ON THE ASYMPTOTIC BEHAVIOR OF FUNCTIONS
HOLOMORPHIC IN THE UNIT DISC

Frank B. Ryan

An asymptotic value of a function f meromorphic in D= { |z| < 1} is defined
as a limit value @ of f(z) as |z| — 1 on an arc y in D. Interms of the associated
Riemann surface # over the extended complex w-plane %, the concept of asympto-
tic value has the following geometric interpretation: 7y is the inverse image of a
noncompact arc I" on & whose projection into 2 ends at the point w = a.

A set constitutes the asymptotic set of some meromorphic function f (that is,
the set of asymptotic values of f) if and only if it is an analytic subset (possibly
empty) of 9 (see [1], [2]).

The characterization of the asymptoti¢ sets of holomorphic functions is more
difficult, because many analytic sets in 2 must be excluded (see [4], [5]). The fol-
lowing theorem gives a trivial necessary condition. In the statement of the theorem,
0G denotes the boundary of G, and the bar ~ indicates closure. We can easily ver-
ify the necessity of the condition by defining G as the image of D under f and using
properties of the Riemann surface of f (see [4]).

THEOREM. If A is the asymptotic sel of a function f holomorphic in D, then
A is an analytic set and theve exists a domain G such that:

(1) oG Cc A~ Cc G,
(2) if € € 3G is inaccessible from G, then £ ¢ A,
(3) if € € 8G - A, then every avc in G to £ meets A.

The complexities of the holomorphic case are illustrated by the following exam-
ple, which shows that the condition in the theorem is not sufficient. At the same
time, the example answers a question posed by the author [3]. There exists an ana-
lytic subset A of {|W| < 1} that meets every arc in {lw] < 1} ending at a point
of {IW] =1} but is not the asymptotic set of any function holomorphic in D.

To construct the example, let S be the finite domain bounded by the triangle
with vertices at (0, 1/4), (0, -1/4), and (1, 0). Define

c,=1{|lw|=1-2"} anda c_ _ ={|lw[=1-2"+2-m},

n n,

Now put

A, =1{c,-stu U {Cc, ., NS}
m>n+2 '

and

A=U a,u{o}.
n=1
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It is clear that A is a Borel set, hence analytic [6]. Moreover, A is a subset of
{|w| < 1} that meets every arc in {|w| < 1} endingat {|w| = 1}.

The inclusion of {0} in the set A ensures that if A is the asymptotic set of a
function f holomorphic in D, then the Riemann surface ¥ of f covers
{|w| < 1} - A. This implies the existence of a noncompact arc I' on # whose
projection is an arc in {]wl < 1} that ends at w = 1. To obtain I, define
w,=1-2" andlet y; beanarcin S- A from w=1/4 to w,. Since w; ¢ A, v;
can he lifted completely into #, determining there a compact arc I'; ending at a
point P; of # over w;. Now ¥ contains a neighborhood of P, and w, ¢ A; con-
sequently, some arc 7y, joining w; to w, in S can be lifted completely into ¥,
determining there an arc I', beginning at P, and ending at a point P, of # over
w, . Since w, ¢ A for any n, we can repeat the construction. The result is a non-
compactarc I'=T;, U T, U --- on ¥ whose projection y =y; Uy, U - is an arc
in S ending at w = 1; this implies 1 € A, a contradiction. Consequently, A cannot
be the asymptotic set of a function holomorphic in D.

It is interesting to note that a simple alteration in the definition of A produces
an analytic set A' that has the same pathological behavior as A, but can be realized
as the asymptotic set of a function holomorphic in D. Specifically, set

Com = {|lw]=1-27-2"m},
and put
Al ={c,-8S}tu U {Ch,m NS}

m>n+t2
and

o0

a=U a;.
n=1

Using as sheets the finite domains bounded by the A, , we can construct a Riemann
surface over the unit disc such that A' is the asymptotic set of the corresponding
holomorphic function in D.
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