UNIFORM ALGEBRAS CONTAINING THE REAL
AND IMAGINARY PARTS OF THE IDENTITY FUNCTION

James E. Thomson

A uniform algebra on I' = {z: |z| = 1} is a subalgebra of C(T) that is closed
under the topology of the supremum norm, contains the constants, and separates the
points of I'. The canonical example is the disk algebra A, which is the uniform
algebra consisting of all functions in C(T) that extend continuously to {z: |z| < 1}
to be analytic on D = {z: |z| < 1}. In a recent paper [4], J. M. F. O’Connell shows
that if B is a uniform algebra with 9B = 9%t A, then there exists a homeomorphism ¢
of T onto I' such that

B=Aod = {fod:feA}.

W. P. Novinger [3] generalizes this result to the setting in which it is only assumed
that 9B D 9t A. He shows that in this case either B = C(I') or B=A o for some
homeomorphism ®. We show that fo obtain the latter conclusion, it is sufficient to
assume that % B contains the real and imaginary parts of the identity function Z.

THEOREM 1. Let B be a uniform algebra on T' such that RB contains RZ
and 7. Then either B = C(I') or theve exists a homeomovphism & of T' onto T
such that B=A 0 &,

Proof. By hypothesis, there exist functions ¢ and ¢ in B such that Ry = RZ
and 3¢ = JZ.

Case 1. Either ¢ or ¢ is one-to-one on I'. We shall assume that ¢ is one-
to-one on I'. The proof for the case where ¢ is one-to-one is similar. Let W de-
note the interior of the Jordan curve Y(I'). Let f denote the Riemann mapping of W
onto D; then f extends continuously to W, mapping Y(I') homeomorphically onto T.
By Mergelyan’s theorem, f can be uniformly approximated by polynomials on (T,
and thus ® =f o { is in B. Hence, A © & C B, or equivalently, AC B o ®-1, Apply-
ing Wermer’s maximality theorem to the uniform algebra B o & -1 we see that
either Bo &-1 = C(I) or Bo &~! = A. It follows immediately that B = C(I') or
B=Aod.

Before proceeding to Case 2, we shall establish some useful results.

LEMMA 1. Let B be a uniform algebra on T' containing functions ¢ and ¢
with RY = RZ and IS¢ = IZ. If Y(z1) = Y(z2) or ¢(z;) = ¢(z3) and E; and E, are
the two closed subavcs of T with end points z| and z,, then E, and E, are peak
sets for B. Furthevmove, B | E; is a closed subalgebra of C(Ej) for j =1, 2.

Pyroof. If z| = z,, then the conclusion is trivial. We shall assume that
Y(z1) = Yl(zp). If ¢(z) = ¢(zp), the proof is similar. Note that our assumption im-
plies that z, =2, .

Let K be the union of Y(T) and the bounded components of C - Y(TI). There
exists a closed rectangle R containing Y (E2) such that one edge of R is contained
in {z: Rz = 9?1,!/(21)}. Let f be the Riemann mapping of int R onto Dj; then f
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extends to a homeomorphism of R onto D. We can assume that f(y(z;)) = 1. For
w € K - R, let f(w) = 1. Since f is continuous on K and analytic on int K, we can
approximate f uniformly by polynomials, on K, by Mergelyan’s theorem. Hence,
foy isin B and it peaks on E; . A similar argument shows that E, is a peak set
for B. By [1, p. 163], B 'Ej is a closed subalgebra of C(E;) for j =1, 2.

LEMMA 2. Let B be a uniform algebra on T, let X be a compact subset of T,
and let f be in B. If 1(X) is contained in a Jovdan avc and Rf is one-to-one on X,
then B ] X is dense in C(X).

Proof. By Mergelyan’s theorem, the function w — Rw can be uniformly ap-
proximated by polynomials on £(X), and we conclude that %f I X isin B | X. By the
generalized Stone-Weierstrass theorem, 9if | X and the constants generate a dense
subalgebra of C(X). Hence, B | X is dense in C(X).

The following is a theorem of R. E. Mullins [2, p. 272].

THEOREM 2. Let B be a uniform algebrva on a compact metvic space X. Let
¥, -, Fn be n closed sets such that

n
x=UPr aad B|F=cF) G=1 -, 1.

i=1

Then B = C(X).

In the following, our goal is to show that I' is the union of sets to which we can
apply Lemmas 1 and 2 and Theorem 2, and to conclude that B = C(I).

Case 2 of Theorem 1. Neither y nor ¢ is one-to-one on I

Proof. Consider first the situation where (i) = ¢(-i). Let E; and E, be the
two closed subarcs of I' with end points i and -i. The image ¢(E;) is a Jordan arc,
for j =1, 2. Hence, Lemma 2 implies that B | E; is dense in C(E;), for j = 1, 2.
Applying Lemma 1, we see that B | Ej is closed in C(Ej) for j =1, 2. Thus,

B 'Ej = C(EJ-) for j =1, 2. Now we can invoke Theorem 2 to obtain the conclusion
B = C(I'). A similar proof shows that B = C(TI') if ¢(1) = ¢(-1).

Hence, we can assume that there exist z, and z, satisfying the four conditions.
(1) %z, <0< %z,,

(2) 3z;>0 for j=1, 2,

(3) a,b(zj) = a,b(ij) for j =1, 2, and

(4) Y(Z) # Y(z) for each z between z; and z, on the upper half-circle.

Let E; and E, be the two closed subarcs of I' with end points z; and z;, and let
E3 and E4 be the two closed subarcs of I' with end points z, and z,. We make a
similar construction for ¢, noting particularly that in this case Iw; <0 < 3Jw, and
gb(wj) = ¢>(-\7\7j) for j =1, 2. Label the second collection of subarcs F;, F,, F3, and
F,. We can assume that E;, E3, F;, and F3 all have length less than 7. Applying
Lemma 1to ¥ and E; and Lemma 2 to ¢ and E;, we see that B |E; = C(E,).
Similarly, we deduce that B |E3 = C(E3), B | F3 = C(F3), and B | F) = C(F)).

Let K=E, NE4NF, NFy g andnotethat '=E; U E3 UF; UF3 UK. If K is
empty, we apply Theorem 2 and deduce that B = C(I'). If K is not empty, then K is
a peak set for B, since it is the intersection of four peak sets. Hence, B | K is
closed [1, p. 163]. Because Y¥(K) is properly contained in the Jordan curve
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Y(E2 N Eyg), it follows by Mergelyan’s theorem that Ry I K is in B | K. Similarly,
R ] Kisin B | K. Applying the generalized Stone-Weierstrass theorem to the
closed algebra generated by Ry | K, 3¢ | K, and the constants, we see that

B | K = C(K). Hence, Theorem 2 implies that B = C(T).

Remarks. Novinger’s result follows easily after Theorem 2. Note that for
each compact set X properly contained in T, there exists a conformal automorphism
of D whose real part is one-to-one on some arc containing X, and thus B [ X is
dense in C(X) by Lemma 2. If ¢ is not one-to-one on T, then apply Lemma 1 {o ¥
and invoke Theorem 2 to obtain the conclusion B = C(I).

In the proof of Theorem 1 we actually prove more than we state. In Case 1, we
prove that if there exists ¥ in B such that 8¢ = ®Z and Y is one-to-one, then the
conclusion of Theorem 1 holds. In Case 2, we show that if either ¥ or ¢ is not one-
to-one, then B = C(I).

COROLLARY. Let B be a uniform algebrva on T, and let T be the boundary-
value function of a conformal automorphism of D onto D. If RB contains RT and
S T, then either B = C(I') ov there exists a homeomorphism ® of T' onto T such
that B=A o &,

Proofl. Note that ®#B o 7-1 contains %#Z and S7Z, and then apply Theorem 1
to Bo 77+,
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