THE INDEX OF A SUBGROUP OF THE
SYMPLECTIC MODULAR GROUP

Edward Spence '

1, INTRODUCTION

Let £, be the semigroup of all n-by-n matrices with rational integral entries,
and let ./, denote the symplectic modular group of degree n; that is, let .#, be the
group of all matrices M € §2,,, that satisfy the equation

(1) M'JM =J,

0 I . . . . . oo
where J = 10 |’ I being the identity n-by-n matrix. If M € .# is partitioned
as [‘é g] with A, B, C,D € Q,, it is easy to see that (1) is equivalent to the con-
ditions

(2) AB'=BA', CD'=DC', and AD'-BC'=1I.

A matrix N € Q,, is called m-symplectic (m a positive integer) if it satisfies
the condition

(3) N'JN = mJ.

Denote the set of m-symplectic matrices by .# (m), and call two matrices

M, N € .« (m) left-associated if there exists an M; € ./, such that M = M| N, and
equivalent if there exist M, , M3 € .4, such that M = M, NM3. Clearly, the rela-
tions of being left-associated and of being equivalent are equivalence relations on
A (m). In [5], the following two results were proved.

THEOREM 1. An m-symplectic matvix is left-associated to exactly one matvix
of the form
Q, m~!sq
0 Q,
where Q) ,Qz, S € ,, Q) is in Heymite noymal form, det Q; > 0, Q; Q5 = mlI,
S = [si;] is symmetric, 0 <sj5<m (1 <4, j <n), and SQ, =0 (mod m).

The Hermite normal form of a matrix in , is the unique form to which it can
be reduced by premultiplication by a suitable U € £, with determinant unity. For a
more detailed explanation, see [2, p. 32].
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THEOREM 2. Every m-symplectic matvix is equivalent to exactly one matvix
of the form

diag {dl s dZ sy "7 dZn} ’
where

(4) d;>0 (1<j<2n), di]dit; (1<i<n), df|m, and dgdpix=m (1 <k <n).

The number of canonical forms in either case was also found in [5]. In the pres-
ent paper, we obtain an alternate method of finding the number of canonical forms
given in Theorem 1, by investigating certain subgroups of .4, .

It is clear that if M, M, € .# (m) are left-associated, then they are also
equivalent. Suppose, conversely, that M|, M, € .#,(m) are equivalent. Then there
exist U;, U2, V,, V2 € o, such that

M; = U;DV,, M, = U,DV,,

where D = diag {dl ,doy o0y, d,,} satisfies conditions (4). Thus M; and M, are
left-associated if and only if there exists U ¢ .#, such that the equivalent conditions

U,DV, = UU,DV,, D1 (UU)lu;p=v,v]', Vv,vi'eD DN w,

are satisfied. Since D-1.#_ D N .4, is a subgroup of .4, , we can rephrase the
third condition by saying that V, and V, belong to the same right coset of
D-l.# DN . in .4 . Write

) .

. -1 -
[.,,//n. Dl DN .///n] = A -

2nldysdy, s d

Then, for each set of positive integers d;, d,, '+, d,, satisfying (4), the number of
matrices of the form UDV (with U, V € .#,) that are not left-associated is
Ay, (d;,dy, -, dZn)‘ Since nonequivalent matrices are not left-associated, we have

the following result.

THEOREM 3. Let h_(m) denote the number of canonical forms undev the vela-
tion of being left-associated. Then

hn(m) = Z) AZn(dl B dz s 0T, dzn) )

wheve the summation is taken over all sets of positive integers dy ,dp, "=, dpp
satisfying conditions (4).
2. EVALUATION OF h,(m)
It was shown in [5] that h, (m) is multiplicative, in other words, that

h,(mjmj,) = h,(m;)h,(m5) if (m;, m,)=1. It follows that to evaluate h,(m), we
need only consider the case where m = p%® (p a prime). Here,

o o o
h (p®) = 27 A, (p%1, p®2, -+, p¥2n),

the summation being over all 2n-tuples (a;, az, **+, az,) of nonnegative integers
satisfying the conditions
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6) 0<a; <L <, 20<La, and ata;=a ((1<iln).

Suppose therefore that E is the matrix diag {p!, p®2, -+, p¥2n} with
a;, oy, , ay, satisfying (5), and write K, for the group E-1 Ay E O il Also,
let u//n[q] denote the principal congruence subgroup of .« defined by

Aplal = {M e :M=1(modq)} .

It is well known [4, p. 58] that v”n[CI] is a normal subgroup of .4 of finite index

n

[ 2ot [q]] = 22D I IT (1 - p-2K).
p|q k=1
LEMMA 1. If q = pR, wheve 8> a, then i [q] C K, .
The proof is entirely straightforward, and we omit it.

It is an immediate consequence of Lemma 1 that
[ty :Kp] = [ty tt[all /Ky ot [q]]

when q = pP (as it will be throughout the remainder of the paper), and since
[.#: 4 [al] is known, the problem of determining

(8] o o
Ay, t,p 2, e, p 2 = [l K ]

n

has been reduced to the evaluation of [K,: .# [qll. A matrix M € Q,, is said to be
symplectic modulo q if

M'JM =J (mod q).
If M is symplectic modulo q, then by Theorem 1 of [3] there exists an N € Al such
that N =M (mod q).

A B
c D € Qy, that

ave incongruent (mod q) and symplectic modulo o, and whose entries satisfy (in the
obvious notation) the conditions

LEMMA 2. [K,: . ,[ql]l is the number of matvices M =

a;; = 0 (mod p®i~%%) (1<i<j<n),
(6) bi; = 0 (mod p” %) (1<, j<n),
d;; = 0 (mod p*i™%)) (1<j<i<n).

1]

Proof. Suppose that M = [é g:l € 5, is symplectic modulo q and satisfies

(6). Then there exists N € .#, such that N =M (mod q). Since a;, az, -+, o,
satisfy (5), it is easy to see that the entries of N also satisfy conditions (6), and by a
simple exercise this implies that N € K,,. To complete the proof, observe that

N, N, € K,, lie in distinct cosets of .#[q] in K, if and only if N; ¥ N, (mod q).
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A B
C D
whose entries satisfy (6) be denoted by L (o; a, ap, ***, @), so that

M e L (a; a7, a,, ***, @) implies the existence of an N in K such that

N =M (mod q). .Also, write £ (a; a1, @,, ***, a,) for the number of matrices in
L (a; @y, @y, ***, @) that are incongruent (mod q). Then

Let the set of matrices M = € §,, that are symplectic modulo q and

ﬂn(OZ; ay, dp, ", Oln) = [Kni'/”n(q)] ,
by the lemma.

At this stage, assume that

(a]_JCEZ:.":an) E(a'17'";a173~2:."’a'27 ."73’1(7."72'1()!
\.‘-\N S——— o —— N —
r; terms r, terms ri. terms

where @j =a; <a,<:<ag =aj,and ry+r+ = +r =n,r;>1,

THEOREM 4.

[Kn: '/”n[qu
n k T

q(2n+1) g-an(n+1)/2 I p2etl-dey ] (1 - p~i)} if 20, < @,
ji=1

j:l 1i=1 j=

;T

_ n k-1 i Y Tk
q(2n+1) p-an(ntl)/2 ] p2(n+l-j)aj II {H (1 - p_j)}_ I (1 - p-2)

j=1 i=1 \j=1 j=1
if 20, = a.

Proof. Let M =[é ]}i] € Lp(a; a1, az, ***, an). Then, since -

(11, """, a1n, b11, """, by, ) = 1,
there exist integers Ay, A, *++, Ay, such that
Arajp + e FAnain FAngy by + ot FA2nby, = 1 (mod g)

with (A\;, q) = 1 (see [1, Lemma 2]). Write

A 0 -+ 0 0
A» 1 == 0 0
U, = ,
An.1 O 1 0
| An 0 0 apl
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where Afl is the inverse of A; (mod q), and let V; be a matrix such that
U;V] =I(mod q). Such a matrix exists, since det U; =1 (mod q). Further, let

Az A
An+3 - 7\3
X = At (mod q),
_7\2n - A -

and choose s so that

s =2 '0n1 - 2,23, +, 2,]X) (mod q) .

Then S =|: s X :I is symmetric and

X I
A+l ]
Mt2
SU, = * | (mod q).
| A2n J
| u; O . .
It follows that M, = is symplectic modulo q and
1 SU; Vv,
1 %
MM, = (mod q).
¥ %

Note that since U; is a lower-triangular matrix, V; may be taken to be upper-
triangular, and hence the entries of M, satisfy conditions (6); that is,
M, € L (a; @y, ap, ***, &) and there exists an M, € K_ such that
M, =M, (mod q). Thus

1 *

MM, = . . (mod q) (M; e K,).

Suppose that the first row of MM, is congruent to
(1,215, =, a)y, byy, oo, byy) (mod ),
so that

(7 a,'lj = 0 (mod p and  bj; = 0 (mod pd 4%y,

Let U, be the unimodular matrix
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1 -aj; e aly |
0 1 ven 0
U, = ,
0 o0 1

and let T = [t;;] € @y be the symmetric matrix defined by
tjp = -(byy +hipaip+ " +bipa,), tyj = -bj; (1<j<n),

t.: = bijpa'zaj (1<i,j<n) (b

ij ;j is the Kronecker delta).

U, U,T
2 2
Then M; =l: 0o Ul :l €4, ; in fact, careful examination shows that M; € K, ;
2

that is, the entries of M; satisfy condition (6). For if U, T = [t{j], then

' 1 1 1 1 o-20; . 1 1 .
tip = -byy, tj; =-byy-app ) (1<i<n), ;= -b; (1<i<n),

~20 ..
t = 65p0 -~ 3 (1<1i,j<n),

and as a result of (7) we easily see that t =0 (mod pa & aJ) (1<1i,j<n).

also see that the entries of U and U~ -1 satlsfy the required conditions. Hence

MM, Ms {i 2] (mod q), with M, M; € K__ .

However, MM, M; is symplectic modulo q, and hence

(8) MM, = (mod q) ,
c X 1 Y

W C; 0 D |

where My =M, M3 € K,,, A;,B;,C;,D; € ,_;,and X, Y, Z, W are row vectors
of dimension n - 1. Since MMy € L (a; a;, oy, **-, o), it is readily verified that

A B
I:Ci Di] € Ln-l(a; @z, ", an) and

-G -Dy
(9) [x Y]l =[z W] (mod q) ;
Al B;

in other words, X and Y are uniquely determined (mod q) by A;,B;,C;, D, Z,
and W.

An analysis of the construction of M, shows that it depends only on the first
row of M, so that if the first row of N ¢ L,(o; @y, @2, *-, @) is congruent

b

(mod q) to the first row of M, then NMy E[i 2:| (mod q). It follows that,
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A; Bj
C; D
X, Y, Z,W of dimension n - 1 related by (9), and any preassigned first row of M,
the other rows of M are uniquely determined (mod q). Thus

corresponding to each I: ] in L,_(e; a,, ***, a,), each set of row vectors

(10) an—l En—l(a; oy, an)

is the number of incongruent (mod q) matrices in L (a; @}, *+, @,) whose first
rows are congruent (mod q) (since there are q2n-1 choices for Z, W, and c).

We now examine the number of possible incongruent (mod q) choices of a first
row of a matrix in Ly(@; @y, ***, @y). This is the number of 2n-tuples
(ajy, ***,a15, P11, "**, byy) Of integers in a complete system of residues (mod q)
such that

(a11,2a12, """, 215 b11,b12, =, by, ) = 1
(11) and

a1; = 0 (mod p%i~¢1y by; = 0 (mod p® %1%y (1 <j<n).

Case (i). 2a, < a.
Here @ - a; - a; #0 for any j, since @) + aj < 2a,, and it is obvious that (11)
is satisfied if and only if (a;;, -, Ary s q) =1 and

= 0 (mod p%i~?1), by; = 0 (mod p%¥1-%j)

i (1<j<n).

alj

Since the number of incongruent (mod q) solutions of (a;; , =, a1, , q=1is

qu(l - p_rl), it follows immediately that the number of incongruent (mod q) solu-
tions of (11) is

n
qu (1 - p_rl) II pﬁ—aj+a1 II pB—a+a1+aj )
i>r j=1

We can simplify the last expression to
-r 2nQy -n
@®R(1-p 1)p LT,

Thus, by (10),

Zn0 | -n

- -r
L(as ay, =, ey = gl -p 7 p Lo (e ay, e, @),

and an easy induction argument proves the first part of the theorem.
Case (ii). 2a, = a.

The induction argument used above works until we reach the stage
Lo la ap, -, a,). Observe that when 2a; = 2a, = **- = 2a,, = @, the number of

solutions of (11) is precisely q2™(1 - p-2n), Thus, putting n = r, , we obtain the
formula
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4r, -1 -2r
-Qrk(Ol; ) Ozn) =4q k (1 - P k) 'Qrk—l(a; an’ I O[n)
Tk
_ qu(Zrk+1) H a1 - p—Z])
j=1

by induction. This completes the proof.
The following is an immediate consequence of Lemma 1 and Theorem 4.
COROLLARY 1.

[ : K ]

n

IT (1-p-%)
pan(n+l)/2 H -2(nt1-j)aj j=1 if %0 < &
j=1 k Ti
H<I@a-p)
i=1 { j=1
- n
n IT (1-p7%)
) j=1 . 3
pan(n+l)/2 I p'z(n+1-J)aj ™ 1 ( if 2a0,= 0.
J=1 IT (1-p-2)- I <II (1-p9)
j=1 i=1 { j=1

Since [,//l K ] Ao ( pal s poz2 s 2% pazn) and

(84 a a
hn(pa) = EAZn(p l,p 2,"‘,1) Zn)’

the summation being over all 2n-tuples (a;, a,, >+, a,,) of nonnegative integers
satisfying (5), we can calculate h (m) in a finite number of steps.
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