COMPACTNESS PROPERTIES OF TOPOLOGICAL GROUPS
T.S.Wu and Y. K. Yu

In a topological group, an element is called bounded if its conjugate class is
relatively compact. The concept of bounded elements is useful in the study of the
structure of locally compact groups. Many results concerning bounded elements
have been established by V. I. Usakov (see [6], [7], [8], [9]) and J. Tits [5]; we men-
tion two of them for later use in this paper.

THEOREM A (V. 1. USakov). Let G be a totally disconnected, locally compact
group. If a relatively compact subset- A of G is invariant under all inner automor-
phisms of G, and if each of its elements belongs to a compact subgroup of G, then
the closed subgroup genevated by A is a compact, novmal subgroup of G.

THEOREM B (J. Tits). (a) If G is a projective limit of Lie groups, then the
set B(G) of all bounded elements of G is closed in G.

(b) Let G be an analytic group without compact, normal subgroups except the
identity subgrvoup, Then

(i) the identity component Bo(G) of B(G) is a vector group,
(ii) if Z2(G) denotes the center of G, then B(G) = Bo(G) Z(G), and

(iii) if a is a bounded automorvphism on G (that is, if the set {a(g)g‘ll ge G}
is rvelatively compact), then theve exists an element g in B(G) such that the inner
automorphism 1g on G induced by g is equal to a.

The set B(G) of bounded elements of a topological group G actually forms a
characteristic subgroup of G; we shall call it the bounded pavt of G. A group is
called an FC-group if all its elements are bounded. In this paper, we relax the con-

dition of boundedness in three directions: (I) B(G) is open, (II) B(G) = G, and
(I11) G/B(G) is compact.

Locally compact groups with open bounded parts will be discussed in Section 2,
where we shall prove the following two results:

(a) In a locally compact group, the bounded part is open if and only if there
exists a compact invaviant neighborhood of the identity.

(o) In a o-compact, locally compact gvoup, the bounded pavt is open if and only
if it is of second category.

Sections 3 and 4 are devoted to the study of locally compact groups with dense
bounded parts. There we shall generalize some results on FC-groups and suggest a
structure theorem. The main results are as follows.

(c) In a locally compact grvoup with dense bounded part, the periodic part (the
set of elements that are contained in compact subgroups) forms a closed character-
istic subgvoup whose factor group is a divect product of a vector group and a dis-
crete, torsion-free, abelian group.
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(d) Each locally compact group with dense bounded pavt is an extension of a
compact group by a divect product of a vector group and a totally disconnected, lo-
cally compact group with dense bounded part.

A closed subgroup H in a locally compact group G is called a uniform sub-
group of G if G/H is a compact space. In recent years, the structures of locally
compact groups with uniform vector subgroups and uniform, discrete, finitely gen-
erated, free abelian subgroups have been studied (see [1], [10], [11]). We find that
both types fall into the class of groups G for which G/B(G) is compact. In Section
5, we shall establish a theorem that describes the structure of such groups.

Finally, in Section 6 we describe some examples.

1. DEFINITIONS AND NOTATION

1. The letter G will always stand for a locally compact group, unless it is
otherwise specified. ‘

2. An automorphism « on G is called a bounded automovphism if the set
{a(g)g-1] g € G} is relatively compact.

3. The conjugate class determined by an element g in G is denoted by C(g),
and Ig denotes the inner automorphism on G induced by g.

4. A subset of G is said to be invam‘ani in G ifit is invariant under all inner
automorphisms on G. '

5. An element g in G is called a bounded element in G if I, is a bounded
automorphism on G. It is easy to see that g is bounded if and only if C(g) is rela-
tively compact.

6. The set of bounded elements in G is called the bounded part of G and is
denoted by B{(G). '

7. A subset of G is called bounded if each of its elements is bounded. A lo-
cally compact group is called an FC-group if each of its elements is bounded.

, 8. An element g in G is called a periodic element if it is contained in a com-
pact subgroup of G.

9. The set of all periodic elements of G is called the periodic part of G and
is denoted by P(G).

. 10. A subset of G is called periodic if each of its elements is periodic. In
particular, if all elements of G are periodic, then G is called a periodic group.

11. A locally compact group is said to be pure if P(G) contains only the
identity. \

12. Two topological groups G and H are said to be isomorphic if there exists
an algebraic isomorphism of G onto H that is also a homeomorphism. We use
G = H to denote such a relation.

13. Let A be a subset of a group. "The subgroup generated by A is denoted by
<A>. If a is the only element in A, then <A> is written as <a>.

14. Let A and B be two subsets of a group. The set of commutators
[a,b]=aba-lb-! (a e A, b € B) is denoted by [A, B].
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2. LOCALLY COMPACT GROUPS WITH OPEN BOUNDED PARTS
THEOREM 1. Let G be a locally compact group. Then B(G) is open if and

only if G has a compact invariant neighborhood of the identity.

Proof. (a) Suppose G has a compact invariant neighborhood N of the identity of
G. Then N is contained in B(G), and hence B(G) is open.

(b) Suppose B{(G) is open and G has no compact invariant neighborhoods of the
identity e. Let N be a compact neighborhood of e such that N C B(G). Let V be
an open symmetric neighborhood of e such that V2 C N. We shall construct se-
quences {1x,} and {a,} satisfying the conditions

(i) yo=%x1Xp =+ x, € V, for all n;
(ii) a,X;4]Xns2 " Xman! € V, for all n and m (m > n);
(iii) the sets N, a;x;ailN, ayx;x,a3'N, =+, apx;x, - xpapl N, -+ are dis-
joint. - ’
First we show that the existence of such sequences is sufficient for the proof.
Since y, € V C N for each n, there exists a subnet {yn)t} that converges to a point

y € N. For each n,

anya'ﬁl = 1i7tm (a,x; xp -+ Xny, aﬁl) = Ii)tm(a'nxl Xnax-ll) (anxpt1 nh 1)

and is therefore contained in a,xj X, *** X,a;! V. Suppose the net {anhy a;&} con-
verges to some x € G. Then Any ya;lyt eventually lies in xV, in other words,

2n, Y5 = xv) for some vy € V. We see that

X = anhyar;;vxl € Apy X]Xp " Xp, @ 1V2 C ap, X ** Xp, a5 lN

This contradicts condition (iii), and hence the net {anh yar'li} cannot converge. A
similar argument shows that {anhyanh} has no convergent subnets. Consequently,
C(y) is not relatively compact. But y € N ¢ B(G), hence we have a contradiction.

Now let us start the constructlon First we claim that there exist a; € G and
X1 € V suchthat NNajx;aj IN= @. Otherwise, suppose N meets each set
axa-1N, where a € G and x € V; then there exist ¥, 2 € N such that axa~ly =z

and axa-l is contained in NN-!. Thus, Ag = UaeG ava~! ¢ NN-!, and we have a

compact invariant neighborhood A, of e; this is a contradiction to our initial as-
sumption.

Suppose we have constructed the sets {xj, **, xx} and {aj, -=*, ax} (k> 1)
satisfying the three conditions ‘

(1) Vi = X1X2 X3 €V (1 = 1’ 2’ ""k)’
(2) a;x441 " xjail e V (i=1,2, - k- 1; j> 1),
(3) the sets N, a;x;aj'N, =+, a;x) ** x,ap !N are disjoint.

Consider the continuous mappings

X — VX,
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X 7 ajXijy) ot kaai-l (i= 1, 2, -,k - 1) ,

X — akxalgl .

Since each of the mappings maps e into V, some neighborhood W of e is mapped
into V by all the mappings. Let Ry be the set

N U alxlaIlN U alexzailN U--Uarxy - xkalle .

Suppose Ry N axjxy ~*xxxa" !N # @, for all x ¢ W and a € G. Then

Ak = U a(Xl i XkW)a._l E Rle';l )
a€G

and Xk—Af{l is a compact invariant neighborhood of e. A contradiction! Hence,
there exist x;,; € W and a);; € G suchthat R N ayxyjx1xp - xf{ilN = @. The

construction is complete.

COROLLARY 1. If G is an 'fa-gfroup, then G has a compact invariant neigh-
borhood of the identity.

COROLLARY 2. If B(G) = G, then G is an FC-group if and only if G has a
compact invayriant neighbovhood of the identity.

COROLLARY 3 (D. H. Lee and T. S. Wu). If G is a locally compact, totally
disconnected group, then B(G) is open if and only if G has a compact, novmal open
subgroup.

Proof. Clearly, if G has a compact, open, normal subgroup, then B(G) is open.

Conversely, suppose B(G) is open; then there exists a compact, invariant neigh-
borhood N of the identity. Let K be a compact, open subgroup of G contained in N,

and consider the subset Uxeg xKx~!, which is relatively compact, invariant and

periodic. By Theorem A, it generates a compact, open, normal subgroup of G. The
proof is complete.

COROLLARY 4. Let G be a locally compact, totally disconnected FC-group,
and let K be a compact subgroup of G. Then K is contained in a compact, open,
normal subgroup of G.

Proof. Let k € K. Then the set C(k) is relatively compact, invariant, and
periodic. Hence, by Theorem A, it generates a compact, normal subgroup N of G.
Since G is an FC-group, by Corollary 3, there exists a compact, open, normal sub-
group N of G. Clearly, K is covered by finitely many compact, open, normal
subgroups of the form NNj. Their union is compact, invariant and periodic. Hence,
again by Theorem A, it generates a compact, open, normal subgroup of G. Ob-
viously, K is contained in this group.

The following theorem shows that if the bounded part of a o-compact, locally
compact group is not open, then it is, in a sense, rare indeed.

THEOREM 2. Let G be a o-compact, locally compact group. Then B(G) is
open if and only if it is of second category.

We thank the referee for improving the statement and the proof of this theorem.

Proof. Clearly, if B(G) is open, then it is of second category.
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Conversely, suppose B(G) is not open. Let {U,} (n=1, 2, ---) be a countable
cover of G, where each U, is open and relatively compact. For each n, let

W, = N gU,uT, U uTyg .
geG

Then W, is a compact, invariant subset of G, and hence it lies in B(G). If b € B(G),

then there exists a positive integer n such that C(b) is contained in w

U,UU,U U U,. This implies that b € W,,. As a result, B(G) = Un=l W,,.
Since, by assumption, B(G) is not open, each W has empty interior. It follows that
B(G) is of first category.

3. TOTALLY DISCONNECTED, LOCALLY COMPACT GROUPS
WITH DENSE BOUNDED PARTS

In this section, we are concerned with totally disconnected, locally compact
groups. First of all, let us notice that for each totally disconnected, locally compact
group G, the set B(G) N P(G) forms a subgroup. In fact, let x, y € B(G) N P(G);
then C(x) and C(y) are relatively compact, invariant, and periodic. By Theorem A,
they generate compact, normal subgroups N, and N, . Hence xy belongs to the
compact, normal subgroup NN, and is again in B(G) N P(G).

LEMMA 1. Let G be a tolally disconnected, locally compact group with dense
bounded part. Then B(G) N P(G) is the union of all compact open subgroups of G.
In particular, B(G) N P(G) is open and periodic.

Proof. (a) Let K be a compact open subgroup of G. Then K is contained in
P(G), and hence B(G) N K is contained in B(G) N P(G). Since K is open,
B(G) N K c B(G) N K. Now, since B(G) = G, we have the relation

K=GnK=B(G NKCcBGNK c BG n PG .

Hence B(G) N P(G) contains all compact open subgroups of G.

(b) Let F = B(G) N P(G). Clearly, B(G) N P(G) is contained in B(F) n P(F),
and B(F) N P(F) is dense in F. Therefore B(F) is also dense in F. Since F isa
totally disconnected, locally compact group, B(F) N P(F) is an open (hence closed)
subgroup of B(F). This implies that

B(F) N P(F) = B(F) N P(F) N B(F) = F N B(F) = B(F),

and hence B(F) CP(F). Let K be a compact, open subgroup of F. Then F = B(F)K.
Let f = bk € F, where b € B(F) and k € K. The element b, being periodic and
bounded, is contained in a compact, normal subgroup C of F, by Theorem A. Hence
f belongs to the compact, open subgroup CK of F. By part (a), we know that F is
open in G. Therefore CK is also open in G. Thus B(G) N P(G) is contained in the
union of compact, open subgroups of G.

Remark. From the second half of the proof of Lemma 1, we know that
B(G) N P(G) is always periodic, for a totally disconnected, locally compact group

(the condition that B(G) = G is not required).



304 T.S. WU and Y. K. YU

THEOREM 3. Let G be a totally disconnected, locally compact group with dense
bounded part. Then P(G) forms an open characteristic subgroup of G, and G/P(G)
is a discrete, torsion-free, abelian group.

Proof. We shall show that P(G) = B(G) N P(G). By Lemma 1, B(G)N P(G) is
contained in P(G). Now it is sufficient to prove that G/B(G) N P(G) is torsion-free.
Let F = B(G) N P(G). Let x be an element of G such that xk € F for some integer
k. By Lemma 1, xX belongs to some compact, open subgroup K of G. Since

B(G) = G, there exists a net {x) | in B(G) such that xy — x. This implies that
x;lf — x*. Since K is open, we can assume that xl)f € K for each A. Hence

x) € P(G) for each A, because the cyclic group <x)\> generated by x, cannot be
infinite and discrete. Thus x lies in B(G) N P(G) = F, and G/F is torsion-iree.

Since B(G) = G, we see that B(G/F) = G/F. But G/F is discrete; therefore it is
an FC-group (a group with finite conjugate classes). Being torsion-free, it is
abelian [4]. The proof is complete.

PROPOSITION 1. Let G be a lotally disconnected, locally compact group with
dense bounded part B(G). Then an element g is in B(G) if and only if the smallest
closed normal subgroup containing g is either compact ov a semidirect product of a
compact group and an infinite, discvete, cyclic group.

Proof. Let g € B(G). Consider the subset [G, C(g)]. Let x,y,a € G. Then
[x,aga"!] = (xa)g(xa)~l(ag-la-l),

and the right-hand member is contained in C(g)C(g~!). Hence [G, C(g)] is relatively
compact. Also,

y[x,aga ]yt = [yxy!, (va)g(ya)!];

therefore [G, C(g)] is invariant. Since, by Theorem 3, G/P(G) is abelian, we see
that [G, C(g)] € P(G). Thus, by Theorem A, [G, C(g)] generates a compact, normal
subgroup Dg of G. Now let Ng be the smallest closed normal subgroup containing

g. Then Ny <C(g)> Clearly, N, contains Dy . Since [G, g] C Dg, the coset gDy
is a cen central element of G/Dgy, and 1t is not hard to see that Ny /Dg 1s equal to
<gD > If N /D is compact, then Ny is compact. If N /Dg is not compact, it is
an 1nf1n1te d1screte cyclic group, and D n <g> is tr1v1al In this case, (g> is
also infinite and discrete, and hence <g> N /D This implies that

Ng = Dg ® <g> (semidirect product).

Conversely, suppose N, is compact; then obviously g is in B(G). If
N = B@< > where B is a compact subgroup and < > is an infinite, discrete,

cychc group. Let T be an automorphism on N , and let b be any element in B.
Then T(b) = xy, for some x € B and y € < > Hence the element y = x-! T(b) be-
longs to BT(B), which is a compact subgroup of Ny . This implies that y is the
identity. Consequently, B is a characteristic subgroup of Ny, and therefore it is
normal in G. It is sufficient to show that gB is a bounded element in G/B. Since
gB is an element of N /B and Ng /B is a cyclic, normal subgroup of G/B, gB has
only a finite number of con]ugates Therefore gB € B(G/B). The proof is complete.

PROPOSITION 2. Let G be a totally disconnected, locally compact group with
dense bounded part. If G is compactly genevated, then G is an FC-group.
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Proof. Let K be a compact, open subgroup of G. Since G is compactly gener-
ated and B(G) = G, there exist a finite number of elements g, , g,, ***, g, € B(G)
such that G = <g1 y 82,y 8n, K > . Using the same notation as in the proof of
Proposition 1, we see that Dgi is a compact normal subgroup of G, for

i=1,2, -, n, and hence KDgl Dgz Dgn is a compact, open subgroup of G. Now

we show that KDg Dg Dg is in fact normal in G. Since
1 2 n

G = <g13g2,'”:gn’K>7

it suffices to show that the group is invariant under the actions of elements g;

(i=1,2,--,n) and k € K. Obviously, KDgl Dgz Dg is invariant under K. Now
n

let k € K and d; € D, (i=1,2, -, n). Then, for any g;,
1

(g ke (g dy gft) -~ (g d_gl)

-1
gikd) - dyg;

k(' gk D (gidy i) - (gid, g7

€ KDgiDgl Dgn = KDgl ** Dg

L

It follows that KDgl -+ D, is contained in B(G) and B(G) is open. Thus B(G) = G.
n

This completes the proof.

4. LOCALLY COMPACT GROUPS WITH DENSE BOUNDED PARTS

LEMMA 2. Let G be a locally compact group with dense bounded pavt. Then
the identity component Gg of G is an FC-group,

Proof. Let Gy be the natural inverse image of a compact, open subgroup of
G/Gg in G. Then G /Gg is compact and G; is a projective limit of Lie groups.
Since B(G) = G and G; is open, we see that B(G;) = G) . But B(Gj) is a closed

subgroup of Gj , by Theorem B. Therefore G; is an FC-group, and Gg, as a
closed subgroup of G;, is also an FC-group.

LEMMA 3. Let G be a locally compact group. Then G is an extension of a
compact group by a locally compact group whose identity component is an analytic
group without compact, novmal subgroups except the identity subgroup. Furthey-

move, if B(G) = G, then the analytic group is a vector group.

Proof. Let Gy be the identity component of G. As a connected locally compact
group, Go contains a maximal compact normal subgroup L such that Gy /L is an
analytic group [2]. The identity component of G/L is exactly Gg /L, and it contains
no compact, normal subgroups other than the identity subgroup.

If, in addition, B(G) = G, then, by Lemma 2, Gy is an FC-group. Hence G /L
is also an FC-group. It follows from Theorem B that Gy /L is a vector group.

LEMMA 4. Let G be a locally compact group and Gg its identity component.
Then theve exists a compact subgroup K of G such that KGg is an open subgroup of
G. Moreover, if Gg has no compact, novmal subgroups othey than the identity sub-
group, then KGg = K X Gg and K is totally disconnected.
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Proof. Let G; be an open subgroup of G that contains G and is a projective
limit of Lie groups. There exists a compact, normal subgroup K of G; such that
G, /K is a Lie group. The identity component of G; /K is KGy/K, and KG, is
therefore an open subgroup of G;. Since G; is open in G, KG is also open in G.

Now suppose Gg has no compact, normal subgroups other than the identity sub-
group {e}. Then K N Gy = {e}. Since both K and G, are normal subgroups of
G; and K X Gy is ¢-compact, we see that K X Gy = KG(. Finally, we notice that
K = (K X Gg)/Gg, and hence K is totally disconnected.

LEMMA 5. Let G be a locally compact group such that B(G) = G and the iden-

tity component Gg of G is a vector group. Let pr: G — G/GO be the natural pro-
jection, If

G =G/Gy, F=B(G)NPG), F=B@GnPAE,

then pr'l(f‘) =GogF =Gy X F.

Proof. First we show that Gg is central. Let g € Gg and x € B(G). Consider
the element [g, x] € Gg. Because Gg is abelian,

1 1

lg, x]I? = glxg lx Negxglx) = gglxg tx (xglxl) = g?xg~2x7!.

In general, for any positive n, [g, x| = g®xg™x"!. This implies that {[g, x]> is
contained in the set C(x)x~! U xC(x~1), which is relatively compact. Hence [g, x]

is a periodic element in Gg. But Gg is pure. Thus [g, x] is equal to the identity e,
that is, gx = xg. Since B(G) = G, the component Go is central.

Next we show that B(G) N P(G) forms a subgroup. Let a, b be two elements in
B(G) N P(G). Then pr(a), pr(b) e B(G) N P(G). Since G is totally disconnected, we _
can see, using Theorem A, that pr (a) is contained in a compact, normal subgroup N
of G. Let N = pr-1(N). Since N/Go is compact and Gg is a central vector group,
there exists a compact subgroup K of N such that N = GgK = Gg X K [1]. Since
a € N and Gg is pure, we see that a € K. But K is clearly a characteristic sub-
group of N, and hence it is normal in G. Similarly, b is contained in a compact,
normal subgroup L of G. This implies that ab is in the compact normal subgroup
KL and ab is an element of B(G) N P(G).

Now we show that Gg F = Gop X F. By Lemma 4, there exists a compact sub-
group K of G such that GoK is open and GoK = Gg X K. Let H = B(G) N P(G).
Clearly, GoKH is open and hence closed. It is easy to see that Go N KH = {e}, and
since Gg is central, both Go and KH are normal subgroups of GoKH. Let V be an
open neighborhood of the identity in Gg, and let W be an open neighborhood of the
identity in KH. Then V(W N K) is open in GogK = Gg X K and hence open in Gg KH.
This implies that GgKH = Gg X KH. It follows that KH is a closed subgroup of
Go KH, and hence a closed subgroup of G. Thus F C KH. Now let k € K. Then, as
an element in the open subgroup GgK, it is the limit of a net {x, } in (GgK) N B(G).
Let x, = gy k) for each A, where gy € Gop and k) € K. Clearly, the projection k;
of x, in K converges to k, since K is a direct factor of Go K. Since g, is central,
k) = gyclx;t € B(G) N P(G). It follows that k lies in F. Hence K is contained in F.
Consequently, F = KH and GgF = Gg X F.

Finally, we show that pr-1(F) = GoF. Obviously, GoF < pr-1(¥). By Lemma 1,
F is an open subgroup, and hence pr-1(¥) is open. Let x ¢ pr-1(¥) N B(G). Then,
again by Lemma 1, pr (x) is contained in a compact subgroup C of G. Let
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C = pr-1(C). Then C/Gq is compact. Since Gg is a vector group, there exists a
compact subgroup B of C such that C = GO@B (semidirect product) [1]. Hence
x = gb for some g € Gg and b € B. It follows that b=g-1x € B(G) N P(G). This
implies that x € Gy H and therefore x ¢ Gy F. Consequently, pr’l(F) is contained

in GoF and thus pr~1(F) = GoF. The lemma is proved.

LEMMA 6. Let G be a locally compact group such that B(G) = G and the iden-
tity component Gg is a vector group. Then the set of all periodic elements in G
Jorms a closed chavacteristic subgroup of G whose factor group is a divect product
of a vector group and a discrete, torsion-free, abelian group.

Proof. Let G =G/Gg and F = B(G) N P(G). Let pr: G — G be the natural pro-
jection. Then G/pr-1(F) = G/F is discrete, torsion-free and abelian, by Theorem 3.
Clearly, P(G) c pr~}(F) = pr-}(P(G)). By Lemma 5,

pr-}(F) = GgF = Gy x F,

where F = B(G) N P(G). The pureness of Gg implies that P(G) C F. As we see
from the proof of the lemma above, F = KH C P(G). Hence P(G) = B(G) N P(G).

Now let G = G/P(G), and let ¢: G — G/P(G) be the natural mapping. Then
#(Gg) = Go P(G)/P(G) is an open dense subgroup of the identity component C of G,
and hence it is identical with €. Since Gg P(G) = Gg X 13(_%)_1 we see that € is iso-
morphic to the vector group Gq. It is easy to see that B(G) = G and we notice, as
in the proof of Lemma 5, that C is central. Also, G/C = G/Gy P(G) = G/F, and
therefore G/C is abehan. Now we show that G is also abelian. Let x € B(G) and
y € G, and consider the element [x, y]. Since G/C is abelian and € is central, it
follows that [x,y] € € and

[x, y]? = xyx 'y txyxly ™) = xyxtxyxty Dyt = xy2x1y2
In general, [x, y]™ = xy"x 1y ™ for each positive integer n, and the subgroup gen-
erated by [x, y] is contained in the compact subset xC(x" 1) UC(x)x-!. Hence
[x,y] isa perlodlc element in C. Consequently,xyx‘1 y-l = e and xy = yx. Now,

since B(G) = G we conclude that G is abelian. As an open divisible subgroup in the
abelian group G € isa topologlca.l d1rect factor of G that is, there ex1sts a normal

subgroup D of G such that G=¢D= ¢ x D. Finally, we not1ce that D = G/C and
that it is discrete, torsion-free, and abelian. The proof is complete.

THEOREM 4. Let G be a locally compact group such that B(G) = G. Then
P(G) is a closed charactevistic subgroup of G, and G/P(G) is a divect product of a
vector group and a discrele, lovsion-free, abelian group.

Pr_o_gf. Let Gg be the identity component of G. By Lemma 2, we know that Gg
is an FC-group; and by Lemma 3, it is an extension of a compact group B by a vec-
tor group Gg/B. Clearly, B = P(Go).

Let G = G/B; then the identity component of G is exactly E}o = Gy /B, which is

a vector group. By Lemma 5, the periodic part P(G) of G forms a closed charac-
teristic subgroup, and G/ P(G) is a direct product of a vector group and a discrete,
torsion-free, abelian group. Let pr: G — G/B be the natural mapping. Then

G/pr'l(P((~})) is isomorphic to G/P(G). Clearly, P(G) C pr-}(P(G)). Now let
x € pr-1(P(G)); then pr(x) € K for some compact subgroup K of G. Since B is
compact, pr~1(K) is compact. This implies that x € P(G). Thus P(G) = pr "1(P(G)),
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and G/P(G) is a direct product of a vector group and a discrete, torsion-free,
abelian group. This completes the proof.

C(jROLLARY 5. Let G be a locally compact group with dense bounded part.
Then the closure of the commutator group G' is periodic.

Proof. By Theorem 4, G/P(G) is abelian. Hence G' c P(G).

COROLLARY 6. Let G be a locally compact group with dense bounded part. If
G zs puofe then G is abelian.

The followmg theorem suggests that in order to study the structure of the class
of locally compact groups with dense bounded parts, it is sufficient, in a sense, to
study tothlly disconnected, locally compact groups with dense bounded parts.

THEOREM 5. Let G be a locally compact group such that B(G) = G. Then G
is an extension of a compact group by a divect product of a vector group and a totally

disconnected, locally compact group with dense bounded part. Moveover, the vector
group is central.

Proof. Let Go be the identity component of G. As we showed in the proof
above, thére ex1sts a compact, normal subgroup B of Go such that Go /B is a vec-
tor group. Let G = G/B; then the identity component of G is Go = Go /B, and hence
it is'a vector group. Furthermore, Go is central (see the proof of Lemma 5). By .
Lemma.6, P(G) forms a closed, characterlstlc subgroup of G. Let G = G/P(G); then
G ‘is a direct product of 1ts 1dent1ty component ¢ and a discrete, tors1on-free
abelian group D that is, G =CxD. Let D be the natural inverse image of D in G.
We show that G = Go D= G() x D and that D is totally disconnected. In order to es-
tablish the relation G = GO D, it suffices to show that D is mapped naturally onto
G/GyP(G). But D is mapped onto B c G/P(G), and D is mapped onto

G/C = [G/P(@)]/[G, PE)/P(B)] = G/GyP(G).

Let X-be an element of Gg N D; then XP(G) is in [(N}o P(G)/P(G)] n D. Hence

XP(G) = P(G) and X € P(G). But P(G) N Gg = €, where € is the identity of G.
Therefore X = €. Finally, let V be a neighborhood of € in éo , and let W be a
neighborhood of & in D. Then V(W N P(G)) is a neighborhood of e in

GoP(G) = Go x P(G). But Go P(G) is open, and hence V(W N P(G)) is a neighbor-
hoodof € in G. It follows that G = Go x D. Since D= G/Go, D is totally discon-
nected and locally compact and has dense bounded part. The proof of the theorem is
complete.

'‘PROPOSITION 3. Let G be a locally compact group with dense bounded pavt.
Then an element g belongs to B(G) if and only if the smallest closed normal sub-
group Ng containing g is either compact or is a semidivect product of a compact
group and an infinite discrete, cyclic group.

We may run the proof of this proposition in exacfly the same way as we did for
Proposition 1, because, by Theorem 4, G/P(G) is abelian.

PROPOSITION 4. Let G be a locally compact group with dense bounded pavt.
If G is compactly genevated, then G is an FC-group.

Proof. By Theorem 5, G is an extension of a compact group K by G/KEVXT,
where V is a vector group and T is a totally disconnected, locally compact group

such that B(T) = T. Since G/K is compactly generated and T = (G/K)/V, T is also
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compactly generated. Therefore Proposition 2 implies that B(T) = T. Since
B(G/K) = V x B(T), G/K is an FC-group. It follows that G is'an FC- group

5. LOCALLY COMPACT GROUPS G IFOR WHICH G/B(G) IS COMPACT

LEMMA 7. Let G be a locally compact group, dnd let G be its identity com-
ponent. If Gy is an analytic group without compact, novmal subgroups except the
identity subgroup, then the elements of B(G) commute with the elements of B(Gy).:

Proof. Let x be an element of B(G), and let I, be the inner automorphism on
Go 1nduced by x. Then, by Theorem B, there ex1sts an element g € B(Go) such that
I, = Ix, where Ig is the inner automorph1sm on Gg 1nduced by g. Now let y be an "
element in B(Go); then I(y) = I(y), that is, gyg-! = xyx‘l But B(Go) is a.behan
(Theorem B); thus xyx*l =y, so that xy = yx.

LEMMA 8. Let G be a locally compact group such that G/ B(G).:is compact, .
and let Gg - be the identity component of G. Then B(Gq) is contained in B(G).

Proof. By Lemma 3, there exists a compact, normal subgi'oop L of G such
that L. € G, and the identity component Gg /L of G/L is an analytic group without
compact, normal subgroups other than the identity subgroup.. Because L is com-

pact, it is sufficient to show that B(Gqy /L) C B(G/L) ‘Let G = G/L. and Gg = Gy /L.
Since G/B(G) is compact, it follows that G/ B(G) is compact, and there ex1sts a’

compact subset C of G G such that G= CB(G) Now let y € B(GO) and x = kb € G,
where k € C and b € B(G). Then xyx-! =kbyb-lk-le CyC'l since, by Lemma
7, byb~!=y. Hence y e B(G).

LEMMA 9. Let G be a locally compact gifoub whose identity component Gg is
an analytic group without compact, novmal subgroups except the identity subgroup.
If G/B(G) is compact, then Gg/B(Gg) is also compact.

Proof. By Lemma 4, there exists a compact subgroup K of G such that KGg is
open and isomorphic to K X Gg. Since KGg is o-compact, it follows that .
KGoB(G)/B(G) is isomorphic to KGg/(KGo) N B(G). By assumption, G/B(G) is
compact; therefore KGOB_(G)-/W, as a closed subgroup of G/ﬁ(a, is also com-
pact. This implies that KG/(KGg) N B(G) is compact.

Next we show that (KGg) N B(G) € KB(Gg). Let x be an element of
(KGo) N B(G). Since KGg = K X Gg, there exist unique elements k and g in K and
Go, respectively, such that x = kg. Since x € m, there exists.a net {XA} in B(G)
converging to x. We can assume that all x, lie in KG, because KG is open.
Now, let x, =k g) , where k) € K and gy € Gg. Clearly, ky — k and g — 8.
Since each kx gx lies in (KGp) N B(G), it follows that kj g) € B(KGO) But
B(KGg) = K x B(Gy); thus gy € B(Gg). This implies that x = kg € KB(Gg), because
B(Gg) is closed (Theorem B). Hence (KGg) N B(G) € KB(Gg). The compactness of
KGg/(KGo) N B(G) implies the compactness of KGo /KB(Go). Finally, we notice that

KGg /KB(Gg) = (K/K) % (Go/B(Gg)) = Gy /B(Go)

Hence Gg/B(Gg) is compact.

COROLLARY 7. Let G be a locally compact group whose identity component
Go is an analytic group without compact, novmal subgroups other than the identity
subgroup. If G/B(G) is compact, then Gy B(G) s a locally compact subgroup.
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Proof. By Lemma 9, we know that Gy/B(Gg) is compact. Lemma 8 tells us
that B(Gg) < B(G). It follows that t Go/Go N B(G) is compact, since
'B(Gg) € Go N B(G). Because GgB(G)/B(G) is a continuous image of Go/Gg N n B(G),
it is also compact. This implies that Gy B(G) is locally compact.

Remark. Let G be a locally compact group whose identity component G is an
analytic group without compact, normal subgroups except the identity subgroup. If

G/B(G) is compact, then by Lemma 5, Go/B(Gq) is compact. Since Gq is com-
pactly generated, B(GO) is also compactly generated. As a compactly generated,
locally compact, abelian group, B(Gg) = V x Z™ X K, where V is a vector group, Z
is the set of integers, and K is a compact abelian group. It is not hard to see that
K is a characteristic subgroup of B(Gg) and is therefore a normal subgroup of Gg .
It follows that K is trivial and Gg/V X Z™ is compact. Choose a free abelian group
Z™ C V, where m is the dimension of the vector group V. Then Z™ x ZP = zmin
is a uniform subgroup of G ; that is, the space Gg/Z™*'™ is compact. The struc-
ture of a connected, locally compact group with a uniform, finitely generated, free
abelian subgroup has been studied in a paper by the first author [11]. Here we
record the main result in that paper for reference.

PROPOSITION. Let G be a connected locally compact group, and let Z° be a
finitely genevated, free abelian, uniform subgroup of G. Then G contains a compact
normal subgroup K of G such that H = G/K contains no compact nondiscrete
normal subgroups. Let R be the radical of B, and let N be the nilvadical of H.
Then H/R is compact and R splits over N.

THEOREM 7. Let G be a locally compact group such that G/E(F) is compact.
Then G is an extension of a compact group by a locally compact group G whose
identity component C is an analytic group without compact, normal subgvoups other
than the identity subgroup, and theve exist subgroups K and Q of G such that

(1) K is compact and totally disconnected, and Q C B(G),
(2) KC is isomorphic to K x C and is open,
(8) G/KCQ is a finite discrete space,
~(4) the elements of 6 commute with the elements in 6, and 6 N € is the center
of C,
(5) C/B(C) is compact.

Proof. By Lemma 3, G is an extension of a compact group by a locally compact
group G whose identity component C is an analytic group without compact, normal
subgroups other than the 1dent1ty subgroup. By Lemma 4, there ex1sts a compact
subgroup K of G such that KC is open and is isomorphic to KxC. Clearly, K is
isomorphic to K x C/C and is totally disconnected. Let

= {x e B(G)| xy =yx forall ye C}.

It is easy to see that Q is a characteristic subgroup of G. Clearly, Q - B(G) and
the elements of Q commute with the elements of C.

Next we show that CQ = CB(G). Let x ¢ B(G); then the inner automorphism I,
induced by x is a bounded automorphism. By Theorem B, there exists an element
y € B(C) such that Ix(g) = Iy(g) for all g € C. This implies that y-! xgx-ly = g
for all g ¢ C. Slnce B(C) - B(G) by Lemma 8, y~1x is in B(G) and hence in Q.
Therefore x € yQ € CQ. It follows that CQ = C B(G).
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Since G/B(G) is compact, G/B(G) is also compact. This implies that
G/KCB(G) is compact. Since KC is open,

o~

KCB(G) = KCB(G) = KCQ.

Hence G/KCQ is a finite discrete space.

_ Now we denote the center of C by Z(C) and show that Q N C = Z(C). Clearly,
é N C < Z(C). Let x be an element of Z(C). Then x is in B(C) and hence in B(G).
This implies that x € Q N C, by the definition of Q. Consequently, Q N C = Z(C).

Finally, the compactness of C/B(C) follows from Lemma 9. The proof is com-
plete.

6. EXAMPLES

In this section we give some examples. First, we prove two propositions that
are helpful in constructing examples of locally compact, totally disconnected groups
with dense bounded parts.

PROPOSITION 5. Let G be a locally compact, totally disconnected group; let
N be a closed normal subgroup of G such that B(N) = N, and let K be a compact
open subgroup of G. If G =NK, thern G is an extension of a compact group by a
semidirect product of a discvete FC-group and a compact group.

Proof. Consider the subgroup N N K, which is compact and open in N. By
Corollary 4, N N K is contained in a compact, open, normal subgroup L of N.
Since N N K is open in N, we can assume that L is the smallest closed normal
subgroup of N containing N N K; that is, L is the subgroup generated by the set
{nxn‘ll xe NN K,n e N}. Now we show that LK is actually a subgroup. It suf- °
fices to show that LK KL. Let ne N, xe NNK, and k € K. Because N isa
normal subgroup of G, kn = n'k for some n' € N; also,

k(nxn-1)k-1 = n'kxk-In'-1 = n'x'n'"1,

where x' =kxk-l. Since NN K is normal in K, x'isin NN K and n'x'n'-! is in
L. It follows that for each r e L, there exists r' € L such that krk-! = r'. This
implies that LK = KL, and that L is normal in NK = G. Clearly, N/L is a dlscrete.
FC-group and LK/I. is a compact group.

It remains to prove that G/L is a semidirect product of N/L and LK/L.
Clearly, NN LK = L. Since LK/L is compact, the restriction to LK/L of the natu-
ral mapping G/L — (G/L)/(N/L) is an isomorphism. Consequently,

G/L = (N/L) @ (LK/L).

PROPOSITION 6. Let G be a topological group, N a closed normal subgroup of
G, and K a compact subgroup of G. Suppose G = NK, B(N) = N, and the set K' of
elements Kk in K for which the restriction of Iy to N is a bounded automorphism is
dense in K. Then B(G) =G

Proof. Let kgng be an element of G, where kg € K and ng € N. Since K' =K
and B(N) = N, there exist nets {ky } and {n,} in K' and B(N), respectively, such
that ky — k¢ and n; — ngo. This implies that ky n, — kong. Now let kn be an
element in G such that k € K and n € N. We see that
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(kn)(ity 0, )(kn) ™! = knkyn"t ki nny n kTt = knh (07 Ky (nny n7 k!

is contained in a compact subset of G. It follows that ky n; is contained in B(G).

Hence B(G) =

Example 1. Let A be a finite abelian group, and let B be the group of all auto-
morphisms on A. Let I be an infinite index set, and let A; = A, B; = B for all
i € I. Suppose N is the weak direct product of A; (i ¢ I) with discrete topology and
K is the complete direct product of B; (i € I) with product topology. Then we can
form the semidirect product G = N (§)K in the natural fashion. Let K' be the set of
elements k in K such that the inner automorphism on N induced by k is bounded.
It is not hard to see that K' = K. Hence B(G) = G

Example 2. Let G = Z X Z, with natural actions on Z, where Z is the set of
integers and Z2 is a group of order 2. Then we see that B(G) = Z x 0 and P(G) is
the union of {(0, 0)} and Z x 1. Also, G/B(G) is compact and B(G) # G; however,
P(G) does not form a subgroup.

Example 3. Let R be the set of real numbers. Suppose R acts on R2 by rota-
tions: tzt-l= Izg ei2t where z € R2 and t € R. Then we have a topological semi-
direct product R2(®)R. Let

(RZG®R) X Z

G = H s

where Z is the set of integers and H is the cyclic group generated by (0, 1, 2).

2 ___
Then B(G) = .fi_?i}%ﬁﬁ and G/B(G) is compact.

In Theorem ‘1, we proved that the elements of -Q_ commute with the elements of
the identity component C of G. One may ask the following question. Does there

exist a subgroup Q1 of Q such that 6Q =C X Q; ? Our example shows that it may

be impossible. In fact, using the same notation as in Theorem 7, we may take G as G

~ X
in our example. It is not hard to see that Q is equal to 9_% and is closed and

1somorph1c to Z. If CQ is isomorphic to C X Ql for some subgroup Ql of Q, then
Q (Q n C) X QI Since Q is isomorphic to Z and Qﬂ C is nontrivial, it follows
that Q 1 must be trivial. This implies that Q cC. However, this is not true, since
the element (0, 0, 1)H is in Q, but is not in C.

Added June 12, 1972. The authors wish to call to attention that the following
paper has significant results in the same area: S. Grosser and M. Moskowitz, Com-
pacitness conditions in topological groups. J. Reine Angew. Math. 246 (1971), 1-40.
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