SUMMING SEQUENCES FOR AMENABLE SEMIGROUPS
Steven A. Douglass

In a wide variety of settings, the special set ¢, = {0, 1,2, -, n- 1} enters
into computations involving the additive semigroup Z* of nonnegative integers. In
this paper, we identify the significant mathematical properties of the sequence
{Gn: n=1, 2, } , and we show that if G is a countable, cancellative, amenable
semigroup, then there exists a sequence {Sn} of finite subsets of G possessing
exactly these properties. In Section 3, we examine some examples and obtain mis-
cellaneous properties.

1. PRELIMINARIES

Let G be a semigroup, and let m(G) denote the Banach space of bounded, real-
valued functions on G endowed with the supremum norm

I£]l, = swp{|€e)|: g € G} .

We shall also be interested in the subspace £;(G) consisting of the functions f in

m(G) with finite ¢;-norm ||f||, = 27 {|(g)|: g € G} < «=. Endowed with the con-
volution

(f,%£) (@) = 2 {f,(0)1,("): h'h" =g},

2,(G) is a real Banach algebra.

A weight on G is a nonnegative function ¢ in ﬂl(G) having finite support and
such that | ¢||, = 1. A simple weight on G is a weight ¢ that is constant on its
support; that is, ¢ is a simple weight provided ¢ = |A|-1x, , where A, |A|, and x,
denote the support of ¢, the number of elements in the support, and its characteris-
tic function. We denote the collection of all weights by &, the collection of all sim-
ple weights by ®; . For simplicity, given a g in G, we denote by g the simple
weight with support {g}.

A mean on G is a real linear functional A on m(G) such that for each f in
m(G),

inf {f(g): g € G} < A(f) < sup{f(g): ge G}.
Clearly, a mean A is a positive linear functional such that A(1) = 1, where 1 de-

notes the function 1(g) =1 for all g in G. If g is in G and f is in m(G), then &f
and f& are functions in m(G) defined by the equations

gf(h) = f(gh) and £8(h) = f(hg),
respectively. A mean A on G is said to be left [right] invariant if A(8f) = A(f)

[if A(f8) = A(f)] for all g in G and all f in m(G). Finally, G is said to be amenable
if a left invariant mean and a right invariant mean exist on G.
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2. SUMMING SEQUENCES

M. M. Day [1] has proved that G is amenable if and only if there exists a net
{qba} in & such that, for every g in G,

lim ¢n *g - ¢ = lim g*¢py - ¢ = 0,

where the limit is taken in either the weak or the uniform topology on £;(G). We
shall use this result, together with the following two lemmas of I. Namioka [2], to
prove the existence in each countable, cancellative, amenable semigroup G of a se-
quence {S,} of finite subsets of G such that

(i) S, C Sy for n=1, 2, -,
o0

@ e =U s,
n=1

(iii) for each g in G, lim |S, gns_ |/|S,| = lm |gS_ns_|/|s,]|=1.

n—oo n— oo

A sequence {Sn} of finite subsets of G having these properties will be called a
summing sequence for G. Elsewhere, we shall examine several applications of
summing sequences that give rise to a general concept of Cesiro summability. In
all that follows, G is an amenable semigroup.

LEMMA 2.1 (Namioka). & is the convex hull of ®; ; in particular, for each ¢
in &, there exist finite subsets Ay, A,, ---, A, of G and positive numbers
Ay, A2, N, , Such that

n n
ADA;D DA, =1, andd= 2 \és,
j:l j:l

where b5 is the simple weight having support Aj.

n
LEMMA 2.2 (Namioka). If ¢ = Ej:l A5 b is the decomposition of a weight
described in Lemwma 2.1, then for each g in G,

n

(2.1) loxg - oll, > Z "lejg\Ajl/lAjl
j=1

and

(2.2) le*xe-of, >

n
j?i A leas \ Ayl/1a .

Because in [2] Namioka dealt only with right amenability, and because we want
the full strength of two-sided amenability, we include a modified version of
Namioka’s elegant proof of the following theorem.

THEOREM 2.3 (E. Fglner and A. Frey, Jr.). Let G be an amenable semigroup.
For each finite subset B of G and each € > 0, theve exists a finite subset S of G
such that



SUMMING SEQUENCES FOR AMENABLE SEMIGROUPS 171
Isg\s| <el|s] and |gS\s| <els|

Jor all g in B.
Proof (Namioka [2]). Let B={g;, g2, ***, gk f- Day’s theorem enables us to
select a ¢ in & such that

(2.3) loxe; - o, <e/2k  and  |lg;x¢ - ¢||, < &/2k

for i=1,2, ---, k. By Lemma 2.1, the weight ¢ has a convex linear decomposition

n
¢ = 2 =1 A;¢;, where the ¢; are simple weights whose supports A; satisfy the con-

dition A} D A; D --- D A, . The inequalities (2.1) and (2.2) are then valid for all g
in G.

Define a measure p on the collection of subsets I of N = {1, 2, -, n} by de-
n
fining u(I) = {E Ajtjel } By convention, u(¢) = 0; also, u(N) = Ejzl A =1,
since the X; are the coefficients in a convex linear combination. Now, for
i=1, 2, ---, k, define
L = {ieN:[|Aaje \ Ay] + Ay )\ A5]1/]45] <e}.
Then, applying (2.1), (2.2), and (2.3), we see that for i =1, 2, -+, k,

efk > |loxg; - ol + leixo - o1
Z Z)l Rj[lAjgi\Aﬂ +|giAj\Aj|]/lAj| Z g é}l Aj = SU«(N\Ii).

Therefore, p(N \ I;) < 1/k for i =1, 2, ---, k. Consequently,

k k k
H(N\nli)=H(U(N\Ii) <2 pN\L) <k/k =1,
i=1

i=1 i=1

k k k
so that p ﬂizl I,) >0 and ﬂi:l I; # . Pick any jo in ﬂiﬂ I; . Then the sub-
set S = AJ- 0 satisfies the conditions of the theorem.

The second property of a summing sequence {Sn} —to wit, that each finite sub-
set C of G is contained in S, for sufficiently large n --will be a direct conse-
quence of the following improvement of Theorem 2.3. The improvement results from
the hypothesis that G has both right and left cancellation.

THEOREM 2.4. Let G be a cancellative, amenable semigroup. Let B and C

be any two finite subsets of G, and let v be any number (0 <r < 1). Then there
exists a finite subset S of G such that S> C and

|sens| > r|s| and lesns| > r|s|

for all g in B.

Proof. Without loss of generality, we may assume that G is infinite. Since
0 <r <1, we can choose an n such that n > r |C|/(1 - r), that is, r(1 + |C|/n) < 1.
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Select a finite subset B; of G such that B} 2 B and |B1| >n®. Let
e=1-r(1+]|C|/m) > 0.
By Theorem 2.3, there exists a finite subset S; of G such that
[s1g\s)] <efsy] and |gs;\ 8| <elsy]

for all g in B;.
Now S) g is the disjoint union of S;g\ S; and S;g N S}, so that

IS1e] = [s1g\ 81| +{s18n8].
On the other hand, right cancellation in G implies that |S;g| = |S;|. Therefore
Isi| = [s1g\si| +|signs;| <els;| +|signs;|
for all g in B;. That is,
|s,gn 8| > (-¢)s,| =r(1+]|c|/Mm)|s,| (g€ B).
Similarly,
les; ns;| > r(x+|c|/m|s;| (g€ By.

For each g in B, the set S;g N S; is not empty, and therefore there is at
least one ordered pair (h;, hy) in S; X S; such that h;jg =h,. An ordered pair
(hy, h,) cannot correspond to different elements g and g' of B 1, for if
h;g =h, =h)g', then the left-cancellation law for G implies that g = g'. Conse-
quently, |B,| < |8, ><Sll = ISIIZ. Since B;] was chosen so that |Bll > n?, it fol-
lows that |S;| > n.

Finally, put S=S,; U C to obtain the set promised by the theorem. For each g
in B C By,
[sgns| > [sygns;| > r@+[c|/m)s;] > x(+]c|/|sy])]s,]
= r(|s;| +]c]) > r|s].

Analogously, |gS N SI >r ISI for each g in B.

THEOREM 2.5. Let G be a countable, cancellative, amenable semigroup. Then
theve exists a sequence {S,} of finite subsets of G such that Sn C Spy1 for

o0
n=1,2, -, G= Unzlsn, and fov each g in G,

lim |s_gns_|/|s,] = lim |gs,ns.|/|s,] =1.

n — oo n — 0

(e o]

Proof. Since G is countable, G can be written as the union Unzl B,, of finite
sets such that B, C Bp;; for n=1, 2, ---. Select any finite set S; 2 B;. Having
picked S, _;, we are entitled by Theorem 2.4 to choose a finite set
S, 2 C, =8,_1 U B, such that
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s,ens | > (1-1/n)|s and |gS,N S| > (1-1/n)|s,|

nl

for all g in B,,. The sequence {Sn} so chosen will have all the desired properties.

3. EXAMPLES
The sequence {on} of finite subsets of integers, where
c,=10,1,2, -, n-1},
is a familiar summing sequence giving rise to the classical Cesaro method of sum-
mability. It is worthwhile to note that (Z*, +) has many other summing sequences
as well. For example, let F = {0, 1, k}, and let F® denote F+ F + -+ F (n sum-
mands). Then, for n >k,
F*={0,1,2,3, -, (n-k+3)k - 2,
n-k+3k, (n-k+3)k-+1, -, (n-k+4)k- 3,

(n-k+4k, (n-k+4)k+1, =, {n-k+5)k - 4,

n-k+p+3)k, (n-k+p+3)k+1, -, [n-k+p+4)k-(p+3)], -

n-1k, (n-1k+1, nk}.
It follows that
k-2
(3.1) F* = 00y t3)k-1 U U1 [o; +(n-i+1)k] (disjoint).
1=
Clearly FPc F»*1, 7t = UT_ ¥7, ana
k-2
[P = -k +3k-1+ 2 i=(-k+3k-1+ik-2)(k-1).

i=1

To show that {F"} is a summing sequence, we need merely show that if j, € Z*
and 0 <r <1, then |[(jo +F") N Fnl >r an| for sufficiently large n. Referring to
(3.1), we see that

Go+F)NF*"D (jpto)Noy, = Jo T om-jy

where m = (n - k + 3)k - 1. Consequently, |(jo +F®) N F?| > (n-k+3)k-1-jg.
Finally, because 0 <r < 1, we have the inequality '

n-k+3k-1-jj> r{(n—k+3)k— 1+%(k—2)(k— 1)} = r | F"|

whenever
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n>k-3+ {1+j0 - r[l—%(k- 2) (k - 1)]} [(1-r)k]"!.

Consequently, { F"} is a summing sequence. We can use a similar argument to
vei‘ify that if ¥ = {0, 1, ky, ky, v, kg }, then {F*} is a summing sequence for
(z7, +).

In general, let {Sn} be any summing sequence for (ZJr , +). The structure of
S, for large n is revealed as follows: fixany € > 0 and any m > 1. By the sum-
ming-sequence property,

m-1

N G+s)

j=0

(3.2) > (1-¢)]s,]

for all sufficiently large n. Note that k € n;rzl(;l (i +5S,) if and only if
{k-(m-1),k-(m-2), ---,k-1,k} CS,. Therefore

Sp=(,+o ) Ui +toy)U--U(ig+o,)UR, (disjoint),

m-1
where R, =S, \ ﬂjzo (j +Sn). To see this, let k; be the largest integer in

m-1
ﬂj:O (3 +S,) and put i) =k; - m + 1, so that i} + 0, €8, . Pick k, to be the

largest integer in n;‘:(")l_ (j +8,) that is less than i;, and put i, =k, - m + 1. Con-

tinue this process until ﬂ;‘_jgl (j +Sp) is decomposed into the disjoint union

S
U p=1 (ip +0,,). Then

m-1 m-1
|IR,| = IS, \ N G+S)] =18,] - N G+s,)| <els,l,
j=0 j=0

by (3.2). To recapitulate, to each m > 1 and each ¢ > 0 there corresponds an
n(m, £) € Z* such that for each n > n(m, €) there exists a finite set
F =F() = {i;, iy, '+, ig} such that

s\ U 40| = IR <els,]  and  |F| o] < @+ells,] .

p=1

This property motivates the following definition.

Definition 3.1. Let G be a countable, amenable semigroup with two summing
sequences {S,} and {T,}. We say that the sequence {S,} nearly divides the se-
quence {T,} if, to each m > 1 and each € > 0, there corresponds an n(m, €) such
that, for each n > n(m, &), there exists a finite set F = F(n) C G such that

(i) Tn\ U gSm| <e ITn!

g €F

and

(i) |F| |Sm]| < (1 +¢€)|T,].
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Clearly, (i) says that T, is “almost covered” by left translates of S,,; a moment’s
reflection will suffice to confirm that (ii) says that the translates are almost dis-
joint. We have proved above that the classical summing sequence {o nt nearly
divides each summing sequence for (Z1, +).

Definition 3.2. A summing sequence that nearly divides itself will be called
nearly divisible.

THEOREM 3.3. Let {S,} and {T,} be two summing sequences for G, and let
each nearly divide the other. Then each of the sequences is nearly divisible.

Proof. Fix € > 0, select ¢' sothat 0 <¢' < V1+¢ - 1, and choose a positive
integer m. Since {Sn} nearly divides {Tn}, there exists an n(m, &') such that
p > n(m, €') entails the existence of a finite set F = F(p) C G satisfying the condi-
tions

(3.3) lTp\ U gSm, <e'|T)
g€F

and

(3.4) |F| [Sm| < @ +e) [T, .

Fix p2>n{m, €') and the set F. Since {T,} also nearly divides {S,}, there exists
an n(p, €') such that for r > n(p, £') we can pick a finite set E = E(r) in G satisfy-
ing the conditions

(3.5) s:\ U nt,| < e |5,
heE

and

(3.6) [E] |T,] < @+e|s,].

Fix r > n(p, ¢') and E. Let D=EF. Then

Uxsn= Un(U esn).

x€ D he E geF
Write
U es.,=(,\ayus,
gEF
where

AP=TP\( U gsm) and  B,= U g8, \T,.
geEF g€F

Because h(T, \ A;) C h( UgeF gSm) for all h, we have the relation

U nrha e U n( U esn) = U s,

heE heE ‘geF x €D

and consequently
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s\ U xs, eso\ U nrovay.

x€D heE

Applying (3.3), (3.5), and (3.6), we obtain the inequalities

U na,

heE

Sy \ U hT,| +

heE

Sy \ U xS,

x €D

<

<ol +|E| Ayl < e'[s] +[E[e|Ty)
<e'|s.|+e+en)s,] =e@+e)|S,] < e]|s,] -
For the second part,
D] 18l < 1B [F] ISl < |E[ (1469 |Ty| < (14£92]8,] < 1 +6)]S,]

by (3.4) and (3.6). Hence {S,} is nearly divisible.

As a further example, let G, =G, = --- = G, = (Z", +), and put
G=G; XG, X XG,. Then G is a countable, amenable semigroup. If
S,=0,X0o,X X0, (r factors), then {S,} is a summing sequence for G that
nearly divides each other summing sequence.

An example of a summing sequence for an amenable semigroup with an infinite
set of generators is provided by the multiplicative semigroup G of positive inte-
gers. The generating set P = {p1 s Py ---} of positive prime integers provides the
elements with which we can methodically construct S, . Specifically, for each
n=1,2, ..., let

n
Sa= 3 Hpio<k <n

i=1

We see immediately that S, € S,;; T G. The summing-sequence property is estab-

S ms;
lished as follows: let g be any integer in G with prime factorization Hizl p; ',
where the m; denote nonnegative integers. When n > max {s, m;, mp, -, mg},
we have the formula

s n
t. k.
gs, NS, = II p;i I1 p; miStiSn for i=1, 2, ---, s;
i=1 i=s+1
0<k;<nfori=s+1, -,n

Hence, if 0 <r <1, we can pick n so that
S

nf+n > (1-1)"1 2 m

i=1

as well. Then
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s

lgs,NS,| =n?2+n-2 m; >rm@+1) =r|S,|.

i=]

Therefore, {S,} is a summing sequence for G. We leave it to the reader to con-
firm that {S,} nearly divides each summing sequence for G.

By reexamining the summing sequence {o¢,} for (Z', +), we shall identify a
further property of some summing sequences. Suppose that € > 0, that m and n
are positive integers (n > m/e), and that 7 is a function mapping o, into
{1, 2,3, -, m}. We shall show that we can select a finite set F = F(n, #) such
that

(i) (k+077 ) € o, for each k € F,

(k)

(ii) G +01r(j)) n (k+on(k)) =¢ forall jand k in F (j # k),

and
(i) |o, \ U (k+°7r(k)) <e Ionl.
keF
To see this, let k; = 0, so that k) + 0 )= {0, 1, 2, ---, w(k;) - 1}. Let
kZ = ﬂ(kl), so that k2+07r(k2) = {Tf(kl), ﬂ(kl) + 1, sty ﬂ(kl) +’1T(k2) - 1} Let

j
ks = 7(k;) +7(k;). Continue the procedure, picking kj;) = 27521 n(k;) until

t
n-m<2s;_, nlk;) <n, and put F = {k,, k,, -, ki}. Then F has the required
properties.

Definition 3.4. A summing sequence {S,} for a countable amenable semigroup
G is said to be left-uniform if, for every € >0 and every positive integer m, there
exists a positive integer ng = ng(m, g€) such that to every n > ng and every function
7 mapping S, into {1, 2, -*-, m} there corresponds a finite set F = F(n, 7) in S,
such that '

(i) g85(g) & Sy for each g in F,
(ii) gSy(g) N WSy, =@ forall g hin F (g # h),

(iii)

<el|s,].

s, \ U 85u(g)
gGF

The property of being left-uniform places stringent requirements on the summing
sequence; our next example provides a summing sequence (other than {on}) that is
left-uniform.

Let G be a countable, locally finite group, that is, a countable group each of
whose finite subsets generates a finite subgroup. It is well known that G is amen-
able. To construct a summing sequence for G, let {Fn} be an increasing sequence

(o]
of finite subsets of G, with F = {e}, and such that G = Un:I F_ . Let S, be the

finite subgroup generated by F . It is easy to see that {Sn} is a summing se-
guence for G.
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The proof that {S,} is left-uniform requires some labor. Let m and n be
positive integers (n > m), and let 7 be any function mapping S, into {1, 2, ---, m}.
Note first that gS”(g) C S, for each g in S, , since gSﬂ(g) is a left coset of the
subgroup Sp(,) of S;. Note also that if g and h are in S, and 7(g) = w(h), then
either 857(g) = hSym) or 8S4(g) N hSq(n) = @, since these sets are left cosets of the
same subgroup. Now, for k=1, 2, ---, m, define

Ay, = {ge S n(g) =k},

m
so that S, = U k=1 Ak (disjoint). Let

B = {B:BCA, ;8 heB, g#h=gS, NhS,,, = B},
and pick B,, in %, so that |B,,| is maximal. We observe that

Ay, C U g5m;
gEBm

for if there were a gy in A | \ UgE By, gS,,, then B:'rn = {go} U B,, would be a
subset of A ,, and if h were in B,,, then the relation hS,, = gy S,, would require
that gy € hS,, © Ug€ B, g5, a contradiction. Therefore it can only be that

hS,, N g9Sy, = @ and By, is in &,,. But this contradicts the maximality of ]Bml .
Therefore A A C U g€ B, gS,, -

Next, let

Bl = {B: BcA ;)\ U g8, ;8 heB,g#h=>¢g8 NhS__,|~= ¢},
ge€B,
and choose a B,,_; in &#,,_; such that IBm—ll is maximal.
For each g in B, and h in B,,_;, the set gS,,, N hS,,_; must be empty, for
otherwise gS,, N hS, # @, so that gS,, =hS,, and h € Ug€ B, 85m, contrary to

the definition of % ,,_;. Furthermore,

m
Am-l c U U gsi:
i=m-1 g€ By

as the proof above with minor modifications will show.
Continue the procedure; for k=m - 1, m - 2, ---, 2, 1, select a set

m
By C A\ Ui=k+1 Uge B, gS; that satisfies the conditions

gSx N hS; = @ whenever g€ Bx,he B (g# h and k <j <m)

and



SUMMING SEQUENCES FOR AMENABLE SEMIGROUPS 179

m
Ay C Uu u gS; .

i=k g€ B;

m
Put F = Uk:1 By . Then
(i) gS7(g) € Sy for each g in F,

(i1) gSy(g) N hSyn) = @ forall g, he F (g # h),

and

5

m
(111) Sn = U Ak E:_ U gsl = U gs'ﬂ'(g) E Sn'
k:]_ l geBi

geF

"

i

Consequently, equality holds and |Sn\ UgeF gSﬂ(g)I = 0. Therefore {Sn} is
left-uniform.

It is easy to see that the same summing sequence nearly divides each summing
sequence of finite subgroups of G.

As a final example, suppose that G is a finitely generated amenable semigroup
with identity e and that {S,} is a sequence of finite subsets of G such that
S, C Sps1 T G. It is easy to see that {S,} is a summing sequence for G if and only
if

lim |gS,\ S,l/|8nl = lim |S,g\ Su|/|S4] =0,

n— oo n-—oo

for each g in each generating set F. From this it follows immediately that if F is
a finite generating set for G that contains e, then { F1} is a summing sequence for
G if and only if

lim |[F™/|F"| = 1,

n— oo

or equivalently, if and only if

lim |F®TI\ F°|/]|F?| = 0.

n —oo

For example, let G be the free product of two groups of order 2, and let a and
b denote the generators of the two groups. This is the only nontrivial free product of
groups that is amenable. Let F ={e, a, b}. Then anHf’___ |F2| + 2, hence {Fn}
is a summing sequence for G.

REFERENCES

1. M. M. Day, Amenable semigroups. Illinois J. Math. 1 (1957), 509-544.

2. I. Namioka, Fdlner's conditions for amenable semi-groups. Math. Scand. 15
(1964), 18-28.

University of California, Davis, California
, and
Southern Oregon College, Ashland, Oregon 97520






