € 4 then z* € J#. Let J be the self-
adjoint part of a norm-closed *-ideal J of ~/, then 4 =J +1iJ and J is a norm-
closed ideal of A.

Since a quotient of a special Jordan algebra may be an exceptional algebra, the
following lemma may have some mild independent interest.

LEMMA 3.1. Let «Z be a JC*-algebra and let J be a proper norm-closed
*-ideal in . Then «Z/yg is a JC*-algebra.

Proof. Let eﬁf be a C*-algebra in which + is embedded and whlch is gen-
erated by 7 ; let A" be the second dual of + and let us identify " with the von
Neumann envelope of o on the universal representation space of oA .

Since J (the self-adjoint part of /) is a norm-closed Jordan ideal of the JB-
algebra A, there exists an upward directed net <u)t>;\€ A of elements of J with
0 <uy <1 and such that ||(1 - uy)a(l - uy)| — 0 for each a € J [2; Lemma 9.1].
Hence, for each b € J, [|(1 - uy)b?(1 - up)|| = 0 and so [b(1 - uy)|| — 0. Let f be
the strong limit in /" of the increasing net <uh>. Thus 0 <f < 1. Now, for any
b€ J, b(l-uy) —b(l -£) (strongly). Thus b(1 - f) =0 and, on taking adjoints,
bf =b = b* = fb.

Let J be the weak closure of J in /" and let A be the weak closure of A in
+Z". Then J is a weakly closed Jordan ideal of the JW-algebra A, Thus, see
Topping [14; Propositions 3 and 5], there exists a central projection e in A such
that J = Ae.

Let x be any element of :f then there exists a net <x},> in J which converges
strongly to x. Thus xf =x=1x. In partlcular, f2 = f, that is, f is a projection.
Also, putting e = x, ef = e = fe. But, since = Ae and f is in J f =fe. Thus f =e.

Let -« = {a € A:a(l-e)= 0} Since e is central, .# is a norm-closed two-
sided ideal of the C*-algebra 7. Clearly 4 C ./.

Let vy =1 - u) . Then, on identifying the self-adjoint part of o/ with the space
of real valued, affine, continuous functions on the state space X of A , the net
<v7\> decreases pointwise to 1 - e. Thus, for any z € ./, (z*vhz> decreases
p01ntw1se to z*(1 - e)z = 0. Hence, by Dini’s theorem ||z* vzl — 0. So
“v z]l — 0. But “vhz“ < I]vh/?‘” “vl/2 | < I]vl/zzﬂ — 0. On replacing z by
z* and taking adjoints we see that “ ZVy “ — 0.



300 J. D. MAITLAND WRIGHT
From [4; Proposition 1.8.2] we have that, for each z € «,

inf “z—l—a“ = lim []z - quH = lim “z - zuA“ .
a€. M X A

So, for any z € 7,

inf [lz+af <lim [z -woaf < Tm |z -u oz

aej
1.. .
< Ehm(“z -zuy || + ||z - uyz|) = inf |z+al .
a€ Ml
Thus inf “z-i—al] = lim “z - uy oz|| = inf ”z+a||.
aGJ a€. M

It follows that .7 = «/ N .« and that the natural map of 7/ into oA /. is an
isometry. Hence /7 is a JC*-algebra.

THEOREM 3.2, Let + be a Jordan C*-algebra; let J be a closed *-ideal.
Then /.7, when equipped with the quotient noym, is a Jovdan C*-algebra. Fuv-
thermore, if J is the self-adjoint part of J, then the self-adjoint part of « /g is
isometvically isomovphic to A/J.

Proof. Trivially, £/ is a Jordan *-algebra. For x € A,

=+ 71

(see Lemma 1.2). But ||x+J|| =inf{||x+all:a e 3} > ||x+7]|.

=inf{|x+a+ibl:a, bin J} > inf{|x+al:a e I},

Thus the self-adjoint part of «/ /.7 is isometrically isomorphic to A/J and
hence is, see [2; Lemma 9.2], a JB-algebra. Thus, by Theorem 2.8, there exists a
unique Jordan C*-norm p on /7 .

Let H: &7 — £/ be the canonical quotient homomorphism. For any z € 7,
Hz = H(z + a), for any a € 4. Thus p(Hz) = p(H(z + a)) < ||z +a|, by Corollary 1.5.
Thus p(Hz) < inf ||z +all = ||Hz|.
a€ J

Fix any z € . Then, by Corollary 2.2, Jord(z) is a JC*-algebra. Hence
& =Jord(z)/(Z N Jord(z)) is a JC*-algebra, with respect to the quotient norm. Let
us consider the natural map h: & — /7 given by

h(iw + Z N Jord(z)) = w+ 4 = Hz.

Clearly, h is a *-isomorphism of & into /4 and so, by Corollary 1.4,
p(Hz) = ||z + Z N Jord(z)|| > inf |z +a| = |Hz|. Hence p(Hz) = |Hz|, as re-

a € g
quired.

A Jordan C*-algebra & is a faclor if its self-adjoint part is a JB-factor [2].
A factorial representation of a Jordan C*-algebra . is a *-homomorphism
h: o/ — &B, where # is a factor Jordan C*-algebra. It follows from Theorem 2.8
and [2; Corollary 5.7] that each Jordan C*-algebra has a faithful family of factor
representations.

Theorem 3.2 and Corollary 2.7 enable us to obtain an analogue, for Jordan Cc*-
algebras, of the main theorem of [2].
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THEOREM 3.3. Let £ be any Jovdan C*-algebra. Then theve exists a unique

novm-closed *-ideal [J such that /4 is a JC*-qglgebra and every factorial
representation of < which does not annihilate J is onto M % .

By [2; Theorem 9.5], there exists a unique closed JB-ideal J in A such that

A/J is the self-adjoint part of a JC*-algebra and each factorial JB-representation
of A which does not annihilate J is onto Mg. Let / =J +iJ and then apply
Theorem 3.2 and Corollary 2.7.

10.

11.

12,

13.
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