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1. INTRODUCTION

We denote by o# a fixed, separable, infinite-dimensional, complex Hilbert
space, and by Z () the algebra of all (bounded, linear) operators on . A (closed)
subspace of & will be said to be hypervinvariant for an operator T on H if it is an
invariant subspace for every operator that commutes with T. The question whether
every operator on & has a nontrivial hyperinvariant subspace is one of the most
difficult problems in the theory of invariant subspaces.

Our principal objective in the present paper is to derive the existence of non-
trivial hyperinvariant subspaces for operators whose lattices of invariant subspaces
have a certain topological property (Theorem 2.2). Subsequently, we apply this re-
sult to prove that an operator whose invariant-subspace lattice satisfies a certain
purely lattice-theoretic condition has a nontrivial hyperinvariant subspace (Theorem
3.1).

For each T in Z(o¢), we shall denote by Lat T the lattice of invariant sub-
spaces of T. We assume that Lat T is equipped with the (relative) topology induced
by the following metric on the collection of all subspaces of o#. If .# and A4 are
subspaces, and P_, and P , denote the (orthogonal) projections onto .# and ¥,
respectively, then the distance between the subspaces .# and 4 is defined by
6(Al, N) = “ Py-Py || . The study of the topological properties of Lat T consid-

ered as a metric space under the metric 6 was initiated in [2]. There it was proved
that if .# is an inaccessible point of Lat T (that is, if the arcwise connected com-
ponent of . in Lat T is the singleton {ou }), then .# is a hyperinvariant subspace
for the operator T. In particular, if .« is an isolated point of Lat T, then .# is a
hyperinvariant subspace for T. An interesting consequence of this is the following
result proved in [5] by different methods, and involving only a lattice-theoretic con-
dition. If .« is a pinch point of Lat T (that is, if 0 # A # o and .« is comparable
with every subspace in Lat T), then .# is a nontrivial hyperinvariant subspace of T
(proof: 6(.4, A4) =1 for every A4 in Lat T different from .#). A generalization of
this result appeared in [3] and reads as follows. If A is a countable subset of Lat T
such that every .« in (Lat T) \ A is comparable with each subspace in A, then
every .# in A is a hyperinvariant subspace for the operator T. These results pro-
vide a point of departure for the present note, and as will be seen later, all of them
are easy corollaries of our main result (Theorem 2.2).

The motivating idea of this note is to find interesting and useful topological con-
ditions on the invariant-subspace lattice of an operator T in order to guarantee that
T has nontrivial hyperinvariant subspaces. Since there may exist operators T in
Z () such that Lat T = {(0), ¢}, one might question the utility of such hyperin-
variant-subspace theorems; but it should be remembered that there are several
interesting classes of operators (for example, the compact operators) for which the
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invariant-subspace problem is solved, but for which the hyperinvariant-subspace
problem is open. Our present contribution is to the study of such classes of opera-
tors. For example, we show (Corollary 3.4) that if T is any operator such that

Lat T is (lattice) isomorphic to the unit square, then T has a nontrivial hyperinvar-
iant subspace.

2. A LOCAL PROPERTY

The following lemma, whose proof is given in [2], will be central to our
purposes.

LEMMA 2.1. Let R and S be invertible opevators in (), and let M be a
subspace of o¢. Then

oA, St) < (R + s PR - 8] -

The following theorem, which is our main result, gives a sufficient condition of
a local, topological nature that an operator have a nontrivial hyperinvariant sub-
space.

THEOREM 2.2. Let T be an operatoy on . If Q is an open subset of Lat T,
and T is an arcwise connected component of Lat T, then the subspaces § = $(Q, T)
and A = #(Q, T) defined by

g= N w, x= N

AMeQNT AMeQNT

are hyperinvariant subspaces for T. Thus, if there exist Q and T such that either
J(Q, T) or #(Q, I) is different from (0) and H, then T has a nontvivial hyper-
invariant subspace.

Proof. Let S be any fixed nonzero operator in Z(s#) that commutes with T,
and let ./ be any subspace in € N I". To prove that 4 = 4(R, I') and & = #(Q, T)
are hyperinvariant for T, it suffices to show that S C . and that S.#C ¥, be-
cause this implies that

sgc [ w=g ana s.7{=s( V Urz)c \V swrcu.

AeQNT AeQNT MeQNT

To this end, let A be any complex number satisfying the condition |h| < 1/2 ”S”,
and observe that (by Lemma 2.1)

o(M, (1 -28).t) < (1 + |1 -2 LD x| [Is]
<[+ - I IsDt1a sl < 3faf sl
and that
0(a, (1 -a8)ytow) < (+]|1-as|)[a-x9)1| |a] IIs]] < 5|x] s -

For all sufficiently small €, the subspaces (1 - €5).# and (1 - £S)"!.# clearly lie
in & N I'. Thus, for such ¢,
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S C JV1-e8)f cuV(1-eS)(1-eS)ylu = M,

and S/ C MV (1 - £S)M C H. Since the last assertion of the theorem is obvious,
the proof is complete.

COROLLARY 2.3. If T is any avcwise connected component of Lat T, then the

subspaces \/U/, e A and n M eT S are hyperinvariant subspaces for the oper-
ator T.

COROLLARY 2.4 (Douglas and Pearcy). If .« is an inaccessible point of
Lat T, then .« is a hyperinvariant subspace for the opervator T.

THEOREM 2.5. Let T belong to (). If A is a lotally disconnected, open
subset of Lat T, then every subspace in A is a hypevinvaviant subspace for T. In
particular, if A is a countable, open subset of Lat T, then each element of A is a
hyperinvariant subspace for T.

Proof. By virtue of Corollary 2.4, it is enough to prove that each subspace in A
is an inaccessible point of Lat T. To this end, let v be any continuous function from
the closed interval [0, 1] into Lat T such that ¥(0) € A. Also, let s be the su-
premum of the set

{t € [0, 1]: ¥(r) = y(0) whenever 0 <r <t}.

In order to prove that ¢(0) is an inaccessible point of Lat T, it clearly suffices to
show that s = 1. If s < 1, then it follows from the definition of the number s, the
continuity of the function 7y, and the openness of the set A that there exists a posi-
tive number € < 1 - s such that y([s, s +&]) C A, and (s) # v(s +¢). This im-
plies that the arcwise connected component of the point ¢(0) in the topological space
A (with the topology induced by that of Lat T) is different from the singleton {y(0)},
contradicting the fact that A is totally disconnected. Finally, recalling that Lat T
is a complete metric space, we readily see that each countable open subset of Lat T
is totally disconnected.

COROLLARY 2.6 (Fillmore, Rosenthal, and Stampfli). Suppose that A is a
countable subset of Lat T such that every subspace in A is comparable with each
subspace in the complement of A. Then every subspace in A is hyperinvaviant
Jor T.

Proof. If A and 4 are two subspaces of # such that . C ., then
0(, #)=1. Thus (., #) =1 for every .« in A and every .4 in the comple-
ment of A. The desired conclusion follows from Theorem 2.5.

3. LATTICE-THEORETIC CONDITIONS

In this section, we give some lattice-theoretic conditions on the invariant-
subspace lattice of an operator that are sufficient to ensure the existence of non-
trivial hyperinvariant subspaces for the operator.

THEOREM 3.1. Let T belong to (o), and suppose that there exist two non-
zervo, proper subspaces Ay and M, in Lat T such that )| C M, and such that
every subspace in Lat T is comparable wilh either (| ov A,. Then T has a
nontrivial hypevinvariant subspace.

Proof. For j=1, 2, let 5 be the open ball in Lat T with center at .#; and
radius 1, and let I‘j be the arcwise connected component of Lat T containing 4 j-
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If /e Q) NI and 4« # 1, then A cannot be comparable with .#7, and
therefore .# must be comparable with %, . If 4 O 45, then D A, which is
impossible; therefore # C ./, . This shows that

x= N uc M,
u//Eanrl

and a similar argument shows that

g = n A D -

It follows immediately from Theorem 2.2 that ¢ and & are nontrivial hyperinvari-
ant subspaces for T.

COROLLARY 3.2. Let T belong to Z(), and suppose that Lat T is iso-
movrphic to the product of two complete lattices A1 and A2, one of which has a pinch
point., Then T has a nontrivial hyperinvariant subspace.

Proof. We recall that the ordering in the lattice A; X A, is defined as follows.
Let J; and o be elements in Aj (j = 1, 2). Then (J;, o#) < (F,, ;) if and
only if J; < %, and & 1< . Suppose, without loss of generality, that A; con-
tains a pinch point 4, and set .#; = (., 0) and ./, = (A, 1). Then .« and >
satisfy the hypotheses of Theorem 3.1, and hence T has a nontrivial hyperinvariant
subspace.

COROLLARY 3.3. If the lattice of an operator T is isomovphic to the product
of a complete lattice and a nontrivial chain, then T has a nontrivial hypervinvariant
subspace.

The following corollary provides a concrete application of the preceding results.

COROLLARY 3.4. If the lattice of an operator T in ZL() is (lattice-) iso-
movphic to the (solid) unit squave, then T has a nontrivial hyperinvariant subspace.

Examples of operators whose lattice of invariant subspaces is isomorphic to the
unit square are easy to obtain. If A and B are operators on # such that the spec-
trum of A is “very disjoint” from the spectrum of B, and both Lat A and Lat B are
isomorphic to the unit interval, then Lat (A (P B) is isomorphic to the unit square [2,
Theorem 6]. A less trivial example of an operator whose invariant subspace lattice
is the unit square is given in [6]. The operator discussed there is T=VV @ -VV,
where V is the Volterra integral operator. Unfortunately, the existence of a non-
trivial hyperinvariant subspace for these examples can be deduced without recourse
to Corollary 3.4. In fact, it follows from [1, Theorem 2.4] that the direct sum of two
operators has a nontrivial hyperinvariant subspace whenever one of them has this
property. Thus it would be of interest to find an example of an operator T on &
such that Lat T is the unit square and such that T has no nontrivial complemented
invariant subspaces. However, it is not completely clear that such an operator T
exists, because if the algebraic sum of the subspaces .# and .# in Lat T corre-
sponding to (0, 1) and (1, 0), respectively, were closed, then .# and .# would be
complementary invariant subspaces for T. Whether .# + # is necessarily closed
we are at present unable to say.
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4. EXTENSIONS AND OPEN QUESTIONS

Perusal of the preceding proofs shows that the results stated in Sections 2 and 3
are valid in a considerably more general context. It is easy to see that the Hilbert-
space structure plays no role, so that & might as well have been taken to be a
complex Banach space &. Furthermore, we could have replaced the single operator
T with an arbitrary algebra  of operators on 2. The definition of Lat & is then
obvious, as well as what it means to say that a subspace # of & is hyperinvariant
for . It is not obvious what function should play the role of the metric 6, but it
turns out (see [4]) that there is a suitable metric 5, called the “gap between sub-
spaces”, with which one can topologize Lat . (By use of this metric, most of the
results of [2] were extended to complex Banach spaces, in [4].)

Using the results of [4], one sees easily that the results in Sections 2 and 3 of
the present note remain valid with ¢ and T replaced by 2 and ., and that the
proofs remain the same. We leave to the interested reader the task of formulating
the more general results and verifying the validity of the proofs.

It would be interesting to consider “famila.r-looking” lattices L and to ask
whether there exists an operator T in Z(s#) such that Lat T = L, and in case the
answer is affirmative, whether T has a nontrivial hyperinvariant subspace. Sup-
pose, for example, that 'L is the (solid) triangle with the vertices (0, 0), (1, 0), and
(1, 1). In this case, we do not know the answer to the first question; but an easy ap-
plication of Theorem 3.1 shows that if there exists an operator T with Lat T = L,
then T has a nontrivial hyperinvariant subspace. What happens if L is the union of
the diagonals of the unit square? -
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