APPLICATIONS OF EXTREME-POINT THEORY
TO UNIVALENT FUNCTIONS

Thomas H. MacGregor

1. INTRODUCTION

We shall show how the knowledge of the extreme points of a family of analytic
functions can be an effective means of solving extremal problems. The extremal
problems considered are not always linear, and our families consist primarily of
various kinds of univalent functions. The most striking of our new results deal with
close-to-convex functions. We indicate how our approach is useful in a variety of
situations, and how it affords a systematic treatment of several classical results in
the theory of univalent functions.

Let . denote the set of all functions analytic in the unit disk A = {z: |z| < 1}.
Then «« is a locally convex linear topological space with respect to the topology
given by uniform convergence on compact subsets of A. Let S denote the subset of
«Z consisting of the univalent functions that satisfy the normalization conditions
£(0) = 0 and £'(0) = 1. Also, let St, K, C, and R denote the subsets of S consisting
of starlike, convex, close-to-convex, and real mappings, respectively, so that, for
example, f € St or f ¢ K if the domain f(A) is starlike (with respect to the origin)
or convex, and f € R if f(z) is real when z is real (-1 < z < 1). The family C
was introduced in [10] by W. Kaplan, and it can be described in terms of a geometric
mapping property. Analytically, a function f is in C if there exist a function g and
a complex number a such that ag € St and % {zf'(z)/g(z)} >0 for |z| <1. We
recall the inclusion relations K C St C C,

We shall discuss some observations made in [3] by L. Brickman, D. R. Wilken,
and this author. Let $B denote the closed convex hull of the set B; also, let
€ (9 B) denote the extreme points of $B. Each of the four families St, K, C, and R
is locally uniformly bounded, because S has this property. In fact, each family is
even compact. This implies that $St, HK, HC, and § R are compact. Conse-
quently (see [5, p. 440])

G(pst) c st, c(HK) c K, ¢(pC)c C, ¢c(HR) C R.

These four sets of extreme points were completely determined in [3], as fol-
lows:

c(pst) = {f: f(z) = 2/(1 - €2)® (|e] = 1)},

G(HK) = {f: f(z) = z/(1 - ez) (|e] =1},

€(HC) = {f: f(z)=[z—%(8+6)zzjl/[1 - 62]% (Je| =8| =1, ¢ = 6)},
¢(HR) = {f:f(z) =z/(1 +bz+22) (-2<b<2)}.
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It was also shown there that §K consists of the functions f that are analytic in
A and satisfy the conditions % {f(z)/z} >1/2, £(0) =0, and £'(0) = 1. Also, R
consists of the class T of typlcally real functions, 1ntr0duced in [22] by W. Rogo-
sinski; that is, .

PR =T = {f:f e, £(0)=0, £'(0) =1, and
f(z) is real if and only if z isreal (-1 <z <1)}.
If J is a complex-valued, continuous, linear functional on ¢, then

b © max -|J(f)| = max |I(f)] = max [I@)],
‘ L feHF fe F ' fECG(HF)

where & denotes any one of the families St, K, C, and R. This was pointed out in
[3, pp. 99 and 100] in slightly different form; and we shall use similar relations in
some of the developments here. The exact determination of the set €(§ #) for
each of these families shows that the problem of maximizing ,IJ (f)| over any one of
them is reduced to the problem of maximizing |J |, where J becomes an analytic
function of one or two variables represented by the parameters €, 6, and b. By this
technique, one can deduce various known results about linear. extremal problems
over St, K, C, or R (see [3, p. 99]); we hope this approach will also lead to the .
solutlon of other linear problems.

Our approach gains further significance from its applicability to certain non-
linear extremal problems. We also use our method to solve extremal problems
over families of analytic functions related to St, K, C, or R. In particular, we ob-
tain the following two specific results. If f € C and 0 <r <1, then

2

1 | f(reif)| do <

27

_rz‘

If f(z)= 20, 13. z™ in A, and if F € C and |f(z)] <|Fz)| in A, then Ianlgn
for n=1, 2,

The f1rst result quoted above was proved by M. S. Robertson in [18] for the
smaller class St. It is an open problem whether it holds for all f in S. In this
direction, it is known that

1 2m i T
1 i _r
27TSO If(re )|de<1_r if fe$S

(see [8, p. 10]), and this has been improved (for r > r() by I. E. Bazilevi€ in [1] to

1 an . r
E—S |f(re19)|d6 <
17 (4] 1-r

) +0.55.

We also obtain sharp inequalities for each LP-means of functions in C for

p=1,2, 3, ---. In addition, we find the precise upper bounds on the LP-means of
the nth derivative of functions in C for n=1, 2, - and all p > 1. For the case
where the majorant function F belongs to St or R, the author proved the inequality
|an| < n in an earlier paper [14].
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2. COEFFICIENT ESTIMATES FOR FUNCTIONS ASSOCIATED WITH
UNIVALENT FUNCTIONS THROUGH MAJORIZATION
OR THROUGH SUBORDINATION

Suppose that f and g are analytic in A and |f(z)| < |g(z)| for each z in A. We
then say that f is majorized by g in A. In [14], we conjectured that if

f(z) = Eo::zl a,z" is majorized by a function g in S, then |ay| <n for n=1, 2, ---.
This generalization of the Bieberbach conjecture was proved for the special cases
where g € St (more generally, where g is spiral-like) or g € T. We now prove it
for the case where g € C.

Let ¢ denote a compact subset of S, and let ¥ denote the subset of  con-
sisting of the functions f that are majorized in A by some g in ¥. The functions f
and g are then related by a relation f = ¢g, where ¢ is an analytic function in A
such that |¢(z)| < 1. The inclusion relation ¢ C S implies that ¢ is locally uni-
formly bounded; therefore, & is locally uniformly bounded. Hence, § # is compact
and, in particular, this implies that €(H&F) C .

To see that & is even compact, suppose that {f,} is a sequence in &, and
write f,, = ¢, g, . After extracting a subsequence, we may assume that g, — g,
where g € ¥. Likewise, we may assume that ¢, — ¢. The limits g, — g and
¢, — ¢ are uniform for |z| <r (0<r<1). We need only show that ¢, g, — ¢g=1
uniformly in |z| Lr,since fe . ¥ |z| < r, then

|on(2) gn(2z) - 0(2) g(z)| < |onl(z)gn(z) - dn(2)g(2)| + |dn(z) g(z) - &(z) g(z)]
< |lgn(2) - g(z)| +M(r) |¢(2) - ¢(z)] ,
where M(r) = max |, |g(z)|. The compactness of ¥ is now clear.
Let J be a complex-valued, continuous, linear functional on «¢, and let

Fo={t:feH5F and [J()] = max |I(F)|}.
FepF

Because the class #( is compact and nonvoid, it contains an extremal element [5,
p. 439]. The set % is an extremal set, because of the linearity of J; that is, if
0<t<1and tf+(1-t)ge Fp,then f € F3 and g € Fg. To see this, let

M= maxp ¢ g7 |J(F)|, and assume that tf +(1- t)g € F, where f € 5F and

g € D& ; then
M = |[J(tf+ (1 - t)g)| = |tIE) + (1 - t)I(e)]
<t|IO|+Q-0)|Ig| < tM+(1-t)M = M.

Thus, |J()| = |J{g)| = M, and therefore f ¢ F4 and g € F,. This implies that
fo € (9 F); that is, there exists an extreme point that maximizes |J(f)| over $&.
Combining this with some of the previous observations, we conclude that

max |J(f)| = max |J(f)]| = max |3()].
fe & fepF fe 6(9F)

Suppose that f € C(HF). Then f € ¥, and thus f = ¢g, where g € ¥ and ¢ is

¢
analytic in A and satisfies the inequality |¢(z)| < 1. We claim that g € G ($ 9).
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Otherwise, we may write g =th + (1.- t)k, where 0 <t <1, h # k, and h and k be-
long to $¢%. This implies that f =tf; + (1 - t)f, , where f; = ¢h and f, = ¢k. Since
h and k belong to 9$ ¢, it follows that f; and f, belong to § #. The equation

0= -;—g + %(—g) shows that the function 0 does not belong to €($F), and thus ¢ # 0.

By the uniqueness theorem for analytic functions, the conditions ¢ # 0 and h # k
imply that f; # f, . Thus, the relation f =tf, + (1- t)f2 actually contradicts that
fe ¢(HF).

The arguments above show that max¢e g |J(f)| = maxg, F, |J(f)|, where &,
consists of the functions f in ¥ for which there exist analytic functions g and ¢
(ge c(H9), |¢(z)] <1 in A) such that f = ¢g.

©0
LEMMA. Let f(z) = (1 - z)1/2 = 23 _¢ by 2 (|z] < 1), and let
n .
fa(z) = Ek=0 bkzk. Then |fn(z)l_§ 1éf |z - %‘ _<_% n=0,1,2, ).

Proof. The coefficients of the power series for f are given by the binomial

series, and we simply note that bg =1, b; = -1/2, and b, <0 for n=2, 3, ---.

Let ¢, = -b, for n > 2, and recall that the series converges at z = 1 as well as
for |z| <'1. By the maximum-modulus theorem, we need only show that |f,(z)| <1

if Iz - %l = -;—, and thereafter we may set z =%+%ei3 = el0/2¢os 6/2 = el?®cos a,

where « is real. Now
n

+ 20 o |z]*
k=2

< 1--1-z

2 <fi-3

|£,(2)] = Il i cp 2zt - C3Z3 - - cpzt

5 1
+ 2 ck]zlk = II—EZ

+1-§h|_u_|zpuz
k=2

1
Sll—zz

3 1/2 1
= (l—zcosza) +1-—2-|cosoz|-(1—Icosal)lfz.
It is an easy matter to verify the inequality

1/2
(1—%ﬂ) +1—%x-u—ﬂ”231 for 0 <x<1.

THEOREM 1. Suppose that 1(z) = 2J.._, a_z" is analytic and that
|#(z)| < |g(z)| for |z| <1, where g is close-to-convex for |z| <1, g(0) =0, and
g'(0) = 1. Then |an <n for n=1,2,3, .

Proof. Our introductory remarks show that we need only prove that |a.n[ <n,

assuming that f = ¢g, where ¢ is analytic, |¢(z)| < 1,and g € €(HC). According
to the result obtained in [3], g must be a function of the form

g(z) = [z-—é—(s+6)zz:|/[1— 6z]>, where |e| = |6] =1 and & # 6.

In [14], we showed that the relation f = ¢g with |¢(z)| < 1 always implies that
lan] <1+ |B3|2 + IB512 + oo+ IBZn—llz , where
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Glz) = Vg(z?) = 21 B, _,z2*1 (B, =1).

n=1

We shall obtain the conclusion |an| < n by showing that |B2n_1| L1 for
n=1,2,3, -+, and we need do this only for the functions g mentioned above.

Write € = a6, so that |a| =1 and a # 1, and choose 7 so that n? = 6. If the
function H is defined by the equation zH(z2) = nG(z/n), then

H@) = (1- b2)}/2/(1 - 2),

where b = (1+2)/2. We also find that D, = by +b; b + by b% + ==+ + b_b", if the

power series for H is H(z) = E::O D, z" and the numbers {b,} are defined as in
the lemma. By the lemma, we conclude that |Dy| < 1, since Dy, = Dy(b) may be
identified with f, and b satisfies the condition |b - 1/2| = 1/2. Also,

|B2n_1| = |Dn_1|, because |77| = 1; and this completes the proof.

Extreme-point theory is well adapted to a number of problems illustrated by
Theorem 1. For example, in [14] we showed that |a,| <n if f is majorized by
some function g in St. This result is contained in Theorem 1; but it can also be
viewed as a consequence of the fact that if g(z) = z/(1 - £2)2 (|e| = 1), then
G(z) = Vg(z2) = z/(1 - €22) and thus |B,,_;| =1 for all n. The proof uses the fact
that the set of functions g described above is precisely the set G(§ St).

If £ is majorized by some function g in K, then to determine max | an| we need

o0
only consider functions of the form f = ¢g, where ¢(z) = ano c,z" is analytic and

|#(z)] <1 for |z| <1, and where g has the form g(z) = z/(1 - €2) (]e] = 1).
Multiplying the power series for ¢ and g, we find that

a, =cge? l+c e 2+, pE e, = e Y eg+e, v e, ¥2 e, Y,
where y = 1/¢ and thus |'y| = 1. This clearly shows that the problem of maximizing
|a,| over {f} is equivalent to the problem of maximizing the modulus of the par-
tial sums of the power series of an arbitrary bounded analytic function ¢. Thus, by
Landau’s bound on the partial sums (see [12, p. 20]), |a,| < G,,, a relation that our

: proof in [14] fails to make clear. We also note that our earlier arguments imply that
these results hold not only if g € ¢, but also for the larger class where ge $9.
For example, it follows that |a,| < G, if f is majorized by a function g that is
analytic in A and satisfies the conditions %{g(z)/z} > 1/2, g(0) = 0, and g'(0) = 1.
This more general result was indicated by some of the considerations of Robertson
in [20].

Extreme-point theory can also be applied to linear extremal problems asso-
ciated with subordination. Suppose that ¢ is a compact subset of S, and that # is
the class of functions subordinate to some function in 4. That is, suppose that f is
analytic in A and f(z) = g(¢(z)), where ¢ is analytic in A, |¢(z)l < 1, ¢(0) = 0, and
g € 9. Since ¢ is locally uniformly bounded and |¢(z)] < '|z| by Schwarz’s lemma,
it follows that & is locally uniformly bounded (in fact, |f(z)| < |z|/(1 - |z|)2 if
f e #). Thus, $F is compact, and again we find that C(H ¥ ) C #.

We can also show that & is compact. The argument is similar to the one given
for majorization. We need only show that if g, — g and ¢, — ¢ uniformly for
|z| < r, then |gn(¢n(z)) - g(ci)n(z))l and |g(¢n(z)) - g(¢(z))| can be made arbitrarily
small (for |z| <r) with large n. The first expression is small because the
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convergence g, — g is uniform and |¢n(z)| < |z] . The second expression is small
because the convergence ¢, — ¢ is uniform, ¢, and ¢ satisfy the conditions of
Schwarz’s lemma, and the family ¢ is equicontinuous.

Suppose that f € G(H F). Then f € ¥, and as above we may write f(z) = g(¢(z)).
We claim that either £ =0 or g e G(9H ¢). Suppose that, to the contrary, f # 0 and
g¢d €(H9). Then g=th+ (1 - tk, where 0 <t <1, h#k, and h and k belong to
$% . This implies that

f=tf;+(1-1t)d,, where £i(z) = h(¢(z)) and f,(z) = k(¢(z)).

Since h € $ 9, it follows that f) € $ &, because of Schwarz’s lemma and the mean-
ingsof $9 and $F. Likewise, f, € §%. Because f # 0, we see that ¢ # 0, and
thus ¢ is an open map. Therefore, f; # f,, since otherwise the relation h(w) = k(w)
would hold on some open set, and this would imply that h = k.

Let J be any complex-valued, continuous, linear functional on . Since
J(0) = 0, the previous remarks imply that

max |J(f)| = max [J@)| = max |3()]
feg feHF fEC(DF)

max { |J(f)|: f = g(¢), where g € €(H¥), ¢ is analytic in A,

il

|#(z)| <1, and ¢(0) =0} .

We shall illustrate this technique by showing that the inequality |a,| < n holds
for the coefficients of a function f subordinate to some function g in St (this is not
new; it was proved by W. Rogosinski in [23]). We may assume that g has the form
g(z) = z/(1 - €£2)2, where IST = 1, since these are the functions in € ($St). Then

1+¢€z

i(z) = $(X#(z) - 1),  where plz) = T2 .

Since the function q(z) = p(¢(z)) = 1 + EOI::l a,z" satisfies the condition %t q(z) > 0,
it follows that |qn| <L 2. From the inequality [qk] <2 (k=1,2, -, n), we deduce
that |an| < n. The inequality lanl < n for the coefficients of functions subordinate
to g(z) = z/(1 - z)}?¢ (or, equivalently, functions normalized by £(0) = 0 and not as-
suming the real numbers w < -1/4 in A) was also proved in [13, p. 493] by Little-
wood and in [23, p. 65] by Rogosinski. We now see that this simple situation essen-
tially proves the inequality for functions subordinate to some function in St.

Similar observations can be made about other results contained in [23]. We
call attention to a related paper [19] by Robertson, who proved that the inequality
|a nl < n holds for the coefficients of a function subordinate to some function in C.

Robertson [20] introduced the concept of quasi-subordination, which generalizes
both majorization and subordination. If f and g are analytic in A, then f is quasi-
subordinate to g in A if there exist two analytic functions ¢ and w such that
|o(z)| <1, |w(z)] <1, w(0) =0, and £(z) = ¢(z) g(w(z)). Our earlier arguments are
also applicable to this situation. We find that in order to solve a linear extremal
problem over the class {f}, we may assume in the relation above between f and g
that g is an extreme point (at least when the family {g} is compact). In [20],
Robertson proved several coefficient inequalities associated with quasi-subordina-
tion. To these results we can now add that our Theorem 1 holds where the relation
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between f and g is quasi-subordination. The proof needs only be given for g
in €(9H C). With this simplification, we find that the argument in the proof of .
Theorem 1 again shows that |B2n_1[ < 1. To carry out this argument, we must
take advantage of Theorems 3 and 9 in [20] as used there by Robertson to prove .
Theorem 11.

There are other indicationé that this approach has a wide range of applications.
In his dissertation, David Hallenbeck considers some problems in this direction.

For example, he shows that if f(z) = Z}:zl a,z" is subordinate to g in A and if

g € St and g is odd, then |an| <1 for n=1,2, ---. Besides the direct coefficient
problems mentioned here, applications of this method should be of general conse-
quence, since J can be any continuous linear functional. )

3. ESTIMATES ON LP-MEANS OF UNIVALENT FUNCTIONS

Corresponding to each analytic function in A, we let

27 L :
J(f) = 51; |f(relf)|P d6, where 0<r <1 and p>0.
2 O . N

We shall be interested in maximizing J(f) over various families of functions uni-
valent in A. The problems we solve depend on our knowledge of the extreme points
for the family. Our method is generally applicable, at least as an initial simplifica-
tion of such problems. It will be more convenient to consider the norm

2 . 1/p
lel = 3§ Jewei)lpas |

0

instead of J(f).

Suppose that # is a compact subset of & (so that & is closed and locally uni-
formly bounded). Then $# is compact and M = max; . SF ||f|| exists, since |f|
is a continuous functional. The set

Fo=1{f:fe §F and ||f|| = M}

is an extremal subset of $&; that is, if tg+ (1 - t)h e F,, where 0<t <1 and g
and h belong to 9%, then g € F9 and h € F¢. This follows from the Minkowski
inequality, if we assume that p > 1. Indeed,

M= [tg+(1-0h| <tfg]|+Q@-O)|n <tM+1-t)M =M,

and thus | g| = ||h|| = M. Since %, is compact and nonvoid, #, must have an ex-
tremal point, and such a point belongs to €($ &), since F( is an extremal set.
Further, the compactness of % implies that ¢($H F) C F. These relations show
that if p > 1, then

max [f]| = max [l = max 1] .
feF feHF fe G(HF)
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The argument above can be reproduced if we replace ||f|| by Hf(n)" , where £(n)
denotes the nth derivative of f. We simply point out that [|£(®)] is a continuous
functional and the nth derivative of tg + (1 - t)h is tg{® + (1 - t)h(®), Therefore, if
# is a compact subset of « and p > 1, then

max )] = max [t®)] = max [[f®)] for n=1,2, .
feF f€EHF fe EG(HF)

A refinement of this can be made if the functions in # satisfy some additional
conditions. Suppose that each function f in # is normalized by the conditions
f(0)=0 and f'(0)=1. f f € $F and f ¢ C6(HF), then f =tg + (1 - t)h, where
0<t<1,g+h,geF,and he §F. For p > 1, Minkowski’s inequality shows
that

el < tliel +@ -0 [n] < max (el [nfD.

Equality in the Minkowski inequality occurs only when tg = a(l - t)h almost every-
where, where a is real and a # 0. Since g and h are continuous in 6, this would
Aimply that tg(rel?) = a(1 - t)h(re'f) for all 6, that is,.tg(z) = a(l - t)h(z) for.all =z
with |z| = r. By the analyticity of g and h, this implies that tg = a(1 - t)h. Be-
cause of the normalization g'(0) = h'(0) = 1, we see that t = a(1 - t), and since a # 0
and 1 -t # 0, we conclude that g = h. Since g # h, this shows that equality in the
Minkowski inequality does not occur, and therefore ||f" < max (]I g” , Hh” ). Thus,
the only functions fy in § # for which [ fo] = max;, OF || are extreme points
of §#. Using both normalizations f(0) = 0 and £'(0) = 1, we can likewise conclude
that the extreme points of § & are the only functions fg in 9% for which

ltoll = maxse gz Il2']l.

We have already indicated an important simplification in solving the problems
in this section. We shall also need an integral inequality concerning the symmetri-
cally decreasing rearrangement of functions, as discussed in [7, p. 278]. In general,
let ¢* denote the symmetrically decreasing rearrangement of ¢. Then, for all non-
negative, integrable functions ¢ and y on [-c, c] (c > 0),

(1) { © o) pix) dx < { © () Pr () dx

The proof of this inequality is given by J. Clunie and P. L. Duren in [4] for the more
general situation where there are three functions in the integrands. The inequality
is used by Clunie and Duren to show that for each function f in C,

1 02 0 1 2m 0
%50 |£'(re'?)| do 557?50 |k'(re'?)| do,

where k(z) = z/(1 - z)? is the Koebe function. Earlier, Duren [6] had proved this
inequality for a special subclass of C. Theorem 2 includes the inequality as a
special case.

Our use of (1) involves functions with certain propefties of symmetry. If ¢ is
continuous and even on [-c, c], and if ¢ is decreasing on [0, c], then ¢* = ¢. Also,
if ¢ has the form z//(x) =n(x+ a), where 7 is continuous for all x, decreases on
[0, c], and is periodic with period 2c, then ¥* =7 on [-c, c].
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THEOREM 2. Let { be analytic and close-to-convex in A and noymalized by
£(0) = 0 and £'(0) = 1. Suppose that 0 <r <1 and k(z) = z/(1 - 2)%. Then

1

27 ) 1 27 .
o SO |f(reif)|Pag 5'2_7:50 |k(ret0)|Pde  (p=1,2, =),

1 27

27
. 1 -
% ), |£(Xrelf)|Pdo < 72?50 k™) (retf)|Pde  (n=1,2,;p>1).
1 27 )
Proof. Let K({) =§7;S |£#0)(rel0)|Pdo, where n=0, 1,2, --- and £{0) de-
0
notes f. We are to prove that I(f) < I(k), and since p > 1, our introductory remarks

reduce the problem to a consideration of the functions f in (9 C). The set €(HC)
consists of the functions of the form

f(z) =[z —%)(t:+6)z.2 ]/[1 - oz]%, where || =]6| =1 and £ # b.

I 7 is a complex number (|n| =1) and g(z) = f(nz)/n, then lg(n)(z)l = If(n)(n z)|
for n=0, 1,2, ---, and thus I(g) = I(f). If we set n = 1/6 and write a = ¢/9, it fol-
lows that we need only prove the inequality I(f) < I(k) for the functions

f(z)=l:z——;-(a+1)zz:l/[l—z]2, where |a| =1 and a # 1.
Also, we shall let b = (a +1)/2, so that |b - 1/2] = 1/2.

First we consider the case n = 0, and we begin by showing that if
|b - 1/2| < 1/2, then

=)
27

0

2m 2p 1 2 1
do <—S -———2—I;d9,
o |1-¢2]|

1- bz

where z=reif and p=1,2, ---. ¥ (1-bz)/(1-2)= E::o b, z" for lzl < 1, then
bp=1and b, =1-b for n > 1. Because |b- 1/2| < 1/2, it follows that |b,| <1
for n>1. Also, |by| =1 only for b =0, and then bx =1 for k=1, 2, ---. This im-
plies that the coefficients of the power series

1-bz\P S
T2) =1+ D oo

satisfy the inequality Icr(lp)(b)l < cflp)(O) for n>1 and p=1, 2, ---. Therefore,
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[= o]
1 (27 |1 - bzl?P 1 2" /1-pz\P|? ' 2 2
L a0 - & 7| () ao - 10 3 L
0 0 n=1
o2 ' 27
<1+ 2 [elpl o) r?n = zl ——-—1——2—d9.
n=1 mJo |1-z|?P

Let £(z) = (z - bz?)/(1 - z)?, where |b - 1/2| = 1/2. Then, by the Cauchy-
Schwarz inequality and the result above, we find that

1 21 8)|P ., 1 ] 1-bz|P
= =2 do = 5= —%1 de
T Jo TJdo (1~ z)
2 | 2p 2 1/
g P T
ZLS ll_bz de--zl— —1 a0
T Jy Z T Jy ll_ZlP
21
L L a0

LT 2m ll—zlzP .

This is the same as the inequality I(f) < I(k), and it proves the theorem for n =0
when p=1,2, ---. (We thank D. R. Wilken for pointing out the applicability of the
Cauchy-Schwarz inequality. For n=0 and p = 1, we had first obtained our theorem
by using the lemma.) :

Next consider the case n="1. If (z) = [z - %‘(a +1)z2 :'/[1 - z)?, then
£'(z) = (1 - az)/(1 - z)3, and thus, for a = el®,

. Zﬁ ; ig|P |
1 ‘S’ |1 - e@re'f]
= — dé .
2) 100 27 0 Il - rei9|3p

In this integral we may consider the interval of integration to be [-w, #]. Then the
symmetrically decreasing rearrangement of ¢(6) = |1 - reif|-3P is ¢ itself, and if
Y(6) = |1 - eld re‘glp, then y*(8) = |1 +*re19|p. If we apply (1) to (2), it shows
that

1+rei9

P
- reop| 4071

1 2n
Iwgﬁ&

and this proves the theorem for n =1,
The higher derivatives of f can be treated similarly. First we note that if
f(z) = [ z - %(a + 1)z2 :‘/[1 - z]%, then we can show inductively that

t(0)z) = [a - Ba - yaz]/[1 - z]**? for n=1,2, -,
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where o = %[(n + 1)1, = %[n! (n - 1)], and y =n!. Thus, for this function

1 (2 |a-pga-qyare’d|P
21

(3) If) =

0 I 1 - rei@ l (n+2)p

We may assume that the interval of integration is [-, 7]. With varying 6, the ex-
pression |oz - Ba - yar eiel gives the distance between the point a - Ba and the
points on the circle centered at the origin and with radius yr. Therefore, the sym-
metrically decreasing rearrangement of ¥(6) = |a - ga - yareif|P is

Y*(6) = |d+yreif|P where d= |@ - ga|. If ¢(0) = |1 - reif|-(n+2)P then

¢*(6) = ¢(#). Therefore, because of (1) and (3), we conclude that

P

d+yz d6 .

— 27 (1 - Z)n+2

27
(4) () < — S
0

Since 0 < d < @ + B = ny, we may write d = (cos w)ny = %(ei‘*’ +e 1%y
(0 < w L 7/2), and thus

d+yz _ynel®+g LY net? +y4
(1 _ z)n+2 2 (1 _ Z)n+2 2 (1 _ Z)n+2 :

An application of the Minkowski inequality to this relation shows that

2 d+ p te
I e G
o ((1-2)
1/ ) 1/
y am neiw + gz |P P v am nel® +z|P P
< S —_—l do + = S PR ds
— 2 0 (1 _ Z)n+2 2 o (1 _ Z)n+
1
y 521r N+ e, [P /e y 27| 1 4 oi®, [P l/p
=X ntre z)l4g +2 S ATe 2z g9
2 A 1 - z)+2 2 o | - Z)n+2

The symmetrically decreasing rearrangement of each of the functions
n+ e-iWreif [P and |n+ei®reif|P is the function |n + reif |P . Applying (1) to
each of the last two integrals, and using the relation ny = o + 8, we conclude that

‘S‘ZW d+yz pd9 <y SZH n+z pd@ P
o | (1-z)n*2 - o (-2
o o 1/p
_ ‘S' a+§+:/éz 40
0 1-z)" ‘

Because the function k corresponds to the case a = -1, this inequality and (4) show
that
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a+§+zz

T Pao = 10k).
-z

1 2T
1(f) < 57 5;

This completes the proof of the theorem.

As we pointed out earlier, the result of Theorem 2 was proved by Clunie and
Duren for the case where n=1 and p=1. If n=1 and p is an even integer, it can
also be deduced from the inequalities Iak| <k (k=1,2, ---) on the coefficients of a
function in C (proved by M. O. Reade in [17]). The argument depends on the formula

1

21 _ %
5 |g(reif)|2de = k?o b, |2 r2k,

0

valid for a function g(z) = 2110 bkzk analytic in A. The question whether equality

in the theorem occurs only for the functions f(z) = z/(1 -'£z)% , where lal =1, re-
mains unsettled except for the case n = 0 and some of the special cases just men-
tioned.

We expect that when n = 0, the inequality I(f) < I(k) holds for all p > 1. This
conjecture would be settled if we knew that if |b - 1/2| = 1/2, then

1 SZW
27 0

1- bz
(1-2)?

P 1 2r 1
degﬂg — 2 ——do  for p>1.
0 Il-zlp

As we showed in the proof of Theorem 2, the integral inequality above would follow
if the coefficients of the power series for [(1 - bz)/(1 - z)]P satisfied the inequality
Icl(lp)(b)l < cﬁlp)(O) for n=1, 2, .--. More generally, it seems likely that the in-
equality I(f) < I(k) holds for n=0, 1, 2, --- simply if p > 0. Our method cannot deal
with the situation where 0 < p < 1. On the other hand, when p > 1, our proof ac-
tually yields a more general result, namely, that I(f) < I(k) for all functions f in
HC.

The right-hand side of the inequality in Theorem 2 can be explicitly computed,
in some cases. For example, when n =0 and p = 1, then

2 2m
1 i@ 1 r 2 4 r
L (7 |kei®)] a0 = o= (7 T —a0 = r{1 422 +xt+ ) = ,
21 J, l | 21 J, |1-re192 1- 12
1 o . .
and thus —S |f(retf)] a6 < > for each f in C.
27 Jy 1-r

Our arguments are applicable to a number of similar situations. For example,
since the set of functions z/(1 - €z) (|e| = 1) is precisely &( $ K), we find that if
f € K, then

1 2w . 1 27 .
(5) > SO £ )(ret )[Pao < 5= SO |n™)(ret9)|Pas
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for n=0,1,2, :~- and p > 1, where h(z) = z/(1 - z). The proof is easier than the
proof of Theorem 2, because the integral I(f) is constant on €($K). For n=1 and
p = 1, the result was proved by A. Marx in [15] and later by F. R. Keogh in [11]. In
this case, the right-hand side of (5) is explicitly computable, and it yields the in- '
equality ' n

2

1 ¢ N
[t'(retf)| a0 <
0 .

2m,

1
1—,r2"

or L(r) <2mr/(1 - r2), where ‘L(r) denotes the length of the image of the circle
z| = r under the mapping z — f(z).

Inequality (5) actually holds for all p >0, when n=0 or n=1. For n =0, this
was shown by Robertson in [18]. His argument depends on the two facts that if f € K,
then f(z)/z is subordinate to 1/(1 - z) in A, and that if g is subordinate to G in A,’
then

1

2m _ © o q pem N o ) ‘
ESO |g(reif)|P do SESO |G(reif)|Pde  for p>o0.

The last inequality was proved by J. E. Littlewood in [13] (see also [9, p. 422]).
When n = 1, the inequality (5) holds for all p > 0, because of Littlewood’s inequality
and the result (proved by Marx and Strohhficker in [15] and [24]) that if f € K, then
f'(z) is subordinate to 1/(1 - z)2 in A. The result that f(z)/z is subordinate to
1/(1 - z) for functions in K was also shown in [15] and [24]. More recently, a short
and elegant proof of this was given by T. J. Suffridge in [25].

The inequality

1
2

2T ) am .
(6) So | 1) (rel9)|Pdo 5)721;50 |k(2)retf)|Pde

holds for n=0, 1, 2, --- and p > 1 for each function in St. For n > 1, inequality (6)
is contained in the more general result of Theorem 2. However, we point out that
the argument for the smaller class St is quite simple, not requiring the details for
C as given in the proof of Theorem 2. In the case n = 0, inequality (6) holds for all
p > 0, as was shown by Robertson in [18] (see also [11] for the case n =0, p = 1).
For n=1 and p = 1, the inequality was obtained in [15] by Marx.

Let & denote the family of analytic functions f -in A that satisfy the conditions -
R1f(z) > 0 and £(0) = 1. It follows from the Herglotz representation of functions in &
that the extreme points of # are precisely the functions f(z) = (1 + £z)/(1 - £z) with
]al = 1. The arguments presented earlier may be applied to this family. As a con-
sequence, we can prove that

1 2T _ oy 2w ) '
(1) 51?50 |#)(ret?)|Pa0 < 5- SO |£0)(ret9)| P ap

for n=0,1,2,--and p>1,

where fy(z) = (1 + z)/(1 - z). Part of the demonstration of the inequality (7) is quite
simple, since the integral I(f) is constant on &(4). Apparently, the inequality is
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new except for some special cases of n and p. For n = 0 it follows by Littlewood’s
inequality since f is subordinate to f,, and it even holds for all p > 0. For n=1
and p = 1, (7) was first proved by Rogosinski in [22] (see also [16]). Again the case
where p.is an even integer is simple, and a proof of this can be based on the in-
equalities Ianl < 2 for the coefficients of a function in #.

These questions can also be resolved for the class R, or, more generally, for
the class T. We need only point out that T = $R c St [3, p. 106], and that
I(f) < I(k), in particular, for all functions f in §St,if n=0,1,2, --- and p > 1.
The special cases of this, corresponding to n=0 and p = 1 and to n=1and p=1,
were treated by Robertson in [18].

We may use the argument given at the beginning of this section to deduce that

max [|f] = max [t
fe&F fe C(HF

in a more general situation. This was pointed out by L. Brickman. Namely, if J
is a subadditive, continuous functional on ., and if # is compact, then

max |J(f)| = max IJ(f)] .
fe&F fe C(HF)

(J is subadditive if it is real-valued and J(tg + (1 - t)h) < tJ(g) + (1 - t)IJ(h) for each
real number t (0 <t < 1) and for all functions g and h in «.)

Another possible direction for applications of extreme-point theory is based on
a generalization of our considerations, obtained by replacing differentiation by a
linear operator. Specifically, if & is a continuous linear operator on « to «,
then

max |2@)] = max [e@],
fe F fe G(HF)

where # is a compact subset of . For example, suppose that & is the nth par-
tial sum of the power series for f. We can assert that

. | 2m
zlﬂ |g(z)|p do < —-S lgo(z)[Pde  for p>1,
0

where gg is the nth partial sum of the power series of some functmn in €(HF).

When p = 2 this shows that in order to maximize Ek 0 lakl r?¥  we need only
consider extreme points f. Our arguments also show that the expression

n
2o Iak|2 is maximized over & if it is maximized merely over @ (§ #). In [21],

R. M. Robinson proves some interesting results concerning linear operators some-
what related to our considerations.

Our use of extreme-point theory can be combined nicely with Littlewood’s in-
equality concerning subordination. For example, suppose that g € St and that f is
quasi-subordinate to g in A. Writing g(z) = ¢(z) f(w(z)), where ¢ and w have their
usual meaning, we see that if p > 1, then
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27 -
-21;5 |e(z)[P ao <—S |f(w(z))|P do

0

27

21
S lf(z)lpde <——5 [k(z)lpde

whére k(z) = z/(1 - z)2. The first two inequalities were pointed out in’ [20] by
Robertson, and the third depends on our considerations of extreme- pomt theory.

‘A’ number of comments we have made are valid for the class S. The conclu-
sions we thereby obtain assert that in order to maximize various quantities over S,
it suffices to consider the functions in € ( $S). At this point, we know of no exam-
ples where this becomes an effective step in solving such a problem. In part this is
due to our lack of information about G($S). Of course, the set €(HS) can be ex-
pected to.be much more complicated than the simple sets C(HSt), C(HR), €(HC),.

¢ (HK), or €(#), which are so precisely determined in terms of one or two param-
eters. One of the few facts known about € (9 S) was proved by L. Br1ckman in [2]
namely, if f € C(9H S), there the complement of f(A) is a continuous curve tendmg to
infinity with increasing modulus.

Added June 4, 1972. We thank Professor Paul Eenigenburg for calhng our at-
tention to the fact that the results concerning the family of functions with positive
real part pointed out in our remarks after the proof of Theorem 2 were proved
earlier by Y. Komatu in the paper On analytic functions with positive veal part in a
civcle, Kodai Math. Sem. Rep. 10 (1958), 64-83.
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