CONVEX HYPERSURFACES
C.-S. Chen

1. INTRODUCTION

Concerning the relation between the topology and curvature K of a Riemannian
manifold, it is known that

(i) an Hadamard manifold (a complete, simply-connected manifold with K < 0)
is diffeomorphic to Euclidean space,

(ii) if a simply-connected, complete manifold is 1/4-pinched (that is, if
1/4 <K £ 1), it is homeomorphic to a sphere, and

(iii) a complete open manifold of positive curvature and of dimension at least 5
must be diffeomorphic to Euclidean space.

In this paper, we investigate hypersurfaces that are embedded in an Hadamard
manifold or in a 1/4-pinched complete Riemannian manifold and satisfy the semi-
convexity condition defined in Section 2. We prove the following two theorems.

THEOREM A. LetM™ (n # 4, 5) be a simply-connected, 1/4-pinched, complete
Riemannian manifold, and let N1 pe q simply-connected, semiconvex, compact
hypersuvface embedded in M. Then N is homeomovphic to sn-1,

THEOREM B. Every semiconvex, compact hypersuvface embedded in an
Hadamayvd manifold is diffeomovbhic to a spheve.

The proofs use a modification of an argument due to Hadamard. The restriction
on n in Theorem A arises from the application of a theorem in [5, p. 264]. Both
theorems generalize the results of F. J. Flaherty [3], [4].

2. CONVEX HYPERSURFACES AND STAR-SHAPED SETS

Let M" be a Riemannian manifold diffeomorphic either to R™ or to S™. By a
well-known separation theorem, each compact, connected embedded hypersurface N
divides M into two components. On the other hand, suppose z is a fixed unit normal
vector field on N in M, and let r denote the injectivity radius of N in M [5]; define
two subsets of M - N as

(1) A={Exptz: 0<t<r} and B = {Expt(-2):0<t<r}.

Both A and B are the images of connected sets under the continuous map Exp.
Consequently, both are connected, and A UB = M - N. However, by the separation
theorem, M - N has exactly two components, and therefore A and B must be the
components of M - N,

Next, recall the second fundamental form L, defined by the equation
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(2) (L), y) ={Vyz,vy),

where x and y are tangent vectors of N and V is the covariant differentiation of
M. Call an embedded hypersurface N convex (respectively, semiconvex) if L, is
positive definite (respectively, positive semidefinite) for a unit normal vector field z
on N. For a convex or semiconvex hypersurface N, define

(3) N*=AUN, N =BUN,

where A and B are the sets defined in (1). Notice that both N* and N~ are mani-
folds with the boundary N. As usual, for each m € M for which there exists a unique
shortest geodesic from m to N, we denote this geodesic by y,,n. It is clear that
YmN 18 parallel to -z for m € N* and parallel to z for m € N~. Finally, a set S
in R™ is called star-shaped avound p € S if S contains the whole segment xp for
each x in S. The star-shaped property is said to be strong if the open segment xp
is contained in the interior of S. Similar terminology applies to any Riemannian
manifold, provided we replace the words “line segment” by (unique) “geodesic seg-
ment”.

Suppose now that N lies within the injectivity region of p € N~ - N. We expect
to say something about N by lifting N or N~ into the tangent space of M at p by
means of the exponential map. Although convexity is usually destroyed, the property
of being star-shaped is always preserved.

LEMMA 1. Let N be a convex hypersurface in M". If N lies within the injec-
tivity region of p € N™ - N, then N~ is a star-shaped set avound p.

Proof. Corresponding to a tangent vector v at p, let v, denote the unique
geodesic tangent to v at p. Suppose that vy (tg), v (t;) € N but y(t) ¢ N, where
0 <ty <t<t, <1,

By the connectedness of N~, we can find a smooth curve o(s) (0 <s <1) from
y{1) to a point o(1) so close to p that the shortest geodesic joining o(1) to p lies
within N~ - N. Now construct a smooth family of geodesics

75t (0<t<1,0<s<1)

by joining p to o(s) via the shortest geodesic yS(t) (0 <t < 1). It is clear that
there exist s and t, such that

yS(t;) e N and  y5(t) e N~ for all t.

By a variational argument, Y5 must be tangent to N at t,, and hence y* lies
locally in Nt - N near t, (since N is convex). This contradiction establishes the
lemma.

LEMMA 2. LetS be a set in R™ that is star-shaped avound 0 and has a
smooth hypersuvface N as boundary. Then N is diffeomorphic to SP-1,

Proof. We shall fatten S a little, so that it becomes strongly star-shaped
around 0. Let n, denote the outward unit normal vector field. By the tubular-
neighborhood property, for small positive €, the set

N® = {x+eng x e N}

is a smooth manifold diffeomorphic to N. Moreover, if we construct
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N'(e) = {x e R : dist(x,N") <¢e},
then N€ is the boundary of N-(¢). We claim that N™(¢) and N® are nice in the
sense that
(i) N7(e) is strongly star-shaped around 0, and
(ii) each radial vector intersects NE transversally.

Since d(x + en,) = dx + e€dn, L ny, the normal of N& at x+eny is parallel to
n, . Hence it suffices to prove that

X
<x+8nx,nx> = <x,nx>+s #0.

But this is true for sufficiently small €, because <x, nx> > 0.

Finally, (i) and (ii) prove the lemma. The diffeomorphism between N® and
Sn-1 can be constructed explicitly.

3. PROOF OF THEOREM A

In order to apply Lemma 1, we need a perturbation lemma for the positively
curved ambient manifold. Let M™ be a Riemannian manifold all of whose sectional
curvatures are strictly positive, and let N™-! pe a compact semiconvex hypersur-
face in M. Fix a unit normal z of N so that all second fundamental forms of N
along z are negative semidefinite. For small ¢ > 0, consider the parallel hyper-
surface

N® = {Expez(x): x € N}.

LEMMA 3. For sufficiently small, positive ¢, the hypersuvface N¥ is stvictly
convex.

Proof. By the compactness of N, we may assume that within the tubular neigh-
borhood of N the sectional curvature k(M) of M lies in [6, A] (0 < 6 < A <), A
first variation argument shows that extending z along the geodesic perpendicular to
N will give us a unit normal vector of N€. Since the length function from N to N¢
has constant value ¢, the second variation (the index) must vanish identically.
Moreover, all longitudinal curves are geodesics perpendicular to both N and NE |
and the second fundamental form L€ of N has the expression

(L&), v) = V', V)(e),

where V is an N-Jacobi field along the geodesic perpendicular to N.
It remains to prove that for all such Jacobi fields V, the inequality
(4) (v, V) () <o
holds for sufficiently small € > 0. Denote the geodesic perpendicular to N by
y: [0, €] = M. Choose a parallel orthonormal frame E; along y such that E, = y'

and L(E;) = A;E; (1 <i<n), where 2; <0.

-1 -1
Set V= 2, f;E; with |[V(0)]|? = 22; ) (£;(0))% = 1. Then the relation
v"= RV?”'y' implies that
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n-1

(5) =2 fk;, where k;; = (REj g Ens B >,

j=1

and the boundary condition L(V(0)) - V'(0) = 0 gives the equation

n-1
2) (f,ME, - f{E)(0) = 0;
i=r

that is,

(6) £(00A; = £0) (1<i<n-1).

Set g(t) = Z)? -l

-1 fi(t) f;(t) = <V', V> (t). Then use (5) and (6) to obtain the formulas

g(0) = (£,(0)2 A + - + (£,_1(0)*A,_,

and
n-1 n-1
1 - 242
g'(0) = 2 (£,(0)22] + 2 £(0)£;(0)ky;
i=1 i,j=1
n-1 n-1
2,2
= Z (02 +{Ryg Eq, V) = 2 (GO)*A] - Ky,
i=1 i=1

where Ky is the curvature of the section spanned by E, and V. Assume
n
0 <6< Kyg £ A<, It remains to prove that g(e) < 0 for a sufficiently small ¢.
n
We notice that both g(0) and g'(0) can be considered as continuous functions on the
unit tangent bundle U of N, with

g'(0) < (£(0)2A2 + - + (£, (A% - b.

There are two possibilities:
(1) I (£,(0)2A%+ -+ (f__(0)?*AZ_| < 5/2, then g'(0) < - 6/2.

(ii) I (£(0)2A% + - + (£ _,(0)%A2_, > 6/2, then g(0) < - 6/2B, where -B is
the lower bound on the eigenvalues of all second fundamental forms of N. Both
cases imply that

min {Bg(0), g'(0)} < -6/2.

Hence we can find an ¢ such that min {Bg(t), g'(t)} <-6/4 for all t (0 <t <€),
Such an € will prove our claim. Let the number a be defined by the condition

Bg(a) < -8/4 and Bgt) > -6/4 for a <t<¢

(if no such number exists, let o = 0). Then g'(t) < -6/4 for a <t < £, and
€

gle) = gla) + S g'(t)dt < 0; this gives (4).
o
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Proof of Theovem A. By Lemma 3, we may assume N to be strictly convex. If
we use k(M) and k(N) to denote the sectional curvature of M and N respectively,
then the Gauss equation gives the inequalities

1/4 < k(M) < k(N).
Denote by d(N) (by d'(N)) the diameter of N in the metric of N (in the metric of M).

Then we have two possibilities:

(i? If d(N) > =, then by a result due to Berger [5, p. 264], N is homeomorphic
to S"7*, for n # 4, 5.

(ii) If d(N) < w, then d'(N) < d(N) < #. Pick p € N™ - N so close to N that
d(p, x) < 7 for all x € N. By a result due to W.Klingenberg [5,p.254], the injectivity
radius dp satisfies the inequality dj >/ Y1=mn. Hence N~ lies completely in the
injectivity region of p. By Lemma 1, N~ is star-shaped around p. Now lift to the
tangent space at p; this gives us a star-shaped region in R™ with smooth boundary
Epr;l N. An application of Lemma 2 to the tangent space completes the proof.

4. PROOF OF THEOREM B

Since in an Hadamard manifold we have no perturbation lemma corresponding to
Lemma 3, methods analogous to those of Section 3 do not apply here. Let the mani-
folds N and M have the properties listed in Section 2; in addition, suppose that M is
an Hadamard manifold. Fix a unit normal vector field z so that L, is positive
semidefinite, and define the set

INT = {tz: 0<t <},

Also, define the mapping f: N* — R by the equation f(p) = dist(p, N).
LEMMA 4. Exp| LN*is a diffeomovphism, and f € C* .

Proof. By the generalized Rauch comparison theorem [6, Theorem 4.1],

Expl LN7 is nonsingular. We prove that Exp] LN' is a one-to-one map. Suppose it
is not, then we can find v # w € LN* such that

Expv =Expw = p.
Let
a(t) = Exptv, B(t) = Exptw (0<t<1).

As usual, we use Q(p, N) to denote the space of all curves from N to p. Since
Q(p, N) is connected, we have a homotopy

H: [0, 1] x[0, 1] - M
such that
H(t, 0) = aft) and H(t, 1) = g(t) for all t,

H(0,s) e N and H(1l,s) = p forall s.

By lifting to LN*, we shall mean the lift through Exp| LN*. It is clear that
H|[0, 1]x {0} can be lifted to a map : [0, 1] x {0} — LN™* since Exp|LN" is



126 C.-S. CHEN

nonsingular. Suppose J is the set of all  such that H| [0, 1] x [0, 7] can be
lifted to ©: [0, 1]x [0, n] — LN*. Then, by an argument of [5, p. 199], J, is both
open and closed. Hence J, = [0, 1]. However, this is impossible, since under the
lifting procedure

1,s) =v foralls and t, 1) = tw for small t.

The latter equation implies that (t, 1) = tw for all t, which contradicts the former.
This completes the proof that Exp | LNt is a diffeomorphism. Next, by the inverse-
function theorem, g = (Exp | LN')-1 € C* on N*, and hence f(x) = |[g(x)|| ¢ C*
over N'.

LEMMA 5. The function f is convex in the sense of Section 2 of [1].

Proof. Let a:[-1,1]— N* be a geodesic in M. Construct the rectangle

r(u, v) = Ya(v)N(u)'

By Lemma 4, r € C*. Denote by £(v) the length function of r( -, v); then since «
is a geodesic,

u=1

1
o) 2(v) =_S {flesll?- <R, vy, r dYau+{A,r )| o,
0 viu -

where riu is the projection of r,,, onto the normal space ry of r, and
A(u, v) = r,(u, r), A(0, v) = 0. Since KO0,

2(v) £"(v) = nonnegative + (51. r ru> (1) = nonnegative - <Lr (r,), r, > (1) > 0.
v u

v?

Because £"(0) is simply the Hessian of f evaluated at («'(0), a'(0)), the lemma fol-
lows immediately.

COROLLARY. N~ is totally convex; that is, N~ contains all geodesic segments
joining any two of its points. In particular, N~ is stav-shaped around each point of
N-.

Proof of Theorvem B. By the preceding corollary, N~ is star-shaped around
p € N™. Since Exp, is a diffeomorphism, we can lift N~ and N to the tangent space
at p, which gives us a star-shaped region in R™ (perhaps only weakly star-shaped)
with smooth boundary Exp{)1 N. Apply Lemma 2 to the tangent space to complete
the proof.

5. REMARKS

(i) Simple connectedness is essential to Theorem B, as the following counter-
example shows: Take some nonspherical closed surface F of constant negative
curvature. Let B denote the real line with the usual metric, and pick some strictly
convex, positive function f on B such that £(0) = 1. Let M be Bx¢F, the warped
product of B and F [1]. It was proved in [1] that M has negative curvature K and
that each vertical fibre 7-1(b) with b # 0 is an embedded hypersurface with definite
second fundamental form. However, each 7-1(b) is diffeomorphic to a nonspherical
surface F.
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(ii) If we add the requirement of simple connectedness to N, we may delete it
from M, as follows:

THEOREM C. LetK: M— M bea simply-connected Riemannian coveving of M
such that every semiconvex hypersuvface of M is diffeomovphic (respectively, ho-
meomovrphic) to the spheve. Then the same is tvue for every simply-connected,
semiconvex hypevsuvface of M.

Proof. Let the hypersurface of M be N. Lift N toa map f: N — 1(.71, which
must be one-to-one, and which is therefore an embedded semiconvex hypersurface

of M. By hypothesis, it is diffeomorphic (respectively, homeomorphic) to a sphere.

(iii) To see that N~ is an n-cell, we need only recall the Schoenflies Theorem

(see [2]).

(iv) It might be conjectured that similar results hold for the manifolds men-
tioned in (iii), Section 1. Lemma 3 shows that we need only consider strictly convex
hypersurfaces N.
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