FRAMED MANIFOLDS WITH A
FIXED POINT FREE INVOLUTION

Edgar H. Brown, Jr.

The aim of this note is to prove that every framed cobordism class of positive
dimension can be represented by a framed manifold with a fixed point free involution
which preserves the framing. In the following, all manifolds and maps are smooth
wherever this makes sense.

Suppose M is a closed, compact m-manifold with a fixed point free involution t,
vy is the normal bundle of M € Rmtk (k large), and f: 12 B Rk is a framing. We
say that t preserves f if the following condition is satisfied. Let N = M/t and let
p: M — N be the projection. Then M — N C Rm*k js an immersion and hence p is
covered by a canonical map s: vy ;— vy Wwhich is unique up to homotopy. We say
that t preserves f if f = gs, where g: vy — RK is a framing. Let (M, f)/t = (N, g).
Let Qir denote the framed cobordism group and Zﬂfkr its two-primary part.

We prove the following theorem.

THEOREM 1. If o € Qg (m > 0), then a can be represented by (M, f), where

M admits a fixed point free involution t which preserves f. If o + 0 and a € ZQ.f]l;,
then (M, ) and t can be chosen so that M is [m/2]-connected and (M, f)/t is
Jramed cobordant to zevo.

We begin the proof of Theorem 1 by stating and proving a result of N. Ray [2].
Let Pk-1 pe real projective (k - 1)-space, let A: Rk — Rk be given by

Alxy, X5, =+, %) = (=X, Xp, -, X)),

and let A: Pk-1 — SOy be the composition of A and the map which assigns to each
line £, the reflection through the orthogonal complement of £. If g: vy » RK isa
framing and u: N — Pk-1 et ug: vy — Rk be the framing given by

ug(v) = Qup(v)) (g(v),

where p: vy — N is the projection.

THEOREM 2 (N. Ray). If a € zﬂffl (m>0, a # 0), then a can be vepresented
by (N, ug), wheve (N, g) is framed cobordant to zevo and u: m;(N) — 7;(Pk-1) is an
isomorphism for 2i < m.

Proof. Let T(vy) be the Thom space of vy, that is, the disc bundle modulo the
sphere bundle, and let t: Smtk T(VN) be the Thom-Pontrjagin construction. We
identify QT with 7__,1(SX) under the map {N, g} — [T(g)t].

Let DX be the unit k-disc and SK-! o Pk-1 pe Dk x Pk-1 modulo the relation

(x, y) = (%, y') for x € Sk-1, Let J: Sk-1 o Pk-1 — gk = pk/gk-1 pe given by
J(x, y) =A(y) (x). D.S. Kahn and S. B. Priddy [1] have shown that
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J ﬂm(Sk"l o Pk-1) — an(Sk)

is an epimorphism for k large with respect to m. Suppose a € ,7,,(SK) and
J *(B) = a. By transverse regularity, we may represent 8 by

t h
Sm+k —_ T(VN) - Sk—l o Pk—l ,

where h(v) = {g(v), up(v)}, v is in the disc bundle of vy, g vy — RK, and
u: N — Pk-1 Note that Jh = T(ug). Hence T(ug)t = Jht € J.B8=a. Thus (N, ug)
represents «. But T(g)t factors:

Sm+k — T(VN) - Sk—l o Pk—l — Dk — Sk.

Hence, T(g)t is homotopic to zero, and therefore (N, g) is cobordant to zero. Ap-
plying surgery to the commutative diagram

vy —> RK x Pk-1

Lo

we may make u,: 7;(N) — m;(PX-1) an injection for 2i <m. If @ # 0, then u must
be nontrivial and u, an isomorphism on ;. This completes the proof of Theo-
rem 2.

THEOREM 3. Suppose N ‘is a compact manifold and v: N — PX-1 | Theye is a
function F: N X Rkx [0, 1] » sk=Rk U {»} satisfying:

(i) F is transverse vegular to 0. F~1(0) N NxREx {1} =Nx {+e,} x {1},
wheve e, =(1,0, -+, 0). F-1(0) n NxRkx {0} =M x {0}, where M is the two-
sheeted cover of N, {(x,y) e NxSk-l: y ¢ u(x)}.

(ii) Identify RK with the tangent vectors of N X Rk x [0, 1] at (n, x, t) which
arve tangent to {n} X REkx {t}. For x € Rk,

x if z e Mx {0} UNX {-e,} x {1}
dF (x) =
aun)x  if z=(n, ey, 1) and ne N.

Before proving Theorem 3, we show that it implies Theorem 1. Suppose
o € Qi (m > 0). If o has odd order and (N, g) € a, then 2(N, g) € @ and 2(N, g)
has an obvious fixed point free involution. Suppose «a € Zﬂfg . By Theorem 2,
o = {N, ug}, where (N, g) ~ 0. Let G be the composition

X g X id F
vy %[0, 1] p—-g——-1—~>N><Rk><[0, 1] ——> sk,

By Theorem 3, G~1(0) € R™"kx [0, 1] is a framed cobordism between (M, f) and
(N, g) + (N, ug), where f = sg and s: v\ — VN is as above; this result was sug-
gested to me by Jerome Levine. The covering translation t of M gives a fixed
point free involution preserving f. Hence (M, f)/t = (N, g) ~ 0. Choosing N and u
so that u,: 7;(N) ~ 7;(Pk-1) (2i < m), we see that M is [m/2]-connected.
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Proof of Theovem 3. Note that it is sufficient to construct an F transverse
regular to 0 on N X Rk x {0, 1} and satisfying (i) and (ii). We construct F in two
steps. First, for N = P!, u = identity (F is the map G below), and then the general
case.

Let C be the field of complex numbers and Sl ='{z € C: ,zl =1}. Let

G:stxcx[0,1] » 82 =cCcuU{«~}
be defined by

w2 -z+t(z - 1)

G(Z, w, t) = (2+t(z - 1))W +t(Z - 1) )

Let N and D denote the numerator and denominator of the above fraction. To show
that G is well defined, we must show that N and D do not vanish simultaneously.
Suppose S z > 0. One may easily check that if N =0, then (S w) (% w) > 0; and if
D=0,then 3 w<O0 and % w> 0. Hence, w is realif N =D = 0. The same argu-
ment, for $ z < 0, also yields the conclusion that w is real. Obvious considera-
tions show that D and N cannot both be zero when w is real. Observe that

G lo)nslxcx {0} ={(z, w:w=2z}x {0},

(1)
G lo)nstxcx {1} = {(z, +1):z e S1} x {1};
1 fwé=zandt=0
aG or
(2) ﬁ(z,w,t)= w=-land t=1
z if w=1 andt=1.

Suppose u: N — Pk-1, By increasing k if necessary, we may assume e; ¢ u(N).
Suppose n € N, x € Sk-1 and x € u(n), y € Rk, and t € [0, 1]. Choose r, s € R and
x, € Sk-1 guch that (x; - e;) =0 and x =re; +sx;. Since x # e, it follows that
X, is unique up to sign. Let g: C — RK be defined by g(a + bi) = ae] +bx;, and let
y1=y-(y-epde; - (y-x1)x;. Define F: N X Rkx [0, 1] - Sk=Rky {=} by

F(n, y, t) = gG({r +si)?, (y-e)) +(y - xi, t) +y;.

One easily checks that the above is independent of the choice of r, s, and x;, using
the fact that G(z, w, t) = G(z, w, t).

By (1), F-1(0) n NxRkx {0, 1} =M x {0} UNX {te;} x{1}. K n, x, and y
are as above and v = (n, ey, 1), then by (2)

dF (y) = g((r +si)2((y - e}) + (y - x))1)).

If z € S!, the mapping given by w — Z%w is the reflection through the line perpen-
dicular to z composed with reflection through the imaginary axis. Thus dF,, is re-
flection through the orthogonal complement of the e; axis; that is, dF_ = xu(n).
Similarly by (2), dF (y) =y, for ve Mx {0} UNX {-e;} x {1}. Thus F satisfies
condition (ii), and F is transverse regular to 0 on F-1(0) N N x Rkx {0, 1}. This
completes the proof of Theorem 3.
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