SUMMING SEQUENCES FOR AMENABLE SEMIGROUPS

Steven A. Douglass

In a wide variety of settings, the special set σ_n = $\{0, 1, 2, \cdots, n-1\}$ enters into computations involving the additive semigroup Z^+ of nonnegative integers. In this paper, we identify the significant mathematical properties of the sequence $\{\sigma_n\colon n=1,\,2,\,\cdots\}$, and we show that if G is a countable, cancellative, amenable semigroup, then there exists a sequence $\{S_n\}$ of finite subsets of G possessing exactly these properties. In Section 3, we examine some examples and obtain miscellaneous properties.

1. PRELIMINARIES

Let G be a semigroup, and let m(G) denote the Banach space of bounded, real-valued functions on G endowed with the supremum norm

$$\|f\|_{\infty} = \sup \{|f(g)|: g \in G\}.$$

We shall also be interested in the subspace $\ell_1(G)$ consisting of the functions f in m(G) with finite ℓ_1 -norm $\|f\|_1 = \sum \{|f(g)| : g \in G\} < \infty$. Endowed with the convolution

$$(f_1 * f_2)(g) = \sum \{f_1(h')f_2(h''): h'h'' = g\},$$

 $\ell_1(G)$ is a real Banach algebra.

A weight on G is a nonnegative function ϕ in $\ell_1(G)$ having finite support and such that $\|\phi\|_1 = 1$. A simple weight on G is a weight ϕ that is constant on its support; that is, ϕ is a simple weight provided $\phi = |A|^{-1}\chi_A$, where A, |A|, and χ_A denote the support of ϕ , the number of elements in the support, and its characteristic function. We denote the collection of all weights by Φ , the collection of all simple weights by Φ_s . For simplicity, given a g in G, we denote by g the simple weight with support $\{g\}$.

A mean on G is a real linear functional Λ on m(G) such that for each f in m(G),

$$\inf \big\{ f(g) \colon g \, \in \, G \big\} \, \le \, \Lambda(f) \, \le \, \sup \big\{ f(g) \colon g \, \in \, G \big\} \, \, .$$

Clearly, a mean Λ is a positive linear functional such that $\Lambda(1) = 1$, where 1 denotes the function 1(g) = 1 for all g in G. If g is in G and f is in m(G), then gf and g are functions in m(G) defined by the equations

$$g_{f(h)} = f(gh)$$
 and $f^{g}(h) = f(hg)$,

respectively. A mean Λ on G is said to be *left* [right] invariant if $\Lambda(^gf) = \Lambda(f)$ [if $\Lambda(f^g) = \Lambda(f)$] for all g in G and all f in m(G). Finally, G is said to be amenable if a left invariant mean and a right invariant mean exist on G.

Received May 31, 1972.

Michigan Math. J. 20 (1973).

2. SUMMING SEQUENCES

M. M. Day [1] has proved that G is amenable if and only if there exists a net $\{\phi_{\alpha}\}$ in Φ such that, for every g in G,

$$\lim \phi_{\alpha} *g - \phi_{\alpha} = \lim g *\phi_{\alpha} - \phi_{\alpha} = 0,$$

where the limit is taken in either the weak or the uniform topology on $\ell_1(G)$. We shall use this result, together with the following two lemmas of I. Namioka [2], to prove the existence in each countable, cancellative, amenable semigroup G of a sequence $\{S_n\}$ of finite subsets of G such that

(i)
$$S_n \subset S_{n+1}$$
 for $n = 1, 2, \dots,$

(ii)
$$G = \bigcup_{n=1}^{\infty} S_n$$
,

(iii) for each g in G,
$$\lim_{n\to\infty} \left| S_n g \cap S_n \right| / \left| S_n \right| = \lim_{n\to\infty} \left| g S_n \cap S_n \right| / \left| S_n \right| = 1$$
.

A sequence $\{S_n\}$ of finite subsets of G having these properties will be called a *summing sequence* for G. Elsewhere, we shall examine several applications of summing sequences that give rise to a general concept of Cesàro summability. In all that follows, G is an amenable semigroup.

LEMMA 2.1 (Namioka). Φ is the convex hull of Φ_s ; in particular, for each ϕ in Φ , there exist finite subsets A_1 , A_2 , \cdots , A_n of G and positive numbers λ_1 , λ_2 , \cdots , λ_n , such that

$$A_1 \supset A_2 \supset \cdots \supset A_n$$
, $\sum_{j=1}^n \lambda_j = 1$, and $\phi = \sum_{j=1}^n \lambda_j \phi_j$,

where φ_{j} is the simple weight having support A_{j} .

LEMMA 2.2 (Namioka). If $\phi = \sum_{j=1}^{n} \lambda_j \phi_j$ is the decomposition of a weight described in Lemma 2.1, then for each g in G,

(2.1)
$$\|\phi *g - \phi\|_{1} \geq \sum_{j=1}^{n} \lambda_{j} |A_{j}g \setminus A_{j}|/|A_{j}|$$

and

(2.2)
$$\|g * \phi - \phi\|_{1} \ge \sum_{j=1}^{n} \lambda_{j} |gA_{j} \setminus A_{j}|/|A_{j}|.$$

Because in [2] Namioka dealt only with right amenability, and because we want the full strength of two-sided amenability, we include a modified version of Namioka's elegant proof of the following theorem.

THEOREM 2.3 (E. Følner and A. Frey, Jr.). Let G be an amenable semigroup. For each finite subset B of G and each $\epsilon>0$, there exists a finite subset S of G such that

$$|Sg \setminus S| < \epsilon |S|$$
 and $|gS \setminus S| < \epsilon |S|$

for all g in B.

Proof (Namioka [2]). Let B = $\{g_1, g_2, \cdots, g_k\}$. Day's theorem enables us to select a ϕ in Φ such that

(2.3)
$$\|\phi * g_i - \phi\|_1 < \epsilon/2k$$
 and $\|g_i * \phi - \phi\|_1 < \epsilon/2k$

for $i=1,\,2,\,\cdots$, k. By Lemma 2.1, the weight ϕ has a convex linear decomposition $\phi=\sum_{j=1}^n\lambda_j\phi_j$, where the ϕ_j are simple weights whose supports A_j satisfy the condition $A_1\supset A_2\supset\cdots\supset A_n$. The inequalities (2.1) and (2.2) are then valid for all g in G.

Define a measure μ on the collection of subsets I of N = $\{1, 2, \cdots, n\}$ by defining $\mu(I) = \left\{\sum \lambda_j \colon j \in I\right\}$. By convention, $\mu(\phi) = 0$; also, $\mu(N) = \sum_{j=1}^n \lambda_j = 1$, since the λ_j are the coefficients in a convex linear combination. Now, for $i = 1, 2, \cdots, k$, define

$$I_{i} = \left\{ j \in \mathbb{N} : \left[\left| A_{j} g_{i} \setminus A_{j} \right| + \left| g_{i} A_{j} \setminus A_{j} \right| \right] / \left| A_{j} \right| < \varepsilon \right\}.$$

Then, applying (2.1), (2.2), and (2.3), we see that for $i = 1, 2, \dots, k$,

$$\begin{split} \epsilon/k &> \left\|\phi * \mathbf{g}_{i} - \phi\right\|_{1} + \left\|\mathbf{g}_{i} * \phi - \phi\right\|_{1} \\ &\geq \sum_{j=1}^{n} \lambda_{j} \left[\left|\mathbf{A}_{j} \mathbf{g}_{i} \setminus \mathbf{A}_{j}\right| + \left|\mathbf{g}_{i} \mathbf{A}_{j} \setminus \mathbf{A}_{j}\right|\right] / \left|\mathbf{A}_{j}\right| \geq \epsilon \sum_{j \notin \mathbf{I}_{i}} \lambda_{j} = \epsilon \, \mu(\mathbf{N} \setminus \mathbf{I}_{i}) \,. \end{split}$$

Therefore, $\mu(N \setminus I_i) < 1/k$ for $i = 1, 2, \dots, k$. Consequently,

$$\mu\left(N\setminus\bigcap_{i=1}^{k}I_{i}\right)=\mu\left(\bigcup_{i=1}^{k}\left(N\setminus I_{i}\right)\right)\leq\sum_{i=1}^{k}\mu(N\setminus I_{i})< k/k=1,$$

so that $\mu\left(\bigcap_{i=1}^k I_i\right) > 0$ and $\bigcap_{i=1}^k I_i \neq \emptyset$. Pick any j_0 in $\bigcap_{i=1}^k I_i$. Then the subset $S = A_{j_0}$ satisfies the conditions of the theorem.

The second property of a summing sequence $\{S_n\}$ —to wit, that each finite subset C of G is contained in S_n for sufficiently large n—will be a direct consequence of the following improvement of Theorem 2.3. The improvement results from the hypothesis that G has both right and left cancellation.

THEOREM 2.4. Let G be a cancellative, amenable semigroup. Let B and C be any two finite subsets of G, and let r be any number (0 < r < 1). Then there exists a finite subset S of G such that $S \supset C$ and

$$|Sg \cap S| > r |S|$$
 and $|gS \cap S| > r |S|$

for all g in B.

Proof. Without loss of generality, we may assume that G is infinite. Since 0 < r < 1, we can choose an n such that n > r |C|/(1 - r), that is, r(1 + |C|/n) < 1.

Select a finite subset B_1 of G such that $B_1\supseteq B$ and $\left|B_1\right|\ge n^2$. Let

$$\varepsilon = 1 - r(1 + |C|/n) > 0$$
.

By Theorem 2.3, there exists a finite subset S_1 of G such that

$$|S_1 g \setminus S_1| < \epsilon |S_1|$$
 and $|g S_1 \setminus S_1| < \epsilon |S_1|$

for all g in B_1 .

Now S_1g is the disjoint union of $S_1g \setminus S_1$ and $S_1g \cap S_1$, so that

$$|S_1g| = |S_1g \setminus S_1| + |S_1g \cap S_1|$$
.

On the other hand, right cancellation in G implies that $|S_1g| = |S_1|$. Therefore

$$|S_1| = |S_1g \setminus S_1| + |S_1g \cap S_1| < \varepsilon |S_1| + |S_1g \cap S_1|$$

for all g in B_1 . That is,

$$|S_1 g \cap S_1| > (1 - \varepsilon)|S_1| = r(1 + |C|/n)|S_1| \quad (g \in B_1).$$

Similarly,

$$|gS_1 \cap S_1| > r(1 + |C|/n)|S_1|$$
 $(g \in B_1).$

For each g in B_1 , the set $S_1g\cap S_1$ is not empty, and therefore there is at least one ordered pair $(h_1$, $h_2)$ in $S_1\times S_1$ such that $h_1g=h_2$. An ordered pair $(h_1$, $h_2)$ cannot correspond to different elements g and g' of B_1 , for if $h_1g=h_2=h_1g'$, then the left-cancellation law for G implies that g=g'. Consequently, $\left|B_1\right|\leq \left|S_1\times S_1\right|=\left|S_1\right|^2$. Since B_1 was chosen so that $\left|B_1\right|\geq n^2$, it follows that $\left|S_1\right|\geq n$.

Finally, put $S = S_1 \cup C$ to obtain the set promised by the theorem. For each g in $B \subseteq B_1$,

$$|Sg \cap S| \ge |S_1g \cap S_1| > r(1 + |C|/n)|S_1| \ge r(1 + |C|/|S_1|)|S_1|$$

= $r(|S_1| + |C|) \ge r|S|$.

Analogously, $|gS \cap S| > r |S|$ for each g in B.

THEOREM 2.5. Let G be a countable, cancellative, amenable semigroup. Then there exists a sequence $\{S_n\}$ of finite subsets of G such that $S_n \subseteq S_{n+1}$ for $n=1,2,\cdots$, $G=\bigcup_{n=1}^{\infty}S_n$, and for each g in G,

$$\lim_{n\to\infty} |S_n g \cap S_n|/|S_n| = \lim_{n\to\infty} |gS_n \cap S_n|/|S_n| = 1.$$

Proof. Since G is countable, G can be written as the union $\bigcup_{n=1}^{\infty} B_n$ of finite sets such that $B_n \subseteq B_{n+1}$ for $n=1, 2, \cdots$. Select any finite set $S_1 \supseteq B_1$. Having picked S_{n-1} , we are entitled by Theorem 2.4 to choose a finite set $S_n \supseteq C_n = S_{n-1} \cup B_n$ such that

$$|S_n g \cap S_n| > (1 - 1/n)|S_n|$$
 and $|gS_n \cap S_n| > (1 - 1/n)|S_n|$

for all g in $B_n\,.$ The sequence $\{S_n\}$ so chosen will have all the desired properties.

3. EXAMPLES

The sequence $\{\sigma_n\}$ of finite subsets of integers, where

$$\sigma_n = \{0, 1, 2, \dots, n-1\},$$

is a familiar summing sequence giving rise to the classical Cesàro method of summability. It is worthwhile to note that $(Z^+,+)$ has many other summing sequences as well. For example, let $F = \{0, 1, k\}$, and let F^n denote $F + F + \cdots + F$ (n summands). Then, for $n \geq k$,

$$F^{n} = \{0, 1, 2, 3, \dots, (n-k+3)k-2,$$

$$(n-k+3)k, (n-k+3)k+1, \dots, (n-k+4)k-3,$$

$$(n-k+4)k, (n-k+4)k+1, \dots, (n-k+5)k-4,$$

$$\dots$$

$$(n-k+p+3)k, (n-k+p+3)k+1, \dots, [(n-k+p+4)k-(p+3)], \dots$$

$$\dots$$

$$(n-1)k, (n-1)k+1, nk\}.$$

It follows that

(3.1)
$$\mathbf{F}^{n} = \sigma_{(n-k+3)k-1} \cup \bigcup_{i=1}^{k-2} [\sigma_{i} + (n-i+1)k] \quad \text{(disjoint)}.$$

Clearly $F^n \subset F^{n+1}$, $Z^+ = \bigcup_{n=1}^{\infty} F^n$, and

$$|\mathbf{F}^{n}| = (n - k + 3)k - 1 + \sum_{i=1}^{k-2} i = (n - k + 3)k - 1 + \frac{1}{2}(k - 2)(k - 1).$$

To show that $\{F^n\}$ is a summing sequence, we need merely show that if $j_0 \in Z^+$ and 0 < r < 1, then $\left| (j_0 + F^n) \cap F^n \right| > r \left| F^n \right|$ for sufficiently large n. Referring to (3.1), we see that

$$(j_0 + F^n) \cap F^n \supset (j_0 + \sigma_m) \cap \sigma_m = j_0 + \sigma_{m-j_0}$$

where m=(n-k+3)k-1. Consequently, $\left|(j_0+F^n)\cap F^n\right|>(n-k+3)k-1-j_0$. Finally, because 0< r<1, we have the inequality

$$(n-k+3)k-1-j_0 > r\left\{(n-k+3)k-1+\frac{1}{2}(k-2)(k-1)\right\} = r|F^n|$$

whenever

$$n > k - 3 + \left\{1 + j_0 - r \left[1 - \frac{1}{2}(k - 2)(k - 1)\right]\right\} [(1 - r)k]^{-1}.$$

Consequently, $\{F^n\}$ is a summing sequence. We can use a similar argument to verify that if $F = \{0, 1, k_1, k_2, \cdots, k_s\}$, then $\{F^n\}$ is a summing sequence for $(Z^+, +)$.

In general, let $\{S_n\}$ be any summing sequence for $(Z^+,+)$. The structure of S_n for large n is revealed as follows: fix any $\epsilon>0$ and any $m\geq 1$. By the summing-sequence property,

(3.2)
$$\left| \bigcap_{j=0}^{m-1} (j + S_n) \right| > (1 - \varepsilon) |S_n|$$

for all sufficiently large n. Note that $k\in \bigcap_{j=0}^{m-1}\,(j+S_n)$ if and only if $\left\{k$ - (m - 1), k - (m - 2), $\cdots,\,k$ - 1, $k\right\}\subset S_n$. Therefore

$$S_n = (i_1 + \sigma_m) \cup (i_2 + \sigma_m) \cup \cdots \cup (i_s + \sigma_m) \cup R_n$$
 (disjoint)

where $R_n = S_n \setminus \bigcap_{j=0}^{m-1} (j+S_n)$. To see this, let k_1 be the largest integer in $\bigcap_{j=0}^{m-1} (j+S_n)$ and put $i_1 = k_1 - m+1$, so that $i_1 + \sigma_m \subset S_n$. Pick k_2 to be the largest integer in $\bigcap_{j=0}^{m-1} (j+S_n)$ that is less than i_1 , and put $i_2 = k_2 - m+1$. Continue this process until $\bigcap_{j=0}^{m-1} (j+S_n)$ is decomposed into the disjoint union $\bigcup_{p=1}^{s} (i_p + \sigma_m)$. Then

$$\left|R_{n}\right| = \left|S_{n} \setminus \bigcap_{j=0}^{m-1} (j+S_{n})\right| = \left|S_{n}\right| - \left|\bigcap_{j=0}^{m-1} (j+S_{m})\right| < \epsilon \left|S_{n}\right|,$$

by (3.2). To recapitulate, to each $m \geq 1$ and each $\epsilon > 0$ there corresponds an $n(m,\,\epsilon) \in Z^+$ such that for each $n > n(m,\,\epsilon)$ there exists a finite set $F = F(n) = \left\{i_1\,,\,i_2\,,\,\cdots,\,i_s\,\right\}$ such that

$$\left| S_n \setminus \bigcup_{p=1}^s (i_p + \sigma_m) \right| = |R_n| < \epsilon |S_n| \quad \text{and} \quad |F| |\sigma_m| < (1+\epsilon)|S_n|.$$

This property motivates the following definition.

Definition 3.1. Let G be a countable, amenable semigroup with two summing sequences $\{S_n\}$ and $\{T_n\}.$ We say that the sequence $\{S_n\}$ nearly divides the sequence $\{T_n\}$ if, to each $m\geq 1$ and each $\epsilon>0$, there corresponds an n(m, $\epsilon)$ such that, for each $n\geq n(m,\,\epsilon)$, there exists a finite set $F=F(n)\subset G$ such that

(i)
$$\left|T_{n} \setminus \bigcup_{g \in F} gS_{m}\right| < \epsilon \left|T_{n}\right|$$

and

(ii)
$$|F| |S_m| < (1+\epsilon) |T_n|$$
.

Clearly, (i) says that T_n is "almost covered" by left translates of S_m ; a moment's reflection will suffice to confirm that (ii) says that the translates are almost disjoint. We have proved above that the classical summing sequence $\{\sigma_n\}$ nearly divides each summing sequence for $(Z^+, +)$.

Definition 3.2. A summing sequence that nearly divides itself will be called nearly divisible.

THEOREM 3.3. Let $\{S_n\}$ and $\{T_n\}$ be two summing sequences for G, and let each nearly divide the other. Then each of the sequences is nearly divisible.

Proof. Fix $\epsilon>0$, select ϵ' so that $0<\epsilon'<\sqrt{1+\epsilon}$ - 1, and choose a positive integer m. Since $\{S_n\}$ nearly divides $\{T_n\}$, there exists an $n(m,\epsilon')$ such that $p\geq n(m,\epsilon')$ entails the existence of a finite set $F=F(p)\subset G$ satisfying the conditions

$$\left|T_{p} \setminus \bigcup_{g \in F} gS_{m}\right| < \epsilon' |T_{p}|$$

and

$$\left| \mathbf{F} \right| \left| \mathbf{S}_{\mathrm{m}} \right| < (1 + \epsilon') \left| \mathbf{T}_{\mathrm{p}} \right|.$$

Fix $p \ge n(m, \, \epsilon')$ and the set F. Since $\{T_n\}$ also nearly divides $\{S_n\}$, there exists an $n(p, \, \epsilon')$ such that for $r \ge n(p, \, \epsilon')$ we can pick a finite set E = E(r) in G satisfying the conditions

$$\left| \mathbf{S_r} \setminus \bigcup_{\mathbf{h} \in \mathbf{E}} \mathbf{h} \mathbf{T_p} \right| < \epsilon' \left| \mathbf{S_r} \right|$$

and

$$\left|\mathbf{E}\right|\left|\mathbf{T}_{\mathbf{p}}\right| < \left(\mathbf{1} + \epsilon'\right)\left|\mathbf{S}_{\mathbf{r}}\right|.$$

Fix $r \ge n(p, \epsilon')$ and E. Let D = EF. Then

$$\bigcup_{\mathbf{x} \in D} \mathbf{x} \mathbf{S}_{\mathbf{m}} = \bigcup_{\mathbf{h} \in E} \mathbf{h} \left(\bigcup_{\mathbf{g} \in F} \mathbf{g} \mathbf{S}_{\mathbf{m}} \right).$$

Write

$$\bigcup_{g \in F} gS_m = (T_p \setminus A_p) \cup B_p,$$

where

$$A_p = T_p \setminus \left(\bigcup_{g \in F} gS_m\right)$$
 and $B_p = \bigcup_{g \in F} gS_m \setminus T_p$.

Because $h(T_p \setminus A_p) \subseteq h\left(\bigcup_{g \in F} gS_m\right)$ for all h, we have the relation

$$\bigcup_{h \in E} h(T_p \setminus A) \subseteq \bigcup_{h \in E} h\left(\bigcup_{g \in F} gS_m\right) = \bigcup_{x \in D} xS_m,$$

and consequently

$$S_r \setminus \bigcup_{x \in D} xS_m \subseteq S_r \setminus \bigcup_{h \in E} h(T_p \setminus A_p).$$

Applying (3.3), (3.5), and (3.6), we obtain the inequalities

$$\begin{split} \left| \mathbf{S_r} \setminus \bigcup_{\mathbf{x} \in \mathbf{D}} \mathbf{x} \mathbf{S_m} \right| &\leq \left| \mathbf{S_r} \setminus \bigcup_{\mathbf{h} \in \mathbf{E}} \mathbf{h} \mathbf{T_p} \right| + \left| \bigcup_{\mathbf{h} \in \mathbf{E}} \mathbf{h} \mathbf{A_p} \right| \\ &\leq \epsilon' \left| \mathbf{S_r} \right| + \left| \mathbf{E} \right| \left| \mathbf{A_p} \right| \leq \epsilon' \left| \mathbf{S_r} \right| + \left| \mathbf{E} \right| \epsilon' \left| \mathbf{T_p} \right| \\ &\leq \epsilon' \left| \mathbf{S_r} \right| + \epsilon' (\mathbf{1} + \epsilon') \left| \mathbf{S_r} \right| = \epsilon' (\mathbf{2} + \epsilon') \left| \mathbf{S_r} \right| \leq \epsilon \left| \mathbf{S_r} \right| \;. \end{split}$$

For the second part,

$$\left|D\right|\left|S_{\mathbf{m}}\right| \leq \left|E\right|\left|F\right|\left|S_{\mathbf{m}}\right| < \left|E\right|\left(1+\epsilon'\right)\left|T_{\mathbf{p}}\right| < \left(1+\epsilon'\right)^{2}\left|S_{\mathbf{r}}\right| < \left(1+\epsilon\right)\left|S_{\mathbf{r}}\right|,$$

by (3.4) and (3.6). Hence $\{S_n\}$ is nearly divisible.

As a further example, let $G_1 = G_2 = \cdots = G_r = (Z^+, +)$, and put $G = G_1 \times G_2 \times \cdots \times G_r$. Then G is a countable, amenable semigroup. If $S_n = \sigma_n \times \sigma_n \times \cdots \times \sigma_n$ (r factors), then $\{S_n\}$ is a summing sequence for G that nearly divides each other summing sequence.

An example of a summing sequence for an amenable semigroup with an infinite set of generators is provided by the multiplicative semigroup G of positive integers. The generating set $P = \{p_1, p_2, \cdots\}$ of positive prime integers provides the elements with which we can methodically construct S_n . Specifically, for each $n = 1, 2, \cdots$, let

$$S_n = \left\{ \prod_{i=1}^n p_i^{k_i} : 0 \le k_i \le n \right\}.$$

We see immediately that $S_n \subset S_{n+1} \uparrow G$. The summing-sequence property is established as follows: let g be any integer in G with prime factorization $\prod_{i=1}^s \mathfrak{p}_i^{m_i}$, where the m_i denote nonnegative integers. When $n \geq \max \left\{s, \, m_1, \, m_2, \, \cdots, \, m_s \right\}$, we have the formula

$$\begin{split} gS_n \cap S_n &= \left\{ \prod_{i=1}^s p_i^{t_i} \prod_{i=s+1}^n p_i^{k_i} \text{: } m_i \leq t_i \leq n \text{ for } i=1, 2, \cdots, s; \right. \\ &\left. 0 \leq k_i \leq n \text{ for } i=s+1, \cdots, n \right\} \; . \end{split}$$

Hence, if 0 < r < 1, we can pick n so that

$$n^2 + n > (1 - r)^{-1} \sum_{i=1}^{s} m_i$$

as well. Then

$$|gS_n \cap S_n| = n^2 + n - \sum_{i=1}^s m_i > rn(n+1) = r |S_n|.$$

Therefore, $\{S_n\}$ is a summing sequence for G. We leave it to the reader to confirm that $\{S_n\}$ nearly divides each summing sequence for G.

By reexamining the summing sequence $\{\sigma_n\}$ for $(\mathbf{Z}^+,+)$, we shall identify a further property of some summing sequences. Suppose that $\epsilon>0$, that m and n are positive integers $(n>m/\epsilon)$, and that π is a function mapping σ_n into $\{1,2,3,\cdots,m\}$. We shall show that we can select a finite set $F=F(n,\pi)$ such that

(i)
$$(k + \sigma_{\pi(k)}) \subseteq \sigma_n$$
 for each $k \in F$,

(ii)
$$(j + \sigma_{\pi(j)}) \cap (k + \sigma_{\pi(k)}) = \emptyset$$
 for all j and k in F $(j \neq k)$,

and

(iii)
$$\left|\sigma_{n} \setminus \bigcup_{k \in F} (k + \sigma_{\pi(k)})\right| < \varepsilon \left|\sigma_{n}\right|.$$

To see this, let $k_1 = 0$, so that $k_1 + \sigma_{\pi(k_1)} = \{0, 1, 2, \cdots, \pi(k_1) - 1\}$. Let $k_2 = \pi(k_1)$, so that $k_2 + \sigma_{\pi(k_2)} = \{\pi(k_1), \pi(k_1) + 1, \cdots, \pi(k_1) + \pi(k_2) - 1\}$. Let $k_3 = \pi(k_1) + \pi(k_2)$. Continue the procedure, picking $k_{j+1} = \sum_{i=1}^{j} \pi(k_i)$ until $n - m < \sum_{i=1}^{t} \pi(k_i) \le n$, and put $F = \{k_1, k_2, \cdots, k_t\}$. Then F has the required properties.

Definition 3.4. A summing sequence $\{S_n\}$ for a countable amenable semigroup G is said to be *left-uniform* if, for every $\epsilon>0$ and every positive integer m, there exists a positive integer $n_0=n_0(m,\epsilon)$ such that to every $n\geq n_0$ and every function π mapping S_n into $\{1,2,\cdots,m\}$ there corresponds a finite set $F=F(n,\pi)$ in S_n such that

(i)
$$gS_{\pi(g)} \subseteq S_n$$
 for each g in F,

(ii)
$$gS_{\pi(g)} \cap hS_{\pi(h)} = \emptyset$$
 for all g, h in F (g \neq h),

(iii)
$$\left| S_n \setminus \bigcup_{g \in F} gS_{\pi(g)} \right| < \epsilon |S_n|.$$

The property of being left-uniform places stringent requirements on the summing sequence; our next example provides a summing sequence (other than $\{\sigma_n\}$) that is left-uniform.

Let G be a countable, locally finite group, that is, a countable group each of whose finite subsets generates a finite subgroup. It is well known that G is amenable. To construct a summing sequence for G, let $\{F_n\}$ be an increasing sequence of finite subsets of G, with $F_1 = \{e\}$, and such that $G = \bigcup_{n=1}^{\infty} F_n$. Let S_n be the finite subgroup generated by F_n . It is easy to see that $\{S_n\}$ is a summing sequence for G.

The proof that $\{S_n\}$ is left-uniform requires some labor. Let m and n be positive integers $(n \geq m)$, and let π be any function mapping S_n into $\{1, 2, \cdots, m\}$. Note first that $gS_{\pi(g)} \subseteq S_n$ for each g in S_n , since $gS_{\pi(g)}$ is a left coset of the subgroup $S_{\pi(g)}$ of S_n . Note also that if g and g are left cosets of the same subgroup. Now, for g and g and g and g are g and g are g are g and g are g are g and g are g and g are g and g are g are g and g are g and g are g and g are g are g and g are g are g are g and g are g are g and g are g and g are g a

$$A_k = \{g \in S_n : \pi(g) = k\},$$

so that $S_n = \bigcup_{k=1}^m A_k$ (disjoint). Let

$$\mathcal{B}_{\mathbf{m}} = \{B: B \subseteq A_{\mathbf{m}}; g, h \in B, g \neq h \Rightarrow gS_{\mathbf{m}} \cap hS_{\mathbf{m}} = \emptyset\},$$

and pick B_m in \mathcal{B}_m so that $|B_m|$ is maximal. We observe that

$$A_m \subseteq \bigcup_{g \in B_m} gS_m;$$

for if there were a g_0 in $A_m \setminus \bigcup_{g \in B_m} gS_m$, then $B_m' = \{g_0\} \cup B_m$ would be a subset of A_m , and if h were in B_m , then the relation $hS_m = g_0S_m$ would require that $g_0 \in hS_m \subseteq \bigcup_{g \in B_m} gS_m$, a contradiction. Therefore it can only be that $hS_m \cap g_0S_m = \emptyset$ and B_m' is in \mathscr{B}_m . But this contradicts the maximality of $|B_m|$. Therefore $A_m \subseteq \bigcup_{g \in B_m} gS_m$.

Next, let

$$\mathcal{B}_{m-1} = \left\{ B: B \subseteq A_{m-1} \setminus \bigcup_{g \in B_m} gS_m; g, h \in B, g \neq h \Rightarrow gS_{m-1} \cap hS_{m-1} = \emptyset \right\},$$

and choose a B_{m-1} in \mathcal{B}_{m-1} such that $|B_{m-1}|$ is maximal.

For each g in B_m and h in B_{m-1} , the set $gS_m \cap hS_{m-1}$ must be empty, for otherwise $gS_m \cap hS_m \neq \emptyset$, so that $gS_m = hS_m$ and h $\epsilon \bigcup_{g \in B_m} gS_m$, contrary to the definition of \mathscr{B}_{m-1} . Furthermore,

$$A_{m-1} \subseteq \bigcup_{i=m-1}^{m} \bigcup_{g \in B_i} gS_i,$$

as the proof above with minor modifications will show.

Continue the procedure; for k = m - 1, m - 2, \cdots , 2, 1, select a set $B_k \subseteq A_k \setminus \bigcup_{i=k+1}^m \bigcup_{g \in B_i} gS_i$ that satisfies the conditions

$$gS_k \cap hS_j = \emptyset \quad \text{whenever } g \in B_k \text{, } h \in B_j \text{ } (g \neq h \text{ and } k \leq j \leq m)$$

and

$$A_k \subseteq \bigcup_{i=k}^m \bigcup_{g \in B_i} gS_i$$
.

Put
$$F = \bigcup_{k=1}^{m} B_k$$
. Then

- (i) $gS_{\pi(g)} \subseteq S_n$ for each g in F,
- (ii) $gS_{\pi(g)} \cap hS_{\pi(h)} = \emptyset$ for all g, h ϵ F (g \neq h),

and

(iii)
$$S_n = \bigcup_{k=1}^m A_k \subseteq \bigcup_{i=1}^m \bigcup_{g \in B_i} gS_i = \bigcup_{g \in F} gS_{\pi(g)} \subseteq S_n$$
.

Consequently, equality holds and $|S_n \setminus \bigcup_{g \in F} gS_{\pi(g)}| = 0$. Therefore $\{S_n\}$ is left-uniform.

It is easy to see that the same summing sequence nearly divides each summing sequence of finite subgroups of G.

As a final example, suppose that G is a finitely generated amenable semigroup with identity e and that $\left\{S_n\right\}$ is a sequence of finite subsets of G such that $S_n\subseteq S_{n+1}\upharpoonright G.$ It is easy to see that $\left\{S_n\right\}$ is a summing sequence for G if and only if

$$\lim_{n\to\infty} |gS_n \setminus S_n|/|S_n| = \lim_{n\to\infty} |S_ng \setminus S_n|/|S_n| = 0,$$

for each g in each generating set F. From this it follows immediately that if F is a finite generating set for G that contains e, then $\{F^n\}$ is a summing sequence for G if and only if

$$\lim_{n\to\infty} |\mathbf{F}^{n+1}|/|\mathbf{F}^n| = 1,$$

or equivalently, if and only if

$$\lim_{n\to\infty} |\mathbf{F}^{n+1} \setminus \mathbf{F}^n| / |\mathbf{F}^n| = 0.$$

For example, let G be the free product of two groups of order 2, and let a and b denote the generators of the two groups. This is the only nontrivial free product of groups that is amenable. Let $F = \{e, a, b\}$. Then $|F^{n+1}| = |F^n| + 2$, hence $\{F^n\}$ is a summing sequence for G.

REFERENCES

- 1. M. M. Day, Amenable semigroups. Illinois J. Math. 1 (1957), 509-544.
- 2. I. Namioka, Følner's conditions for amenable semi-groups. Math. Scand. 15 (1964), 18-28.

University of California, Davis, California

and

Southern Oregon College, Ashland, Oregon 97520

