UNIFORM ALGEBRAS CONTAINING THE REAL AND IMAGINARY PARTS OF THE IDENTITY FUNCTION

James E. Thomson

A uniform algebra on $\Gamma = \{z \colon |z| = 1\}$ is a subalgebra of $C(\Gamma)$ that is closed under the topology of the supremum norm, contains the constants, and separates the points of Γ . The canonical example is the disk algebra A, which is the uniform algebra consisting of all functions in $C(\Gamma)$ that extend continuously to $\{z \colon |z| \le 1\}$ to be analytic on $D = \{z \colon |z| < 1\}$. In a recent paper [4], J. M. F. O'Connell shows that if B is a uniform algebra with $\Re B = \Re A$, then there exists a homeomorphism Φ of Γ onto Γ such that

$$B = A \circ \Phi = \{f \circ \Phi : f \in A\}.$$

W. P. Novinger [3] generalizes this result to the setting in which it is only assumed that $\Re B \supseteq \Re A$. He shows that in this case either $B = C(\Gamma)$ or $B = A \circ \Phi$ for some homeomorphism Φ . We show that to obtain the latter conclusion, it is sufficient to assume that $\Re B$ contains the real and imaginary parts of the identity function Z.

THEOREM 1. Let B be a uniform algebra on Γ such that $\Re B$ contains $\Re Z$ and $\Im Z$. Then either $B = C(\Gamma)$ or there exists a homeomorphism Φ of Γ onto Γ such that $B = A \circ \Phi$.

Proof. By hypothesis, there exist functions ψ and ϕ in B such that $\Re \psi = \Re Z$ and $\Im \phi = \Im Z$.

Case 1. Either ψ or ϕ is one-to-one on Γ . We shall assume that ψ is one-to-one on Γ . The proof for the case where ϕ is one-to-one is similar. Let W denote the interior of the Jordan curve $\psi(\Gamma)$. Let f denote the Riemann mapping of W onto D; then f extends continuously to \overline{W} , mapping $\psi(\Gamma)$ homeomorphically onto Γ . By Mergelyan's theorem, f can be uniformly approximated by polynomials on $\psi(\Gamma)$, and thus $\Phi = f \circ \psi$ is in B. Hence, $A \circ \Phi \subseteq B$, or equivalently, $A \subseteq B \circ \Phi^{-1}$. Applying Wermer's maximality theorem to the uniform algebra $B \circ \Phi^{-1}$, we see that either $B \circ \Phi^{-1} = C(\Gamma)$ or $B \circ \Phi^{-1} = A$. It follows immediately that $B = C(\Gamma)$ or $B = A \circ \Phi$.

Before proceeding to Case 2, we shall establish some useful results.

LEMMA 1. Let B be a uniform algebra on Γ containing functions ψ and φ with $\Re \psi = \Re Z$ and $\Im \varphi = \Im Z$. If $\psi(z_1) = \psi(z_2)$ or $\varphi(z_1) = \varphi(z_2)$ and E_1 and E_2 are the two closed subarcs of Γ with end points z_1 and z_2 , then E_1 and E_2 are peak sets for B. Furthermore, B | E_j is a closed subalgebra of $C(E_j)$ for j = 1, 2.

Proof. If $z_1 = z_2$, then the conclusion is trivial. We shall assume that $\psi(z_1) = \psi(z_2)$. If $\phi(z_1) = \phi(z_2)$, the proof is similar. Note that our assumption implies that $z_2 = \bar{z}_1$.

Let K be the union of $\psi(\Gamma)$ and the bounded components of \mathbb{C} - $\psi(\Gamma)$. There exists a closed rectangle R containing $\psi(E_2)$ such that one edge of R is contained in $\{z: \Re z = \Re \psi(z_1)\}$. Let f be the Riemann mapping of int R onto D; then f

Received July 24, 1974.

Michigan Math. J. 21 (1974).

extends to a homeomorphism of R onto \overline{D} . We can assume that $f(\psi(z_1)) = 1$. For $w \in K - R$, let f(w) = 1. Since f is continuous on K and analytic on int K, we can approximate f uniformly by polynomials, on K, by Mergelyan's theorem. Hence, $f \circ \psi$ is in B and it peaks on E_1 . A similar argument shows that E_2 is a peak set for B. By [1, p. 163], B $|E_1|$ is a closed subalgebra of $C(E_1)$ for j = 1, 2.

LEMMA 2. Let B be a uniform algebra on Γ , let X be a compact subset of Γ , and let f be in B. If f(X) is contained in a Jordan arc and \Re f is one-to-one on X, then B | X is dense in C(X).

Proof. By Mergelyan's theorem, the function $w \to \Re w$ can be uniformly approximated by polynomials on f(X), and we conclude that $\Re f \mid X$ is in $B \mid X$. By the generalized Stone-Weierstrass theorem, $\Re f \mid X$ and the constants generate a dense subalgebra of C(X). Hence, $B \mid X$ is dense in C(X).

The following is a theorem of R. E. Mullins [2, p. 272].

THEOREM 2. Let B be a uniform algebra on a compact metric space X. Let F_1 , \cdots , F_n be n closed sets such that

$$X = \bigcup_{i=1}^{n} F_i$$
 and $B \mid F_i = C(F_i)$ $(i = 1, \dots, n)$.

Then B = C(X).

In the following, our goal is to show that Γ is the union of sets to which we can apply Lemmas 1 and 2 and Theorem 2, and to conclude that $B = C(\Gamma)$.

Case 2 of Theorem 1. Neither ψ nor ϕ is one-to-one on Γ .

Proof. Consider first the situation where $\psi(i) = \psi(-i)$. Let E_1 and E_2 be the two closed subarcs of Γ with end points i and -i. The image $\phi(E_j)$ is a Jordan arc, for j=1,2. Hence, Lemma 2 implies that $B \mid E_j$ is dense in $C(E_j)$, for j=1,2. Applying Lemma 1, we see that $B \mid E_j$ is closed in $C(E_j)$ for j=1,2. Thus, $B \mid E_j = C(E_j)$ for j=1,2. Now we can invoke Theorem 2 to obtain the conclusion $B = C(\Gamma)$. A similar proof shows that $B = C(\Gamma)$ if $\phi(1) = \phi(-1)$.

Hence, we can assume that there exist \mathbf{z}_1 and \mathbf{z}_2 satisfying the four conditions.

- (1) $\Re z_1 < 0 < \Re z_2$,
- (2) $\Im z_j \ge 0$ for j = 1, 2,
- (3) $\psi(z_j) = \psi(\bar{z}_j)$ for j = 1, 2, and
- (4) $\psi(\bar{z}) \neq \psi(z)$ for each z between z_1 and z_2 on the upper half-circle.

Let E_1 and E_2 be the two closed subarcs of Γ with end points z_1 and \bar{z}_1 , and let E_3 and E_4 be the two closed subarcs of Γ with end points z_2 and \bar{z}_2 . We make a similar construction for ϕ , noting particularly that in this case $\Im w_1 < 0 < \Im w_2$ and $\phi(w_j) = \phi(-\bar{w}_j)$ for j=1, 2. Label the second collection of subarcs F_1 , F_2 , F_3 , and F_4 . We can assume that E_1 , E_3 , F_1 , and F_3 all have length less than π . Applying Lemma 1 to ψ and E_1 and Lemma 2 to ϕ and E_1 , we see that $B \mid E_1 = C(E_1)$. Similarly, we deduce that $B \mid E_3 = C(E_3)$, $B \mid F_3 = C(F_3)$, and $B \mid F_1 = C(F_1)$.

Let $K = E_2 \cap E_4 \cap F_2 \cap F_4$ and note that $\Gamma = E_1 \cup E_3 \cup F_1 \cup F_3 \cup K$. If K is empty, we apply Theorem 2 and deduce that $B = C(\Gamma)$. If K is not empty, then K is a peak set for B, since it is the intersection of four peak sets. Hence, B | K is closed [1, p. 163]. Because $\psi(K)$ is properly contained in the Jordan curve

 $\psi(E_2 \cap E_4)$, it follows by Mergelyan's theorem that $\Re \psi \mid K$ is in $B \mid K$. Similarly, $\Im \phi \mid K$ is in $B \mid K$. Applying the generalized Stone-Weierstrass theorem to the closed algebra generated by $\Re \psi \mid K$, $\Im \phi \mid K$, and the constants, we see that $B \mid K = C(K)$. Hence, Theorem 2 implies that $B = C(\Gamma)$.

Remarks. Novinger's result follows easily after Theorem 2. Note that for each compact set X properly contained in Γ , there exists a conformal automorphism of D whose real part is one-to-one on some arc containing X, and thus B | X is dense in C(X) by Lemma 2. If ψ is not one-to-one on Γ , then apply Lemma 1 to ψ and invoke Theorem 2 to obtain the conclusion $B = C(\Gamma)$.

In the proof of Theorem 1 we actually prove more than we state. In Case 1, we prove that if there exists ψ in B such that $\Re \psi = \Re Z$ and ψ is one-to-one, then the conclusion of Theorem 1 holds. In Case 2, we show that if either ψ or ϕ is not one-to-one, then B = C(Γ).

COROLLARY. Let B be a uniform algebra on Γ , and let τ be the boundary-value function of a conformal automorphism of D onto D. If $\Re B$ contains $\Re \tau$ and $\Im \tau$, then either $B = C(\Gamma)$ or there exists a homeomorphism Φ of Γ onto Γ such that $B = A \circ \Phi$.

Proof. Note that $\Re B \circ \tau^{-1}$ contains $\Re Z$ and $\Im Z$, and then apply Theorem 1 to $B \circ \tau^{-1}$.

REFERENCES

- 1. G. M. Leibowitz, *Lectures on complex function algebras*. Scott, Foresman, and Company, Glenview, Illinois, 1970.
- 2. R. E. Mullins, The essential set of function algebras. Proc. Amer. Math. Soc. 18 (1967), 271-273.
- 3. W. P. Novinger, Real parts of uniform algebras on the circle. Pacific J. Math. (to appear).
- 4. J. M. F. O'Connell, Real parts of uniform algebras. Pacific J. Math. 46 (1973), 235-247.

Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061