ON THE DIFFERENTIABILITY OF RADEMACHER SERIES
J. E. Coury

In this paper, we present a detailed investigation of the differentiability proper-
ties of Rademacher series. A number of authors, among them L. A. BalaZov [1],
J. R. McLaughlin [13], [14], and A. I. Rubinstein [16], have considered related prob-
lems. (For a brief survey of the literature, see BalaSov and Rubinstein [2, pp. 748,
749].) A principal theme in the present paper concerns the category- and measure-
theoretic properties of the points of differentiability of Rademacher series, and we
draw on the general theory of derivatives as developed in [20] by Z. Zahorski.

In Section 2, a “zero-one” law is proved for the set of points of differentiability.
Using a result of M. K. Fort [7], we show that this set is of the second category on
[0, 1) if and only if the series is piecewise linear. It is also shown that if a Rade-
macher series possesses a nonzero derivative at even one point, then the sequence
of coefficients is eventually strictly monotone.

We show in Section 3 that differentiability of a Rademacher series at at least one
point is sufficient to guarantee that the series is of bounded pth variation for every
p > 1. In Section 4, a necessary and sufficient condition is obtained for a Rade-
macher series to be continuous in the Darboux sense (that is, for the series to carry
connected sets into connected sets). It is shown that a Rademacher series that is
Darboux-continuous cannot possess a derivative at any point of [0, 1), except in the
case where the series is piecewise linear.

Section 5 deals with series satisfying Lusin’s condition (N), that is, series that
map nullsets into nullsets. For Rademacher series, we show that this condition is
equivalent to the preservation of measurable sets. It is also shown that differenti-
ability at even one point is sufficient to imply condition (N).

The Dini derivates of Rademacher series are examined in detail in Section 6.
We show that on a residual set in [0, 1), the upper and lower derivates are infinite
and of opposite sign. This set is further shown to be of full measure in [0, 1) unless
the series has a derivative almost everywhere.

In the last two sections, we treat the problem of determining necessary and suf-
ficient conditions for a Rademacher series to be of bounded variation. We show, in
particular, that a Rademacher series is differentiable almost everywhere on [0, 1)
if and only if it is of bounded variation. This result answers a question raised by
McLaughlin in [13], and it is an analogue for the Walsh system of the corresponding
result for lacunary trigonometric series (McLaughlin [12]). Explicit representations
for the total variation of a Rademacher series are also obtained. Finally, we show
that if a Rademacher series possesses a nonzero derivative almost everywhere in
[0, 1), there exists a perfect set of positive measure on which the series is strictly
monotone.
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1. PRELIMINARIES

o0
Let x € [0, 1) have the dyadic expansion Ekzl xk/Zk, where Xy is 0 or 1; in
the case of dyadic rationals, we take the finite development. (We shall refer to xj
as the kth coordinate of x.) For k > 1, define the (k - 1)st Rademacher function

ry _; evaluated at x to be (—1)Xk . (It should be noted that this definition is different

X
from that given, for example, in [1] and [13], where r(x) = (-1) k; the present
definition, however, is consistent with the usual Walsh-Paley ordering of the Walsh
system.) Addition of points in [0, 1) is always assumed to be modulo 1.

R(x) will denote the sum of the Rademacher series Eﬁozo ck r'k(x). We suppose
in the sequel that this series is absolutely convergent, for in the contrary case R(x)
is not continuous, and thus certainly not differentiable, at any point of [0, 1).

For k > 0, define Ry =cpq) +Cpyp + . (The size of R plays an important
role in the monotonicity of a Rademacher series; see, for example, [1, pp. 5-7].)

By D" R(x) and D, R(x) we denote the upper and lower right Dini derivates of
R(x), respectively; by D" R(x) and D_R(x) we denote the upper and lower left de-
rivates. The function R(x) is differentiable at a point if all four derivates at that
point are equal and finite.

Finally, if C is a subset of [0, 1), -C denotes the set of points 1 - x for which
X belongs to C.

2. GENERAL DIFFERENTIABILITY PROPERTIES

In many cases, Rademacher series satisfy a “zero-one” law, that is, a particu-
lar condition holds either almost everywhere on [0, 1) or almost nowhere. This
phenomenon is also observed with respect to the differentiability of Rademacher
series.

LEMMA 1. Let A be a subset of the veal line, and let C be a countable dense

set. Define B = U (A + c), where the union extends ovev ¢ € C. Then either B or
its complement has Lebesgue measure 0.

Proof. We may suppose that m(A) > 0. If m(B') # 0, Steinhaus’s theorem im-
plies that the difference set B' - A contains an interval and therefore a point ¢ of
C. Writing ¢ =b' - a, where b' € B' and a € A, we then have the relation
b' =a+c € B. This contradiction establishes the lemma.

THEOREM 1. Define A = {x: R is differentiable at x}. Then
(i) A is demse if A is not empty;
(ii) A has measure 0 or 1.

Proof. Suppose that xg € A, and let @ be a dyadic rational in [0, 1). The addi-
tion of a to x( affects only finitely many of the dyadic digits of x(, and therefore
lim, _, o [R(xy + @ +h) - R(xy + @)]/h exists and equals R'(xy). Since « is arbi-
trary, it follows that A + a is contained in A for every dyadic rational &, and

hence Ua (A +a) c A. Thus A is dense, and by the previous lemma, either A or
its complement has full measure in [0, 1).
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If R(x) is a finite sum, then R(x) is a step function whose intervals of constancy
have dyadic rational endpoints. Thus the series is differentiable except on a finite
set, and A in this instance is of the second category. More generally, if the coeffi-
cients of R(x) are eventually of the form ¢, = A/2k*1  say for k > N, then R(x) is
piecewise linear: for in this case, R(x) is equal to a translate of the function
A(1/2N - 2x) on each dyadic subinterval [i/2N, (i + 1)/2N). (One shows this in the

o0
same way one proves that 2y _g AZ‘(kH)rk(x) converges pointwise to A(1 - 2x);

see [19].) Thus in this case also, R'(x) exists except at a finite number of points,
and A is again a set of second category.

We show next that these are the only instances in which A can be of the second
category in [0, 1).

LEMMA 2 ([7], [10]). Let f be a finite, real-valued function on [0, 1]. Let D
denote the set of points of discontinuity, and A the points of diffeventiability of £. If
D is dense in [0, 1], then A is of the fivst category.

THEOREM 2. Suppose that R(x) is not piecewise linear (equivalently, that the
coefficients of R(x) ave not eventually of the form A/2K). Then A is of the first
category in [0, 1).

Proof. In view of the preceding lemma, it is enough to show that the set D of
points of discontinuity of R(x) is dense. By [13, p. 373], D is a subset of the dyadic
rationals in [0, 1). If D is finite, then R(x) is continuous at p/2k for all sufficiently
large values of k and all odd p; hence cx = Rx eventually ([13, p. 374]). This im-
plies that ¢ = A/2k (with A possibly 0) for all sufficiently large k, contrary to
hypothesis.

Thus D is infinite and therefore contains an infinite sequence of dyadic rationals
q q
Pk /2 X, where each p, is odd. However, by [13, p. 374], it follows that p/2 X be-

q
longs to D for each q and all odd values of p. The set of all such p/2 k, with p
odd, is evidently dense in [0, 1), and therefore the same is true of D.

COROLLARY 1. The set A is of second category if and only if the equation
ci = Ry is satisfied for all sufficiently large K.

It follows from an example in [1] that A may be nonempty although only of
measure 0. Theorem 1, however, guarantees that A is at least countably infinite.
One may ask whether in such instances A can be uncountable. (A category argu-
ment provides no information, since A is of first category.)

BalaSov has shown in [1] that if R(x) = 27 ¢,,r,(X) possesses a derivative at
even a single point, then the sequence {2"c,} tends to a limit and

R'(x) = -2 lim 2"l ¢

wherever the derivative exists. Thus if R'(x) is nonzero at a point, the coefficients
are eventually either positive or negative. However, much more can be said about
the coefficients in this case.

PROPOSITION 1. Suppose that R'(x) exists at at least one point, and set
A =1im 2"¢,. Then the sequence Cn} ts eventually either strvictly decveasing ovr
strictly incrveasing to 0, accovding as A >0 or A <0.

Proof. It is enough to prove the result for A > 0. By [1, p. 2], R(x) is differ-
entiable at xy = 1/3. Since the nth dyadic digit of xy is 0 if n is odd and 1 if n is
even, we see that
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where I(x, h) denotes the incrementary ratio [R(x + h) - R(x)]/h. The right side of
this expression is negative for all sufficiently large values of n, and thus the in-
equality c,, > c,;+; holds eventually.

Similarly, R(x) is differentiable at Yo = 2/3. The nth coordinate of yg is 0 or
1, according as n is even or odd; hence for all sufficiently large n,

I(yg, 2°27°1) = 220%2(_c, | +cpp)

is negative. It follows that c,,_; > ¢, for all large n, which, together with the
previous inequality, implies that {c,} is eventually strictly decreasing.

For the case where A = 0, the coefficients need satisfy no such monotonicity
condition: consider, for example, the sequence {c,} defined by c, = (-1)*/n2™.

3. BOUNDED pth VARIATION

McLaughlin [13] has given a sufficient condition for a Rademacher series to be
of bounded pth variation. The following result shows that differentiability of the
series at even a single point is enough to guarantee bounded pth variation.

PROPOSITION 2. Suppose that R'(x) exists at at least one point. Then R(X) is
of bounded pth variation for every p > 1.

Proof. By [1], A =1lim 2" ¢, exists and is finite. First suppose that A # 0; then
lim |cpyy /en| = (1/2) lim |22 ¢y /27 ¢, | = 1/2. Hence, by the ratio test, the

series 27 2n/p ’cnl converges for every p > 1, and it follows from [13, p. 376] that
the pth variation of R(x) is finite.
Assume now that A =0, and consider the series R* =R + H, where

H(x) = 2o 2'(n+1)rn(x). Since R* and R are differentiable at precisely the same set
of points, it follows from the preceding paragraph that R*(x) is of bounded pth vari-
ation, for each p > 1. Thus R(x) itself is of bounded pth variation, since H(x) is
linear.

COROLLARY 2 (see [4, p. 65]). Suppose that R(x) possesses a derivative at at
least one point. Then 27 [cnly < e for every v > 0.

4, THE DARBOUX PROPERTY

A finite function f possesses the Darboux property, or is continuous in the
Darboux sense, if in each interval [a, b] it assumes every value between f(a) and
f(b).

PROPOSITION 3. Suppose that {cn} contains infinitely many nonzero tevms.
Then

(i) a necessary and sufficient condition for a Rademacheyr sevies
R(x) = 2J c,Tp(X) to be continuous in the Darboux sense is that c, < Ry for every n;

(ii) more genevally, if cn <R, for all n > N, then R(X) has the Davboux prop-
erty on each dyadic interval |i/2N, (i + 1)/2N).
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Proof. The proof of the sufficiency of the condition in (i) is essentially the same
as the proof of Riemann’s result on rearrangements of conditionally convergent
series. To prove the necessity, suppose that cx> Rk for some K, and let
W = {R(x): x € [0, 1)}. One easily verifies in this case that W cannot contain the
interval

(CO + e + CK_l - CK +RK, CO + e 4+ CK_l + CK - RK)
and therefore cannot be continuous in the Darboux sense.

N-
Part (ii) is obvious because the function Z‘/nzol ¢, ry(x) is constant on dyadic
intervals of order N.

The proposition is not true if {cn} is eventually 0O (consider the series
R(x) = - ro(x)). However, if ¢, = 0 for all n > N, the series evidently has the
Darboux property on dyadic intervals of order N,

We show next that a Rademacher series with the Darboux property cannot be
differentiable at even a single point unless it is piecewise linear.

LEMMA 3. If {c,} is not eventually 0 and lim 2"c, = 0, then c, > Ry, holds
Jor infinitely many n.

(o]
Proof. Set oy =2X |cy |; then |R. | < 20y .. 4; @27 <27 max {a: k>n}
for each n, and thus {2"R,} convergesto 0. For i=0, 1, ---, 2" - 1, define
I} =[i2™, (i+1)27"), and let W denote the set of values assumed by R(x). For
each n > 1, it is easily verified that R(I;l) is contained in
[80 Cogt-ote, jCh g - Rn_1 » €gCg tmt e C +Rn_1],

n- n-1

where g5 = +£1. It follows that W is contained in the union of 2" intervals, each of
length 2R, ). Thus m(W) < 2n*lR__, for every n > 1, and hence the measure of
W is 0.

If the inequality c, < R, is satisfied eventually, the previous proposition im-
plies that R(x) has the Darboux property on a (dyadic) subinterval of [0, 1). In par-
ticular, W is of positive measure. This contradiction establishes the lemma.

PROPOSITION 4. Suppose that c, < R, for all sufficiently lavge values of n.
Then R(x) possesses a derivalive at no point of [0, 1) unless it is piecewise linear
(that is, unless cn = Ry eventually).

Proof. If ¢, =0 for all large n, R(x) is evidently piecewise linear. Thus sup-
pose that infinitely many ¢, are nonzero. If R'(x) exists at some point, then
A =1im 2™ ¢, exists, and the previous lemma shows that A cannot be 0. Define
R*(x) = 27 c*ry(x), where c} = c, - A/2"; then {2Pc*} converges to 0, and
ck¥<ekyy tckin + -+ for all sufficiently large n. It follows from Lemma 3 that
Cp = A/2™ eventually, and hence that R(x) is piecewise linear.

COROLLARY 3. Suppose that R(x) is continuous in the Darboux sense. Then
eithev A is empty, ov it has a finite complement in [0, 1).
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5. LUSIN’S CONDITION (N)

A finite function satisfies condition (N), or is an N-function, if it maps sets of
measure zero into sets of measure zero. (For a discussion of condition (N), see
[17, pp. 224-228].) The importance of this condition is seen in the following result.

PROPOSITION 5. Let R(x) be an absolutely convevgent Rademacher sevies.
Then a necessary and sufficient condition for R(X) to presevve measurable sets is
that R(x) satisfy condition (N).

Proof. First suppose that R(x) is an N-function. Let E be measurable, and

write E = L'Fn U C, where each F, is closed and C is a nullset. R(C) is
measurable, since it has zero measure. Also, each R(F,) is a Borel set, since R(x)
is continuous except possibly on a countable set. Thus R(E) is measurable.

Conversely, if R is not an N-function, there is a nullset E for which R(E) has
positive outer Lebesgue measure. Thus R(E) contains a nonmeasurable subset H.
If we set C =R-!(H) N E, it follows that C is measurable but R(C) = H is not.

LEMMA 4. If {2" Rn} is bounded, then R(X) is an N-function.

Proof. By multiplying R(X) by a constant if necessary, we may assume that
2"R,, < 1/4 for each n, and hence that 2R, < 1/27"1. We then have the relations
m(R(I})) < 2R, .1 < 1/2" = m(I}), where I}, is defined as in the proof of Lemma 3.

It follows that R(x) does not increase the measure of open sets, and this in turn
implies condition (N).

COROLLARY 4. Suppose that {2%c_} is bounded. Then R(x) is an N-func-
tion.

Proof., Write 21 lcnl =a,, and let M be such that ¢, <M for each n. Then
[+.e]
|Rn| < Zgent1 @ /25X < M/2", and hence {2"R,} is bounded.

PROPOSITION 6. If R(x) possesses a devivative at at least one point, then
R(x) satisfies condition (N).

The hypothesis in the previous proposition, while sufficient to ensure condition
(N), is not necessary. Consider, for example, the sequence defined by ¢y = 1/22k+2

and czpy; = 1722511 for k > 0. Since lim 2%c,, does not exist, the corresponding
series possesses a derivative at no point.

6. DINI DERIVATES

It is well known (see, for example, [9, pp. 25-34]) that a Rademacher series is
almost everywhere convergent if and only if its sequence of coefficients is square-
summable. However, if the series is nonabsolutely convergent, the set of points of
divergence always forms a residual set (though possibly of measure zero). In fact,
more can be said in this case about the points where the series diverges: except on
a set of first category, the upper and lower limits of the sequence of partial sums
are +o and -, respectively. :

A similar phenomenon occurs at the points of nondifferentiability of a Rade-
macher series: at almost all such points, and on a residual set in [0, 1), the upper
and lower derivates are infinite and of opposite sign. More precisely, we have the
following result.
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THEOREM 3. Suppose that R(X) is not piecewise linear, and let
K = {x: D' R(x) = D"R(x) =+, D, R(x) =D_R(x) = -

denote the set of “knot-points” of R(x). Then K is residual in [0, 1). Further, if
R(x) is diffeventiable only on a set of measure 0, then K has measure 1.

Proof. Let E represent the set of points where R(x) is continuous and at least
one of the four derivates is infinite. By [18, p. 189], E is residual and hence un-
countable; thus there exists a dyadic irrational z € E for which at least one of
D*R(z), D-R(z), D, R(z), and D_R(z) is infinite. With no loss of generality, suppose
that Dt R(z) = +; then plainly D* R(z + o) = +« for each dyadic rational «. Define

o]

K" = {x: D'R(x) =+ }; then K" =1 |,,_; K|, where K] denotes the set
{x: D*R(x) > n}. Since K' is dense, so also is each K}, .

By [20, p. 8], each K/ can be written in the form G U Ky, where G is a Gg-
subset of the points of continuity of R(x) (thus G contains only dyadic irrationals)
and K is a subset of the points of discontinuity. Since each K} contains the set
T(z) = {z + @: @ is a dyadic rational} and since z + a is dyadically irrational for
each such «a, it follows that G contains T(z). Hence G is a dense Gg-set and is
therefore residual; thus K} is residual. It follows that K" is itself residual.

One easily verifies that if x is not dyadically rational, then r,(-x) equals
-r (x) for every n, where -x denotes the point 1 - x. By [15, pp. 194, 195], at each
point x of continuity of R one may calculate each of the derivates by taking the ap-
propriate limit over sequences of dyadic rationals tending to 0. If {h,} is such a
sequence and x is dyadically irrational, then

R(-x +h.) - R(-x R(x - h,) - R(x
D*R(-x) = lim sup - hn) (-x) = lim sup(— ( hn ))
hp — 0+ n hy, — 0+ n
R(x - h,) - R(x) R(x + h,) - R(x)
= - lim inf h = - liminf { - I
h, — 0+ n h,—0- n
R(x +h,) - R(x)
= lim sup lil = D R(x).
hn——> 0- n

Thus D' R(-x) = D" R(x) for every dyadic irrational x, and hence
K™ = {x: D"R(x) =+x}

is also residual.

Now suppose that R' exists only on a set of measure zero. By [17, p. 271], one
of the following four relations holds for R(x) (or indeed for any finite function) at
almost every x:

(1) D*R(x) =D"R(x) =+», D ,R(x) =D_R(x) = -« ;

(2) D'R(x) =D_R(x) # =, D,R(X) =-w, D R(x)=+w;
(3) D,R(x) =D R(x) # £, D'R(x) =+, D_R(X) = -}
(4) D*R(x) =D, R(x)'=D-R(x) = D_R(x) # +.
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Let A, A3, A4 denote the set of points where (2), (3), and (4) hold, respectively.
Each of these sets is evidently invariant under translation by dyadic rationals, and
thus each has measure 0 or 1. Since A4 is the set A, it follows by hypothesis that
m(Ay4) = 0. If A, has measure 1, the set A, N (-A3) also has full measure in [0, 1);
since DTR(-x) = D" R(x) if x is dyadically irrational, we conclude that (2) cannot
hold at any point of A, N (—AZ), a contradiction. Thus A, has measure 0, and we
show similarly that A3 is a nullset. It follows that condition (1) holds at almost
every point of [0, 1).

In particular, the set K4 = {X: D+R(x) = —oo} is nonempty and therefore dense.
Since the lower derivate has the value DR(x) = inf {D,R(x), D_R(x)}, it follows from
[5, p. 74] that K = {x: DR(x) = -w } is residual. Write K =K; UK_, where
K_= {x: D_.R(X) = -w }. Arguing as before, we conclude (since D;R(-x) = D_R(x)
for dyadically irrational values of x) that both K, and K_ are residual. It follows
1[:hat K, being the intersection of K*, K-, K,;, and K_, is itself a residual set in

0, 1).

Finally, suppose that R' exists almost everywhere in [0, 1); with no loss of
generality, we may assume that lim 2"c_ > 0. To conclude the proof, it is enough
to show, as above, that the set K, is nonempty. We first note that if a point x has a
0 for its (n + 1)st coordinate and has its kth dyadic digit equal to 1 for
n + 1 <k < m, then the incrementary ratio I(x, 2-™) is equal to

—Zmﬂ(cn - (ept] + -+ Cm-1)) -

We may assume that ¢, > R, for infinitely many n, since in the contrary case,
Proposition 4 implies that the derivative exists at no point (R is by hypothesis not
piecewise linear).

Let N be such that ¢, > 0 for every n > N. To construct a point w in K, we
first choose n; to be the first integer exceeding N for which cnl > Rnl . Let w

have first coordinate 0 and kth coordinate 1, for 2 <k <n,. Next choose n, so
that Cn, > Ry, and so large that an(cnl - Rnl) > 2; set wy 43 =0and w = 1 for
n; +1 <k <n,. Proceeding by induction, if n_, has been determined, we choose

n4 sufficiently large so that

c, > R, and 2 mtl(c

-R_. ) > m+1;

m+1 m+l " Om

set w, 41 =0 and w, =1 for each k (n, +1 <k <n, ;). For each m, we then

have the relations

-n n_ +1
(w,2 ™) =-2m (cnm_1 - (cnm_lﬂ + .- +cnm_1))

n_+1
<-2™ (e -R_ ) <-2m.
m

-1 Mn-1

It follows that D, R(w) = -, and therefore K, is nonempty. This completes the
proof of the theorem.
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7. FUNCTIONS OF BOUNDED VARIATION

In this section, we answer a question raised by McLaughlin in [13, p. 377]. We
prove that a Rademacher series that is differentiable a.e. on [0, 1) is necessarily
of bounded variation. (This is an analogue for the Walsh system of the correspond-
ing result for lacunary trigonometric series, proved by McLaughlin [12].) We begin
with a number of preliminary results.

LEMMA 5. Suppose that {(x) is vight-continuous on [0, 1) and that £(x) has
total variation M on a dense subset E. Then {(x) is of bounded variation on [0, 1)

and Vjf=M.

Proof. Let 6> 0, and consider a partition 0 = xg <x; <+ <x, <xp;1 =1 of
[0, 1). For i=0,1, -+, n, choose h; € E so that x; < h; <x;,; and
|£(h;) - £(x;)| < 6/21. Then, for each i,

[1(xi1) - £(x) | < [fxi41) - £hys)) | + [£(hyy ) - £(h) | + [£(hy) - £(x) |

< |fhy, ) - £(hy) | + 3672171,

and thus
n-1 n-1
20 txiy1) - £(x)| < 27 |flhyy) - £(hy) | +36 < M+ 36.
i=0 i=0

Because 6 is arbitrary, we conclude that Véf < M. Since the variation of f over
[0, 1) is at least M, the result follows.

cQ
PROPOSITION 7. For a Rademachey series R(x) = Ek:o cx ri(x) and each
positive integer N,

2N_2 N-1
% 27 |R(i+1)/2Y) - RG/2N| = 2 2% e, - (epyy + -+ + eny)]
i-:O n:O

(wheve, for n =N - 1, we set c, - (cpr] + - +en-1) = eN-1)-

Proof. First note that in the left member of the expression above, R may be

N-1
replaced by Ry, where Ry(x) = Ekzo crri(x). For 0 <n <N - 1, let D, denote

the set of dyadic rationals of the form p/2n+1 , With p odd. If @ € D,, then
ri(@) - ri(a - 1/2N) is 0, -2, or 2, according as 0 <k <n- 1, k =n, or
n+1<k<N-1, Thus

2N_2 N-1
3 TR+ 10/2Y - RG/2Y| = 1 D |Rp(@) - Ryla - 1/2M)]
i=0 n=0 aeDy,
N-1
=35 D 2fen- (e o teyy)|
n=0 a €D,
N-1

1

Eo 2™ |e, - (epyp + - +eno) ]
n=
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. . N o0 .
In view of this result, the sequence {Enzo 2" |cn - (cppqp + o +ey) [} N=o 18
always nondecreasing: successive values of N represent the variation of R(x) over

larger sets of dyadic rationals. Appealing to Lemma 5, with E taken to be the set of
dyadic rationals in [0, 1), we have the following result.

COROLLARY 5. The total variation over [0, 1) of a Rademacher sevies R(x)
is given by
N
V(I)R(X) = 2 lim sup 2, 2 ]cn - (an + .o +cN)| .

N —ow n=0
Thus R(x) is of bounded variation on [0, 1) if and only if

N

lim sup 27 2% |c, - (cpp + - +op)| < .
N —ow n=0

For the case where each ¢, is nonnegative and ¢, > R for every n, the sum

N N
EH:O 2n Icn -(cppp + oo + cN)l reduces to En:O ¢, . Thus the total variation of

R(x) in this case cannot exceed 2M, where M = E::O ¢, - Since R(0) =M and
limaio R(1 - €) = - M, it follows that the variation exceeds 2M if there exist a pair
of points x <y for which R(x) < R(y). We have thus shown the following.

COROLLARY 6 (compare [1, p. 5]). Let {c,} be a nonnegative sequence such
that c, > R, for every n. Then R(x) is decreasing on [0, 1).

The next lemma, which describes the set of points where the incrementary ratio
satisfies a “favorable” estimate, is the main tool required to show that a Rademacher
series possessing a derivative almost everywhere is of bounded variation.

LEMMA 6. Suppose that R'(x) exists a.e. on [0, 1). For n> 0, define sets

R(X+hl)1—R(X)| S |D|+ 1}’

E, = {xe A: 0 <h< 2™ implies

n

where D = lim 20+2 cn . Let v,y denote the numbeyv of odd integevs j fov which the

interval [j/2™71, ( +1)/2°%Y) contains neither points of E, nor points
x*=x+1/22%  with x € E,, such that

< 3(|pl+ ).

IR(X* + 1727ty - R(x¥)
1/2n+1

Then the sequence {vyn}m=) is bounded.

Proof. The value of the derivative, wherever it exists, is equal to -D; thus A is

the union of the sets E,. Since Eg C E; C -, we see that lim m(E,)) = 1. Choose
N so that m(Ey) > 3/4.
() For i=0, 1, ---, 2" - 1, define I! = [i/2%, (i +1)/2") and set El =E_nN1i.

Then there exists an ever integer i such that m(E}\I) > 1/2N*1: for otherwise,

writing
ey =( U E}\I)u( U Ei\l)

i even i odd



ON THE DIFFERENTIABILITY OF RADEMACHER SERIES 331

we would obtain the inequality m(Ey) < 2N-1 .
of Eyn.

We next show that when i and k are even, E and Ellﬁl have identical measure.
First note that if i is even, each point of I1 has 1ts Nth dyadic digit equal to O.
Also, if 0 <h < 1/2N the Nth coordinate of h is 0. Therefore

1 1_3 3
NI +§ =7 contrary fo the choice

R(x +h) - R(x) = R(y +h) - R(y),

where x € I%\I and vy = x + (k - i)/2N € Illil. (This is clear, since x and y have iden-
tical developments from the Nth digit on, and since the first N - 1 terms cancel in
each of the differences R(x + h) - R(x) and R(y + h) - R(y).) It follows that x be-
longs to EN if andonly if x +(k - i /2 belongs to E11§ Thus, if i and k are even,
Ei\l and Elﬁ are translates of each other by a dyadic rational, and thus they have
equal measure.

Consider now the following cases, where j is assumed to be odd.

(II) I. N+ is the right half of Ii\h with i even. From the previous remarks,
m(E ) > 1/2N+l for every even value of i, and therefore EN has nonvoid intersec-

tion with I Thus IN 41 contains points of Ey.

1
(II1) INJrl is the right half of I}, where i is odd and such that EN is nonempty.

If E _ﬂ 1 341 1s not void, then INJrl contains points of En. If EnN I{\Hl @, fix

x € Ey and set x*=x + 1/2N*1: thus x* belongs to IN+1 We therefore have the

relation

IR +1/2D) - R(x + 1/2NT])

‘R(x* +1/2N* 1y _ R(x¥%)

1/2N+l 1/2N+1
< 9 R(x + 1/2Y) - R(x) R(x) - R(x + 1/2N*1)
> 1/2N 1/2N+1 ' '

Since x € Ep;, the second term in the sum is less than or equal to |D| + 1. Also,
since R is continuous at x, and since |I(x, h)| < [D[ + 1 for every h

(0 < h < 1/2N), the first term in the sum is not greater than 2( IDI + 1). Hence x*
satisfies the inequality in the statement of the lemma.

In view of (I} and (II), we conclude that y N4 iS no greater than the number of
intervals Ilﬁ where 1 is odd; that is, yny) < 2N-1  (We have in fact shown, using
(I0), that ypn.q cannot exceed the number of intervals I%\I such that i is odd and Ei\l
is void. However, for our purposes the weaker estimate is sufficient.)

We show next that yqy,., cannot exceed 2N-1_ In the remainder of the proof, i
denotes an o_dd positive integer; thus the interval I?{\I +2 is either the second or fourth
quarter of Iy (where i may be even or odd).

(Iv) If\HZ is the second quarter of I1 (i even or odd). Note that I{\Hz is the
right half of Ilz\TlJrl Arguing as in (I), we see that m(ElliHl) > 1/2N+2 for all even k,

and thus Ii]\l+2 must meet Eqgy ;.

(V) 1 N+2 is the fourth quarter of I}\T (i even). Since m(E ) exceeds 1/2NJrl
there are points of Ey;, and therefore points of Eyy,;, in either the third or fourth
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quarter of I%\I. If some points lie in the fourth. quarter, then I{\I +2 contains points of
Enyp - K they belong to the third quarter of qu, we argue as in (III) to conclude that
I%\HZ contains points of the form x** =x + 1/2N*2 | with x € Ey,q » for which
[1(x**, 1/2N%2)| < 3(|D| + 1).

It follows from (IV) and (V) that the only intervals IN 2 that can be counted
among the vy, , “bad” intervals are the fourth quarters of 1i Nn» Where i is odd.
Hence ypn4, cannot exceed 2N-1

Proceeding in this fashion, we conclude that y < 2N-1 for every n > N. This
completes the proof.

THEOREM 4. If R'(x) exists almost everywheve on [0, 1), then R(xX) is of
bounded variation.
Proof. By adding to R(x), if necessary, a suitable multiple of the series

0
Enzo g-(nt1) r,(x), we may assume that D = lim 2°*2 ¢, > 0. With no loss of gen-

erality, we shall suppose that ¢, > 0 for every n. In view of Corollary 5, it suffices
to show that

n

L = lim sup 27 Zklck—(ckJrl +-.-+cn)] < .

n—o k=0

By definition, the term in this sum for k =n is 2" c; thus, since lim 2" C,
exists and is finite, we may ignore this term in estimating L. Next, for

0 <k <n - 1, observe that 2k lck - (Cpqy +-- F | can be expressed as

ok-(n+2) |1(x, 1/2n+1)| where x (which depends on k) is any point having a 0 in co-
ordinates 1, 2, ,k+1 anda 1 in coordinates k+ 2, -, n, n + 1. Note that each

such x belongs to a dyadic interval Iillil with odd index j, , and that any point in

IJk+1 may be chosen for x. It is clear that each k corresponds to a unique j, and
that different values of k give rise to different values of j, .

For all but at most y_,; values of j; (and therefore of k) we can, by the pre-

ceding lemma, find an x € I} for which |I(x, 1/2°*1)| <K, where K = 3(|D| + 1).
Let I denote the set of indices k for which this inequality holds, and let M be a
bound for the sequence {yn}.

For each k in the complement I' of I, we have the inequality
2k Jey - (Cepq + 0 e | < 2KRy g

because the sequence {2]‘ Rk_l} is bounded (by the proof of Corollary 4), say by C,
we obtain the inequality

2 ey - (exry + - +en)| < C

for each k € I'. It follows that

n-1

22k|ck—(ck+1+---+cn)|=E+E E n+2)K-E-Z>< 7 K+MC.
= I ! : Ir
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Since the constants K, M, and C are independent of n, we conclude that L is finite
and therefore that R(x) is of bounded variation on [0, 1).

If R(x) is differentiable almost everywhere on [0, 1), Proposition 6 and [8, p.
188] imply that the series assumes each of almost all of its values at most countably
many times. However, the previous theorem and [17, p. 279] yield a stronger result
in this case.

COROLLARY 1. If R'(x) exists a.e. on [0, 1), then almost all of the level sets
of R(x) ave finite.

8. FURTHER RESULTS ON BOUNDED VARIATION

McLaughlin [13, p. 376] has shown that 2J 2° |c,| < « is a sufficient condition
for R(x) to be of bounded variation. The following result improves on this.

THEOREM 5. Suppose that R(x) is diffeventiable at at least one point. Then a
necessary and sufficient condition for R(x) to have finite total variation on [0, 1) is
that

[>e]
27 2% e, - Ry| < .
n=0

Proof. By assumption, lim 2" ¢, = A exists and is finite; it follows that
lim 2" R,, exists and equals A. Write

N N
I’IZ:>0 2" |cn - (cn+l T +CN)| - nZ=>O 2" I(cn - Rn) +RN|
N
< 20 2% e, - R |+ 2V Ryl
n=0

An application of Corollary 5 now yields the sufficiency of the condition.

To prove the necessity, we write

N N
E ancn—Rnl = Z; 2n|cn-(cn+1+---+cN) -RNI
n=0 n=0
N
< 27 9 Icn -(eppp + 7 +cN)| + gN*l IRN|
n=0

and appeal once again to Corollary 5.
In particular, it follows that the series 27 an r (x) is of bounded variation if and
only if 0 <a < 1/2.

For the case where the derivative is 0 wherever it exists, we obtain an explicit
representation for VéR(x).
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PROPOSITION 8. Suppose that lim 2" c, = 0. Then the total variation of R(x)
on [0, 1) is given by

o0
ViR(x) = 2 23 2" |c, - R,|.
n=0

This equation is valid even if the total vaviation is infinite.

Proof. The hypothesis evidently implies that lim 2" R, = 0. In view of Corol-
lary 5 and the proof of sufficiency in the preceding theorem, we see that

[>o]
V(l) R(x) <2 20 20 lcy, - Rp|. The reverse inequality follows from Corollary 5
and the proof of necessity in Theorem 5.

The following representation for V(l) R(x) is based on the work of V. A. Matveev
[11].

THEOREM 6. (i) If R(x) is of bounded variation on [0, 1), then

LIR(x + 1) - Rx)

o dx .

Vé R(x) = lim
h—0 Y0

1
(i) If lim sup, _, S IR(X + hl)l - R(x)
0

finite total variation on [0, 1).

dx exists and is finite, then R(x) has

Proof. Part (i) follows from [11, p. 136]. (The required hypotheses are met,
since R(x) is right-continuous.) To prove part (ii), let

B
Dg = lim sup S II(X, h)| dx;
h—0 0

then Dg <D <« for 0 <B < 1. If B is not dyadically rational, we may apply [11,
Theorem 3, p. 136] to conclude that R(x) is of bounded variation on [0, 8] and
Vg R(x) = Dg. It follows that R(x) has finite total variation on [0, 1).

The following sufficient condition for V(I)R(x) to be finite is often more easily
verified than the condition given in Theorem 5 (for example, if ¢ = 1/n% 20 where
a > 0).

PROPOSITION 9. Suppose that c, | 0 and that the sequence {2"c,} is even-
tually nonincrveasing. Then R(X) is of bounded vaviation.

Proof. Write ¢, = £,/2™, where the sequence {sn} is eventually nonincreas-
ing. Then, for all sufficiently large n,

R, = 2 cp < ey(1/20tl pa/an42 4.y =g /on = ¢
k=n+1
Therefore R(x) is piecewise monotone and thus of bounded variation.

If R'(x) exists almost everywhere, Theorem 4 shows that R(x) is the difference
of two monotone functions, though not necessarily monotone itself. ¥. M. Filipczak
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[6] and A. M. Bruckner, J. G. Ceder, and M. L. Weiss [3] have shown that every
function continuous on a perfect set must be monotone on some perfect subset. For
a certain class of Rademacher series, we can prove a stronger resuit.

THEOREM 7. Suppose that R(x) is of bounded variation on [0, 1) and that
A =1im 2" ¢, # 0. Then theve exists a pevfect subset P of [0, 1), of positive meas-
uve, on which R(x) is continuous and stvictly monotone. Move genevally, for each «
(0 < a < 1), there exists a perfect set P, of measure exceeding o such that the ve-
striction of R(x) to Py, is continuous, and Py is the finite union of sets on each of
which R(X) is strictly monofone.

Proof. We prove the result for A > 0. For n > 1, define sets
= {x € A: 0 <h< 1/2" implies I(x, h) < 0};

then {An} is an expanding sequence of sets whose union is A. Given 0 <o <1,
choose N = N(a) so that m(An) > o, and let P, be a perfect subset of Ay of
measure greater than «. Since Py c0n51sts of dyadic irrationals, R(x) is continu-

ous on Pa Let AN be the part of An that meets the dyadic interval IN, for
i=0, 1, 2N - 1. It is clear from the definition of Ay that R(x) is strictly de-
creasing on each nonvoid AN, and therefore P, is the union of finitely many sets
on each of which R(x) is strictly monotone. Since Ay has positive measure, we
see that m(A ) > 0 for some value of k. Thus take P to be any perfect subset of
A11§I of po;altlve measure.

Finally, while this theorem shows that a Rademacher series of bounded varia-
tion is monotone on certain sets of positive measure, the series need not be mono-
tone on any subinterval of [0, 1). Consider, for example, the series R(x) with co-
efficients given by

Cont1 = 1/2%7FL and ¢, = 1/23072 + 17220

for n > 0. Here, the function R(x) is of bounded variation. (To see this, write

E(cn rnx)+22 nr (x) = R¥x) + H(x),

and observe that R*(x) is of bounded variation since its coefficients ci satisfy the
condition 27 2P c:; < «.) Evidently, R(x) satisfies the hypotheses of Theorem 1.

However, since the condition c, > R, does not hold eventually in the present
example, R(x) cannot be monotone on any dyadic subinterval of [0, 1). This follows
from the next result, whose proof is a straightforward modification of the proof of
Theorem 2 in [1].

THEOREM 8. Let R(x) = 2 c, (), and let N be a positive integer. For
i=0,1, -, 2N~ 1, define 1y, = [i/2N, (i + 1)/2N). Then the following statements
arve equivalent:

(i) R(x) is decreasing on I%\I for some value of i
(ii) R(x) is decreasing on I%\I Jor every value of i,

(iii) ¢, > 0 and c, > R, for every n> N.
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