ON FULLY INVARIANT SUBGROUPS OF
PRIMARY ABELIAN GROUPS

Ronald C. Linton

We study the relation between the structure of fully invariant subgroups of cer-
tain p-primary abelian groups and the structure of the containing groups. Our major
theorems are: (1) If F is a fully invariant subgroup of the totally projective group
G, then both F and G/F are totally projective groups. (2) If F is a fully invariant
subgroup of a Cx-group G of length A, and if A is a limit ordinal cofinal with w
(the first infinite ordinal), then G/F is also a Cp-group. Moreover, if F is un-
bounded of length u, then G/F is a totally projective group, and F is a C.u—group.
(3) If F is an unbounded, fully invariant subgroup of a Cy-group G, and if A isa
limit ordinal cofinal with w, then F is a totally projective group only if G is a
totally projective group.

All our groups are additively written, abelian, p-primary groups for some
prime p. Most of the terminology and notation we use can be found in [1]. Theo-
rems 1 and 2 were announced by the author in [3], and they have been proved inde-
pendently by L. Fuchs and E. A. Walker (see Exercise 7, page 101 in [1]).

THEOREM 1. If F is a fully invariant subgroup of the totally projective group
K, then F is a totally projective group.

Proof. We first prove the theorem for the case where K is a generalized
Priifer group, say Hg, for some ordinal 8. If 8 is not larger than w, then the con-
clusion follows from well-known results. Thus we assume that the theorem is true
whenever K = Hy and o is less than 8. We let F denote an unbounded, fully invari-
ant subgroup of Hg. Since Hg is a totally projective group, it is fully transitive,
and we can write F = Hg(u), where u = (0(0), o(1), -+, o(n), ---) is an increasing
sequence of ordinals that satisfies the gap condition (see Theorem 67.1 in [1]). If B
is a limit ordinal, then we set Hg = @{Hy: @ <8}, where H,, is the generalized
Priifer group of length «, and we note that Hg(u) =® {Ha(u): @ < B} and that the
class of the totally projective groups is closed under the operation of taking direct
sums. If, on the other hand, 8 is not a limit ordinal, then we set 8 =y + 1. Now,
unless F =H,;(u) is bounded, we have the relation o(n) <y +1 for all n, and thus

H’)/+l(u)/pyH'y+1 = (H’y+1/pyH'y+1)(u) -

But the right-hand side is isomorphic to H,(u), a fully invariant subgroup of H,,.

Since y is less than S, this subgroup is a totally projective group by assumption.

Thus, we see that Hoy)(u)/pY Hy+1 is a totally projective group. Because 0(n) is
less than y for all n, there is an ordinal 6 satisfying the condition

PYHyy) = pﬁ(H},H(u)). It follows that Hyﬂ(u)/p‘5 (Hy+1(u)) is a totally projective

group, as is pYHy 1. By appealing to familiar properties of totally projective
groups, we can conclude that H,+1(u) is a totally projective group. It follows that
the theorem is true in the case where K is a generalized Prifer group. For the
general case, we recall that every totally projective group is a summand of a direct
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sum of generalized Prifer groups and that the class of totally projective groups is
closed under the operation of taking direct summands.

LEMMA 1. If K is a p-primary group of length B+ 1 such that pBK is finite,
and if

u = (0(0), 0(1), ==+, o(n - 1), ®, %, -=-) aud u' = (¢(0), o(1), ---, aln - 1), B, =, =, -

satisfy the gap condition, then K(u')/K(u) is finite.

Proof. If z; € pPK={0, z1, -+, zm}, then Lemma 24 in [2] guarantees the
existence of an element x; in K(u') such that p"x; =z;. Now suppose that
x € K(u'). Then p"x € pBK, and thus p"x = zj = p"x; for some j. Hence
p"(x - x;5) = 0, and pY(x - x;) € p? (t)K for t less than n; that is, x - x;j € K(u). Thus
x +K(u) = x; + K(u), and K(u')/K(u) is finite.

THEOREM 2. If F is a fully itnvariant subgroup of the totally projective group
K, then K/F is a totally projective group, and the length of K/F does not exceed the
length of K.

Proof. We prove the theorem only for the case where K = Hp for some ordinal
B, since the proof for the general case is similar to the one offered in Theorem 1.
We begin by assuming that the conclusion holds if K = Hy and @ is less than .
The case where 8 is a limit ordinal presents no difficulties; suppose therefore that
F is a fully invariant subgroup of Hg, where B =y + 1. If we set F = Hyy(u),
where u = (0(0), o(1), ---, 0(n), ---) satisfies the gap condition, then it follows from
the definition of u that, for each n, c(n) <y or o(n) = ©. We have three cases.

Case 1: of(n) < y for all n. With this restriction on u, we can show that
Hy+1(w)/pY Hy+1 = (Hy+1/pYHys1)(w). Thus Hyy) /Hy+1(u) is isomorphic to
(Hy+1/pYHy1)/(Hy+1/pY Hy41)(u), where (Hy+1/pYHo+1){u) is a fully invariant
subgroup of the totally projective group Hyyg /pY Hypg. It follows from the induc-
tion hypothesis that Hy+1/Hy+1(u) is a totally projective group. A straightforward
argument shows that the length of Hy 11 /Hy+1(u) does not exceed the length of Hy+1.

Case 2: o(n) = y for some n. The proof for the sequence u = (y, ©, ©, -..) is
not difficult, since it follows that H.11(u) = p¥Hy+1. Suppose now that
u=(0(0), (1), -+, o(n - 1), y, o, ©, ---) for some n larger than 1. If we set
v =(0(0), 0(1), .-+, 0(n - 1), o, e, o --+) then we see that Hy+1/Hyt1(0) is iso-
morphic to (Hy+1/pYHy+1)/(Hy+1/pY Hy+1)(v), which is in turn isomorphic to
H, /H,(v); this latter quotient is a totally projective group, by assumption. The
argument for the conclusion regarding the length of Hy 4 /Hy+1(u) is straight-
forward.

Case 3: o(n- 1) <vy and o(n) = © for some n. We set
u' = (0(0), 0(1), ==+, o(n - 1), v, =, @, -:)

and note that u' satisfies the gap condition and that H,,;(u)/H, ;(u') is finite, by
Lemma 1. By the argument given in Case 2, H,;+1/Hy1(0') is a totally projective
group, and thus (Hy+3/Hy l(u'))/(HW.l(u)/Hyﬂ(u')) is a totally projective group.
However, this latter quotient is an isomorphic copy of H,11/Hy+1(u).

Note that if A is a finite subgroup of G, then the length of G/A does not exceed
the length of G; thus the length of (H-}/+1/Hy+1(u1))/(H'y.}.l(U)/qu_l(u,)) is less than
or equal to the length of Hy 4 /H7,+1(u'). Since the former quotient is isomorphic to
Hy ) /Hy (1), we can complete the proof by appealing to Case 2.
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In his generalization of C. Megibben’s C)-theory [5], K. Wallace [9] calls a
reduced p-primary group G a C)-group if A is a limit ordinal and G/p®G is a
totally projective group for all « less than A; the C-groups are precisely the p-
primary groups. Wallace generalizes the notion of a basic subgroup by defining B
to be a A-basic subgroup of the reduced p-primary group G if B is a totally pro-
jective group of length at most A, B is p*-pure [7]in G, and G/B is divisible. In
addition to other extensions of classical theorems, Wallace shows that a reduced p-
primary group contains a proper A-basic subgroup if and only if A is cofinal with w
and the group is a Cp-group. Since the remaining proofs require the existence of
A-basic subgroups, we restrict our attention to the case where X is cofinal with w.

An important tool in our previous proofs is the sequential characterization of
fully invariant subgroups of fully transitive groups. It is known [4] that C)-groups
having length A are fully transitive; those having greater length do not in general
possess this property, and thus characteristics of their fully invariant subgroups are
relatively unknown. Thus we shall restrict our attention to C)-groups having length
A. (However, it should be observed that there are examples demonstrating the nec-
essity for the restriction on the length in the hypotheses of Theorems 4 and 5.) Note
that, by applying results in [7], we can show that the subgroup B of the p-primary
group G is a A-basic subgroup of G if and only if B is a totally projective group of
length at most X, pG N B = pB, and G[p] € p® G + B [p] for all a <Ax.

THEOREM 3. If F is a bounded, fully invaviant subgrvoup of the Cy-group G,
and if G has length X\, then G/F is a Cy-group.

Proof. We can assume that F does not have the form G [p™] for any positive
integer m. We shall show that if B is a A-basic subgroup of G, then (B + F)/F is a
A-basic subgroup of G/F. Since G is fully transitive, we can write F = G(u), where
u = (0(0), o(1), ---, o(k), =, o, ---) satisfies the gap condition, k is greater than 0,
and pktl F =0,

First we note that (B + F)/F is isomorphic to B/B(u), where B(u) is a fully in-
variant subgroup of B, and where B is a totally projective group. Thus, we can ap-
ply Theorem 2 and show that (B + F)/F is a totally projective group of length at
most A.

Next we prove that p(G/F) N (B+F)/F C p((B+ F)/F). Let p(g+F)=b+F
denote an element in (B + F)/F, where g € G and b € B. If (0) # 0, then
F c p?{0)G c pG, and it follows that b € pB. If, on the other hand, ¢(0) = 0, then
u#(0,1,2 -+, k, ©, o ...) because F # G[pk*tl]. Thus there is a first t such
that o(t) > t. The assumption that pg - b € F implies that pt(pg - b) € p®(t)gG,
where p? )G C pt*1 G. If we set pthb = pttlb', where b' € B, then it follows that
pg - pb' € Glu) = F.

Finally, we show that (G/F)[p] C p%(G/F) + ((B + F)/F) [p] for all a less than
A. Suppose that g+ F € (G/F) [p] for some g € G and that a is less than A. If t is
the first positive integer such that ptg = 0, then t is not larger than k + 2. Since B
is a A-basic subgroup of G, it follows that G[pt] = pP G[pt]+ B[pt], where 8 denotes
the larger of @ and o(k). Thus g =g' +b, where g' € pBG[pt] and b € B[pt]; fur-
thermore, g + F is in (pBG + F)/F + (B + F)/F. In order to show that pb € F, we
note that the assumption p(g + F) = 0 requires that pg' - pb € F. However,
pg' € pBr1G[pt-1]1c po k)G [pktl] < F. This completes the proof.

If F is a fully invariant subgroup of the C)-group G, then F is called a A-
lavge subgvoup of G if G = B + F for all A-basic subgroups B of G. This general-
ization of R. Pierce’s [8] concept of a large subgroup is studied in [4], where it is
shown that a fully invariant subgroup of a C)-group of length A is a A-large
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subgroup if and only if it is unbounded. Thus we can restate two of the results in [4]
in the following form.

THEOREM 4. Let F denote an unbounded, fully invaviant subgrvoup of the Cy-
group G, wheve G has length ). If | denotes the length of F, then F is a Cy-
group, and G/F is a totally projective gvoup.

Proof. We only sketch the proof here. If B is a A-basic subgroup of G, then
we can show that F N B is a fully invariant subgroup of B. Since B is a totally
projective group, it follows from Theorem 1 that F N B is also a totally projective
group; furthermore, F N B is a p-basic subgroup of F, and thus F is a Cy-group.
Since G/F is isomorphic to B/(F N B), Theorem 2 guarantees that G/F is a totally
projective group.

THEOREM 5. Let F denote an unbounded, fully invaviant subgroup of the C) -
group G, wheve G has length N. Then F is a totally projective group only if G is a
totally projective group.

Proof. We sketch the proof, which is by induction on the length of G. Assume
that the theorem is true for all cases where G is a Cg-group, 8 is less than A, and
B is cofinal with w. If F = G(u), where u = (¢(0), (1), -+, o(n), ---), then we set
B=sup{om):n<w}. If B is less than A, then p¥F = pB G, and thus pP G is
totally projective. The desired result now follows from the fact that G isa C)-
group. On the other hand, if 8 = A, then p?F =0, and F is a direct sum of cyclic

groups; furthermore, p® ()G [p] = F[p] = U {s(m): n < w}, where S@) N p*F =0
for each n. It follows that p®{0)G is a o-summable [6] C|-group, where u is co-
final with w and less than A. An application of the generalized Kulikov criterion [6]
enables us to conclude that p® (0)G is a totally projective group, as is G/p° (0)G.
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