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SECTIONING BUNDLES OF HIGH FILTRATION
AND IMMERSIONS

John Van Eps

Let M" be a closed orientable manifold of dimension n, and let v be its stable
normal bundle. M. W. Hirsch [7] has shown that if k < n, then M™ immerses in
R2n-k if and only if the geometric dimension of v is at most n - k. Classifying v
by a map v: M"™ — BSO(n + 1), we find that an immersion is equivalent to a lifting

- BSO(n - k)

7
‘ T
’, 0
7

M —X—> BSO(n + 1).

If k < n/2, then the obstruction theory developed by M. Mahowald [8], [4] and E.
Thomas [14], [15] can be applied. This involves trying to compute the obstructions
with higher-order cohomology operations, and the method becomes unwieldy for
large k, because the construction of operations of order greater than 2 is difficult.
In this note we show that if BSO is replaced by its k-connected covering, then the
obstructions to lifting any bundle of filtration k + 1 can be expressed in terms of
higher-order operations that are defined on a generalized cohomology theory
H*(—; X). The spectrum X is simple enough so that these operations can be com-
puted for the normal bundle, and we prove the following result.

THEOREM. Let M™ be a closed orientable manifold of dimension n, and let k
be an integey such that 2k < n. If

(i) M is (k - 2)-connected and
(ii) the novymal bundle v of M is trivial over the k-skeleton,
then M® immerses in RP-K if and only if Wy, k+1(¥) = 0.

A. Haefliger and M. W. Hirsch [6] have shown that condition (i) gives an immer-
sion in R27-K+1 if and only if w, ., ,(v) = 0. J. Becker [2] has proved our theorem
with a condition slightly weaker than (ii), namely, that v is fibre-homotopy trivial
over the k-skeleton. These results apply only to immersions however, while the
techniques used to prove our theorem apply to the problem of sectioning any bundle.

This work is related to my thesis, and I would like to thank my advisor, Profes-
sor P. E. Thomas, for his generous help and encouragement. I would also like to
thank Professor J.-P. Meyer for reading a draft of this paper and for making several
suggestions.
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98 JOHN VAN EPS
1. A COHOMOLOGY THEORY

Let k be a positive integer, which will remain fixed throughout the rest of the
paper. For q >k, let X, denote the universal example for classes in H(-; Z) on
which all cohomology operations &: HY(-; 2) — H3"(-; Z,) vanish for i < k. Then
there exists a map ¢4: Xg — K(Z, g), and

(a) Xq is (q - 1)-connected, and Xq = dﬁ( Lq) generates the group Hq(Xq; Z)=12%
(b) H'(Xy; Z2) = 0 for q <i<q+Kk,

1489 =2  (i=q),
(c) Tfi(Xq) = Wi(sq)z (@ <i<q+k),

0 otherwise.

Since the k-invariants for X, are stable, X, generates an §2-spectrum X, and a
cohomology theory is defined by the equation H*(B; %) = [B, X ] (see [18]).

Primary operations H™(-; %) — H™"(-; Z,) correspond in the usual way to
classes in H*Y(X,; Z,), such as Sq x,, (k <i <n). We can obtain universal ex-
amples for operations of higher order by constructing a sequence of principal fibra-
tions over X . The following result will be necessary for the construction of the
operations.

LEMMA 1. Let s: gk+l Xok X1 be the natural map. Then
(1) s*: B (X413 Zp) — HUSKTL X 5 Z,) is surjective for i < 2n+ 1, and

(ii) in dimensions not exceeding 2n +2, Ker s* is genevated by Sq'x,,,
n-k+1<Li<n+1).

Proof. Since the diagram

*
H*(Xn-l-l) _§_> H*(Sk-l-l Xn—k)

SN /z

H*(X,, 1)

is commutative, it suffices to prove the corresponding facts for oktl,

To prove (i), we must show that H¥(X,_;) is stable for i < 2n - k. By [17,
Corollary 6.3], a class in this range of dimensions is stable if and only if it is prim-
itive. Let 1q F — Xq be the inclusion of the fibre of qb , and let m denote the H-
map for either F or X The only p0551b111ty for a nonpr1m1t1ve class in Hm(X )
(m < 2q +k) would be a class ue H cl(X ) such that

) =u®1l+x, Qx5 +1@u.
The last equation implies that
m*(i(’;u) = fu®1+1®itu

so that izu = ¢(v) for some v € HZqH(FqH).
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A simple argument using the spectral sequence for ¢q4; shows that v is trans-
gressive and 7(v) = 0, so that v = if, (u') for some u' € H24t1(Xg,;). Now
o(u') - u € Ker if, and looking again at the spectral sequence for ¢4, we see that
Ker if =Im ¢ in dimension 2q. Since Im (1.’)’(; is stable in dimension 2q, u must be

stable, and this completes the proof of (i).

To prove (ii), we use [17, Corollary 6.4], and we find that in dimensions at most
2n + 2, Ker k%1 consists of classes u such that ¢i+1(u) is a product in H¥*(X,_;)

for some j < k. But xﬁ_j = Sqn"j X, is the only product in this range of dimen-
sions; therefore u = Sq"Jx,;] +v, where v ¢ Ker oJ*!., The same reasoning shows
that ¢Jt! | H22-JtL(x 1) is injective; hence u = Sq™~J X,41, a5 we claimed.

2. OBSTRUCTIONS

A.H. Copeland, Jr., and M. Mahowald [3] have shown that if the integral and 2-
primary obstructions to factoring a map through 7y: BSO(n - k) — BSO(n + 1) vanish,
then the p-primary obstructions vanish, for odd primes p. We therefore construct a
resolution of 7y over the mod-2 Steenrod algebra A, which looks like the diagram

B

4
o of

ds-1

9
\ |

0
E; > C,

(1) BSO(n - k)

To

Py
Y k;
BSO(n + 1) —> C,

Each C. is a product of Eilenberg-Maclane spaces K(Z,, g), and the classes
k; € H*(E,_;) form a minimal set of generators for Ker q¥*_, over the twisted
tensor product A(BSO(n + 1)) (see [11]). The fibre of 7, is V = SO(n + 1)/SO(n - k),
and after a finite number s of stages, the 2-primary homotopy of V has been killed
through dimension n - 1. (If n - k is even, so that 7, _;(V) = Z, then an integral k-
invariant 6*w,_; must be used to kill this group.) If B is a complex of dimension
n, then by the result of [3] a map B — BSO(n + 1) lifts to BSO(n - k) if and only if it
lifts to E, .

Let MSO(n + 1) denote the Thom complex of the universal bundle over
BSO(n + 1), and let U € H*"1(MSO(n + 1); Z) denote the Thom class. If
B — BSO(n + 1) is a map, let MB and Ug denote the Thom complex and Thom class
of the induced bundle over B. (In the following, there will be only one such map, and
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it is deleted from the notation.) In particular, M(BSO(n - k)) = ghtl MSO(n - k), and
7o induces a map My, sk+tl MsO( - k) — MSO(N+ 1).

A straightforward extension of the results of [10] and [15] (see [5; Lemma 2.11])
gives a commutative diagram

S

Lk

Y Y ~2

o h = kj
3

Y Y gl

MSO(n + 1) = MSO(n + 1) —> D,

where D, is a product of Ellenberg—Maclane spaces, p,. is the principal fibration
induced by the classes k and

* ~
f. (ki) = Ug -k .
r-1

Let By denote the k-connected covering of BSO(q) for q > k. The natural map
B,,+] — BSO(n + 1) induces a map w: B, _i — Byt with fibre V; we want to con-
struct a resolution of 7. For this, 7* must be surjective in dimensions not exceed-
ing n+1, and it follows from the Serre exact sequence that this is so if and only if
w; #0 in H*(B, ;) for i=n-k+1, -, n+ 1. Using the results of R. E. Stong
[12] one can show that if B is the k connected covering of BSO, then w; #0 in

H*(B) for each i greater than some number depending on k. (A rough upper bound
for this number is 229(0;k+1) where ¢(0, k + 1) is defined as in [12].)

If 7* is surjective, there is a resolution

Cs CZ Cl

2 1
ka Tki Tki

Es 5 Es-l 3 El 5 Bn+1

of 7, induced from the resolution of 7y by the natural map B,,; — BSO(n +1). We
also obtain a diagram similar to diagram (2) with MSO(n + 1) replaced by MB,,; .
Since B, is k connected, so that the Thom isomorphism takes a set of A-genera-

tors for Ker qr to a set of A-generators for Ker M , one can easily show that
*: H(E,; Z) ~ H{(ME,; Z) for i <2n+ 1. Thus

ME, —> *=* —> ME; — MBy,,

looks like a resolution of Mj; through dimension 2n + 1.
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Let U € Hn“(MBn +15 ¥) be the unique lifting of the Thom class
U e B*Y(MB_, |5 Z).
(By obstruction theory, this lifting is unique.) There is then a commutative diagram

G S p

b,

MB,_, —> sktlx

e

U
MBpyp —> Xptl

b

where ¥ and G are the fibres of s and M;, respectively.
LEMMA 2. n*: HY(F; 2,) — HY(G; Z,) is an isomorphism for i < 2n +1.
Proof. Mﬁ>|< and s* are surjective through dimension 2n + 1 (see Lemma 1);

hence the corresponding transgression operators are injective. By the Serre exact
sequence, it suffices to show that U*: Ker s* =~ Ker Mﬂ* through dimension 2n + 2.

Since

U*(Sa*xp41) = Up | "Wy

and Ker M4 is generated by UBn+l *w; (n-k+1<i<n+ 1), this assertion fol-

lows from part (ii) of Lemma 1.

A resolution for s induces a resolution for M;, by Lemma 2. The k-invariants
for s represent higher-order operations cf)ir: H*(-; ) = H*(-; Z,), and there is a
diagram

fS
ME, ——> Y,

.

l = Y ¢1

U .
MBpy; — > Xpp) —> D)

such that f:_l ¢f = Ug ) . kir . We express this by putting
r—
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(Ug, |-k e @)@ ),

r-1

where (Cbir) is thought of as a multi-valued operation. If B is a complex and
§: B — B,;+; is a map that lifts to E,._;, then putting

kXD = {7 | pyreop, yE= £,

we see that (U - k[(£)) € (%) (Up). Moreover, it follows from Lemma 1 that the
indeterminacy is the same on both sides, so that the problem of evaluating the k()
is reduced to computing the operation (qbir).

3. THE GENERAL CASE

1f FL E LB is a fibration with g-connected fibre F, then in order to con-
struct a resolution for 7 through dimension n < 2q ([4], [8]), we require that

H*(F) is transgressive through dimension n and
7*: H¥(B) — H*(E) is surjective through dimension n.

If the first condition is satisfied and u: E = K = X; K(Z,, r;) represents a set of
generators for the A-submodule generated by Coker TT*, it is easily verified that

the map 7= (7, u): E — B X K with fibre F satisfies both conditions. Since the dia-
gram

is commutative, the lifting problem for 7 is equivalent to that for 7.

If 75 H¥(B,y)) — H¥(B,_)) is not surjective, then certain Stiefel-Whitney
classes W, ;) are zero in H *(B,41), giving rise to classes u, (€ H 1(Bn %) such
that j (uri) =a, , where a. denotes the generator of H 1(V) The next lemma

shows that if ri is even, the class u_. is integral.
1

LEMMA 3. Let f: B — BSO be a map such that £*(W,.,1) = 0. Then
f*(ﬁwzr) =0,

Proof. Let p: Q — BSO be the principal fibration induced by w,..;, giving a
diagram

K(Z,, 2r) ——> Q

lp
W2r+l

f
B —> BSO — > K(Z,, 2r +1) .
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Since f lifts to Q, it suffices to show that p* ow, . = 0. Now
H2T(K(Z, , 21); Z) ~ Z,,
and if ¢ denotes the generator, then p, 7(t) = w,,.,1 = p 6w,,. . Thus
T(L) = 6w, + 2u

for some integral class u. But u is a torsion class (4u = 0), and since all torsion in
BSO has order 2, we see that 2u = 0. Therefore dw,,. = 7(¢), and p* éwy, = 0.

Let K =Xx;K(J;, r;), where J; is Z if r; is even and Z, if r; is odd, and let
u: B, _x — K be a map representing the u, . Put T ={(m,u): B,_, — B, XK, and

-~ r.
let V — V be the principal fibration induced by the classes a. € H 1(V; J.). There
ri 1

is then a commutative diagram

<
Y
<
Y

(3) B, -k = B, ——>P

0 -
Byl XK —P—> B, ——> 27k

By a lemma of Thomas [16, Appendix], V is the fibre of 7.

Next we alter F — sk+1 Xn k 5 X +1 in a similar fashion. For the integers r;
. s+1
occurring above, let b, € H*(F) be the unique class transgressing to Sqr1+ > S
1 .+l r.
(if r; is even, we can replace Sq ' by 6Sq ', making b, integral). As above, we

obtain a commutative diagram

-~ br.
F > F > o -lg
l Y l
(4) Sk+l Xn_k = Sk+lxn,k P
l ® \4 i Tyt
Y Sq Xn+lx -n-2
Xntl — > Xpy1 > §2 K,

and the lemma of Thomas shows that F is the fibre of 8.

Since w; =0 in H¥*(B,, ;) and Sqlx,,; = 0 for i < k, we see that

L i1 L . -
Sq'Sqlx, ) = (] i )Sq1+3xn+1 and Sqle = (J il)“’i+j for i <k.



104 JOHN VAN EPS
Comparing diagrams 3 and 4, we conclude that there exist operations 05 € A such
that

(i) in dimensions not exceeding n + 1, Ker 7™ is generated over A by classes

of the form

w;®1 (i#r;,n-k+1<i<n+1) and bi®1+21®aijtrj,
J

(ii) in dimensions not exceeding 2n + 2, Ker §* is generated over A by classes
of the form Sq*k,,; (i # ri,n-k+1<i<n+ 1) and classes ¢; that restrict to

Z}jaij Lrj+n+1 on the fibre of p.

We use this information to prove the following lemma.

LEMMA 4. Theve exists a commutative diagryam

G U > F
l h Y
MB,,_j —> sF*lx |

-
2
=y
>
<.
w

G R Y

M(Bn+1 x K) Xn+1 ’

wheve G is the fibve of Ma. Furthermove, 0%: Hi(F; Z,) ~ H{G; Z,) for
i<2n+1.

Proof. We construct a map U such that Sh = UM; and U*: Ker §8* ~ Ker Mﬁ*
through dimension 2n + 2. Since Mfr* and 5* are surjective through dimension

2n + 1, an argument similar to that used in the proof of Lemma 2 shows that 7* is
an isomorphism through dimension 2n + 1.

Consider the diagram

h
MB, _k = MB,.x —> Sk+1Xn—
1M;; lr ‘LS
_n__l f A
(5) M(B_,,XK) ——> MB_, , X Q" K —> X _,

e N

MBp 41 = MBp4) > Xn+l ’

where g = (M, Up_, XK" 1® Lri)) and r = (M, Ug - ul‘i)' Here g is the
projection, and f is some map making the lower right-hand square commutative.
Since psh = pfr and r* is surjective through dimension 2n + 1, we can alter f, if
necessary, by a map MB, .} X @ 7-1K — @ 2-1K (the fibre of p) to make the whole
diagram commutative. The composition fg is then the desired map U.
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Since the dillgram

U
MBnt) — > Xn+1

i+1
lo lSqr1+ Xn+l

Q—n—ZK = 3 Q-n—ZK

commutes, f induces the identity map on fibres. Using the remarks preceding the
statement of Lemma 4, together with the definition of the map g, we conclude that

Tk iz _ Tk _ .
0*Sq* %,y = Up_, xx(W;®1) and TF¢; = Up g (0; Q@1+ 2 1® a5,
J

for some b;. Since B,y; XK is k-connected, there is no “twisting,” and these
classes generate Ker M%* over A. Thus U has the required properties, and the

lemma is proved.

It is not hard to show that 7 has a finite resolution if some integral k-invariants
are used at the first two stages. This is unnecessary, however, since
To: BSO(n - k) — BSO(n + 1) has a finite resolution, say of height s, and the first s
stages of any resolution for 7 fit into a commutatlve diagram
E. > o > EY > BSO(n + 1)

S

| ]

E, —> '+ ——> E] ——> B, XK

If £&:B— BSO(n+ 1) represents a bundle of filtration k + 1, £ lifts to
£: B— B,,; XK, and a lifting of § to Eg gives a lifting of £ to E0

4. PROOF OF THE THEOREM

As in Section 1, the space Xn+ 1 generates an {2-spectrum X and a cohomology
theory H*(-; I) As we indicated in the remarks at the end of Section 2, a resolution
of S gives higher-order operations tI) defined on H*(-; .’k') and if k denotes a

suitable choice of k-invariants for 17 we obtain the relation

(Vg k) e @0 ).

- r -

Let M™ be a manifold satisfying the hypotheses of the theorem. The normal

bundle lifts to a map v: M"” — B_ ., X K; hence, if M(v) is the Thom complex, then

(Unm - ki(v)) = (@) (Typ -

By construction, the indeterminacies are the same, and v lifts to B, _; if and
only if

(0, ,0 e (@)(Ty) (r=1,-,5-1).
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We claim that if wy, _1;;(v) =0 and M" is (k - 2)-connected, then the only re-
maining obstructlons are those in the top dimension. We must verify that in passing
from 7 to 7, no new k-invariants are introduced in dimensions not exceeding
n-k+1, and this follows from a simple argument using Lemma 3 (for example, if
n-k+1 isoddand w,_ ;.1 =0 in B ;, we have taken the fundamental class 1, _;

of K to be integral, so that no k-invariant of the form b&® 1 +1(X)Sq! ¢, ;. can
occur).

The nonzero class in Han(M(v) Z,) is spherical, and by construction of I
H (8271, £) = 0. Therefore each ®; that lands in the top dimension is zero, and
all obstructlons vanish. This completes the proof of the theorem.
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