ON A PARTITION THEOREM OF SYLVESTER
V. Ramamani and K. Venkatachaliengar

1. INTRODUCTION

G. E. Andrews [1] recently gave an analytic proof of a classical theorem (a gen-

= e] 0
eralization of Euler’s partition theorem Il _ (1 +q?) =1/II _ (1 - ¢?"-1)) due to
Sylvester:

THEOREM. Let Ay(n) denote the numbev of partitions of n into odd parts
(vepetition allowed) with exactly k distinct parts. Let By(n) denote the number of
partitions of n into mutually distinct parts such that k maximal sequences of con-
secutive integevs appear in each partition. Then Ay(n) = By(n).

In his paper, Andrews asked for a direct proof of the identity

(1) Fla,q) = 1+ 2 Bynakq® = 2 qrlx-D/z Gt(a- 1)g) -+ (1 +(a - 1)g%) ’
k,n r=1 (1-q)- (1-qr 1)

and we now give such a proof.

Andrews also gave a proof of the following identity of V. A. Lebesgue (see [3,
p. 42]):

(2) 27 r(r+l)/2 (1+B8q)(1+ 3(12) - (1+ qu) ( 1__+_@9_._)
r=0 (1 - Q)(l - ) (1 - r=1
We derive this identity by proving the more general identity
(3) °Z°; m(m+1)/2 (#)m a™ = (z), (-aq), > —n
a (Wm w0t e T @), (-aa),

m=0

where

i

(a),=(a;q)_ =(1-a)(l-aq) - (1-aq™1) and (a), =(a;qo= lim (a;q)

n— oo

This identity becomes obvious if we expand both sides of (3) in powers of z, &, and
q, and compare the coefficients of similar terms. We point out that the identity (2)
is a special case of the g-analogue of Kummer’s theorem [5] (let b — « in Daum’s
identity). The identity (3) is a special case of a theorem of E. Heine [6, p. 106]. To
see this relation, replace @ with @/7 in equation (1.6) of [2], and then set ¥ = 0 and
let 7 — 0. An identity more general than (3) is also found in the Notebooks of S.
Ramanujan [7, p. 194]:
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o0

(2)m .
m(m+1)/2 }/m o™ = oz

11’11’1

m=0

The identities (2) and (4) were also obtained anew by L. Carlitz (see [4]).

2. PROOF OF (1)
We split the series

» -1z @ - e

r=1 (Q)r_1
into the two series
(a) E qr(r—l)/Z (-(a - 1)q)r_1
r=1 (q)r'l
and
(b) 5 ez gy E@ - Vg
r=1 (q)r_l

Combining the (r + 1)st term of (a) with the rth term of (b), we get the equation

(-(a - 1)q) (-(a-1)q)._;
E; r(r 1)/2 r _ E; r{r+l)/2 r
(5) = ——-———(q)r X =1 +1~=1 q a (q)r .

Now

- s s
1+(@-1) =1+-—?'—q—=1+aqs+aqzs+---.
1-q° 1-q°
Hence, by virtue of (5), the identity (1) becomes

22 Bk(n)akqn
k,n
(1) =
= E a(q+aq2 +aq3 +...)(q2 +aq4+aq6+...)
r=1
(qr-l _,_an(r—l) +aq3(r—l) + ) (qF +q2r +q3r 4 e

In (1'), consider the term

a(q +ag? +ag> + ---) (g% +ag* + aq® + --+)
(6)
.. <qrn-l +aq2(m—l)+aq3(m—1) +,,,)(qm+q2m+q3m+ cee)
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for some m >k, and expand it in powers of a and q. A term akq™ occurs in this
expansion when

7 n=1p +2:pp++m-p,, (m>k),

where the pg (s =1, 2, *-+, m) are positive integers, and where exactly k - 1 of the
ps (8=1,2, -, m - 1) are greater than 1. We interpret the right-hand side of (7)
as a partition consisting of p; parts of length 1, p, parts of length 2, ---, and p,,
parts of length m, with exactly k- 1 of the p_, (s =1,2, -, m - 1) being greater
than 1. It is easy to see that if psl ) P s p33 Py | (1<s; <m -1) are the

p, greater than 1, then a maximal sequence of consecutive parts ends at the first.
part whose length is s; (1 <t <k - 1), and the last maxi-

mal sequence ends at the first part whose length is m. .

The graph below is one such partition corresponding to .

k=4, m =8, n="72. In this partition, ..

p1:2, p2=3: p5:4’
p3=p4:p6=p?=1, p8=3_ .

Also, each s (1 < s < m) occurs at least once as a part.

Therefore the parts of the conjugate partition (obtained on

reading the graph by columns instead of rows) are distinct, .o

the number of maximal sequences remaining the same. e e e e
Hence the coefficient of akg™ in (1') enumerates all parti- e e e e e
tions of n into mutually distinct parts having k maximal e e e e e e
sequences. That is, it is the same as Bk(n). This com-

pletes the proof of (1).

3. PROOF OF (2)

Let PS =P.;for k>1,let Pllf denote a partition consisting of at most r parts,
no part being less than k, and let DIIS denote a partition consisting of r different
parts, none less than k.

Transferring the product (z),, on the right side to the left, we can write the
identity (3) in the form

(g_;l(_aqn+l)

n

o

(3') E Czrngrn(rn-i-l)/z 1 _ E
m=0 (@)m (@ 2)e  n=0

Let L(N, n, m) and R(N, n, m) denote the coefficients of z" @™ N on the left and
right sides of (3'). It is easy to see that L(N, n, m) enumerate all partitions of N
that are obtained as the combination

1 m
D, ®P;,
or equivalently, as the combination

1
D_®P,®mn;
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and R(N, n, m) enumerates all partitions of N obtained as the combination
P,®DN",
or equivalently, as the combination
| P.@®D. ®mn.

Therefore L(N, n, m) and R(N, n, m) enumerate partitions of the same type of N.
That is, L(N, n, m) = R(N, n, m). This completes the proof of (3).

Putting z = -8q and « =1 in (3), we get the relations

o0 o0

27 gqmi{m+l)/2 (-Ba)m - (_ _ > (-Bq)"
m=0 ! @ (), (-, n=0(a%; 9?),

= (-ga)_ (-@)_/(-Ba; ¢*)_ = (-pa®; a®)_/(a; ¢°) _ -

Hence (2) is true.

REFERENCES

1. G. E. Andrews, On genevalizations of Eulev's parviition theovem. Michigan Math.
J. 13 (1966), 491-498.

, Enumervative proofs of cevtain q-identities. Glasgow Math. J. 8 (1967),

33-40.
3. P. Bachmann, Die analytische Zahlentheovrie. Teubner, Leipzig, 1894.

4. L. Carlitz, Advanced Problem 5196, Amer. Math. Monthly 71 (1964), 440-441.
Solution of Advanced Problem 5196, Amer. Math. Monthly 72 (1965), 917-918.

5. J. A. Daum, The basic analogue of Kummer's theovem. Bull. Amer. Math. Soc.
48 (1942), 711-713.

6. E. Heine, Handbuch dev Kugelfunktionen, Vol. 1. Reimer, Berlin, 1878.

7. S. Ramanujan, Nofebooks, Vol. II. Tata Institute of Fundamental Research,
Bombay, 1957.

Research and Development Organisation
Ministry of Defence
New Delhi, India
and
Madurai University
Madurai, India



