THE INDEX OF A SUBGROUP OF THE SYMPLECTIC MODULAR GROUP

Edward Spence

1. INTRODUCTION

Let Ω_n be the semigroup of all n-by-n matrices with rational integral entries, and let \mathcal{M}_n denote the symplectic modular group of degree n; that is, let \mathcal{M}_n be the group of all matrices $M \in \Omega_{2n}$ that satisfy the equation

$$M'JM = J,$$

where J = $\begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$, I being the identity n-by-n matrix. If M ϵ \mathcal{M}_n is partitioned as $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ with A, B, C, D ϵ Ω_n , it is easy to see that (1) is equivalent to the conditions

(2)
$$AB' = BA'$$
, $CD' = DC'$, and $AD' - BC' = I$.

A matrix N ϵ Ω_{2n} is called m-symplectic (m a positive integer) if it satisfies the condition

$$N'JN = mJ.$$

Denote the set of m-symplectic matrices by $\mathcal{M}_n(m)$, and call two matrices M, N $\in \mathcal{M}_n(m)$ left-associated if there exists an $M_1 \in \mathcal{M}_n$ such that $M = M_1 N$, and equivalent if there exist M_2 , $M_3 \in \mathcal{M}_n$ such that $M = M_2 N M_3$. Clearly, the relations of being left-associated and of being equivalent are equivalence relations on $\mathcal{M}_n(m)$. In [5], the following two results were proved.

THEOREM 1. An m-symplectic matrix is left-associated to exactly one matrix of the form

$$\left[\begin{array}{cc} Q_1 & m^{-1} SQ \\ 0 & Q_2 \end{array}\right],$$

where Q_1 , Q_2 , $S \in \Omega_n$, Q_1 is in Hermite normal form, det $Q_1 > 0$, $Q_1 Q_2' = mI$, $S = [s_{ij}]$ is symmetric, $0 \le s_{ij} < m$ $(1 \le i, j \le n)$, and $SQ_2 \equiv 0 \pmod m$.

The Hermite normal form of a matrix in Ω_n is the unique form to which it can be reduced by premultiplication by a suitable $U \in \Omega_n$ with determinant unity. For a more detailed explanation, see [2, p. 32].

Received February 12, 1971.

This paper was written while the author was on leave of absence at the University of Illinois.

Michigan Math. J. 19 (1972).

THEOREM 2. Every m-symplectic matrix is equivalent to exactly one matrix of the form

diag
$$\{d_1, d_2, \dots, d_{2n}\}$$
,

where

(4)
$$d_j > 0$$
 $(1 \le j \le 2n)$, $d_i \mid d_{i+1}$ $(1 \le i < n)$, $d_k^2 \mid m$, and $d_k d_{n+k} = m$ $(1 \le k \le n)$.

The number of canonical forms in either case was also found in [5]. In the present paper, we obtain an alternate method of finding the number of canonical forms given in Theorem 1, by investigating certain subgroups of \mathcal{M}_n .

It is clear that if M_1 , $M_2 \in \mathcal{M}_n(m)$ are left-associated, then they are also equivalent. Suppose, conversely, that M_1 , $M_2 \in \mathcal{M}_n(m)$ are equivalent. Then there exist U_1 , U_2 , V_1 , $V_2 \in \mathcal{M}_n$ such that

$$M_1 = U_1DV_1$$
, $M_2 = U_2DV_2$,

where D = diag $\{d_1, d_2, \cdots, d_{2n}\}$ satisfies conditions (4). Thus M_1 and M_2 are left-associated if and only if there exists U ϵ \mathcal{M}_n such that the equivalent conditions

$$U_1DV_1 = UU_2DV_2$$
, $D^{-1}(UU_2)^{-1}U_1D = V_2V_1^{-1}$, $V_2V_1^{-1} \in D^{-1}\mathcal{M}_nD \cap \mathcal{M}_n$

are satisfied. Since $D^{-1}\mathcal{M}_n D \cap \mathcal{M}_n$ is a subgroup of \mathcal{M}_n , we can rephrase the third condition by saying that V_1 and V_2 belong to the same right coset of $D^{-1}\mathcal{M}_n D \cap \mathcal{M}_n$ in \mathcal{M}_n . Write

$$[\mathcal{M}_n: D^{-1}\mathcal{M}_n D \cap \mathcal{M}_n] = A_{2n}(d_1, d_2, \dots, d_{2n}).$$

Then, for each set of positive integers d_1 , d_2 , \cdots , d_{2n} satisfying (4), the number of matrices of the form UDV (with U, V $\epsilon \mathcal{M}_n$) that are not left-associated is $A_{2n}(d_1, d_2, \cdots, d_{2n})$. Since nonequivalent matrices are not left-associated, we have the following result.

THEOREM 3. Let $h_n(m)$ denote the number of canonical forms under the relation of being left-associated. Then

$$h_n(m) = \sum A_{2n}(d_1, d_2, \dots, d_{2n}),$$

where the summation is taken over all sets of positive integers d_1 , d_2 , \cdots , d_{2n} satisfying conditions (4).

2. EVALUATION OF $h_n(m)$

It was shown in [5] that $h_n(m)$ is multiplicative, in other words, that $h_n(m_1 m_2) = h_n(m_1) h_n(m_2)$ if $(m_1, m_2) = 1$. It follows that to evaluate $h_n(m)$, we need only consider the case where $m = p^{\alpha}$ (p a prime). Here,

$$h_n(p^{\alpha}) = \sum A_{2n}(p^{\alpha_1}, p^{\alpha_2}, \dots, p^{\alpha_{2n}}),$$

the summation being over all 2n-tuples (α_1 , α_2 , \cdots , α_{2n}) of nonnegative integers satisfying the conditions

$$(5) \qquad 0\,\leq\,\alpha_{\,1}\,\leq\,\cdots\,\leq\,\alpha_{\,n}\,, \qquad 2\alpha_{\,i}\,\leq\,\alpha\,\,, \qquad \text{and} \qquad \alpha_{\,i}+\alpha_{\,n+i}\,=\,\alpha \qquad (1\leq i\leq n)\,.$$

Suppose therefore that E is the matrix diag $\{p^{\alpha_1}, p^{\alpha_2}, \cdots, p^{\alpha_{2n}}\}$ with $\alpha_1, \alpha_2, \cdots, \alpha_{2n}$ satisfying (5), and write K_n for the group $E^{-1}\mathcal{M}_n E \cap \mathcal{M}_n$. Also, let $\mathcal{M}_n[q]$ denote the *principal congruence subgroup* of \mathcal{M}_n defined by

$$\mathcal{M}_{n}[q] = \{ M \in \mathcal{M}_{n} : M \equiv I \pmod{q} \}.$$

It is well known [4, p. 58] that $\mathcal{M}_n[q]$ is a normal subgroup of \mathcal{M}_n of finite index

$$[\mathcal{M}_{n}:\mathcal{M}_{n}[q]] = q^{n(2n+1)} \prod_{p|q}^{n} \prod_{k=1}^{n} (1 - p^{-2k}).$$

LEMMA 1. If $q = p^{\beta}$, where $\beta \geq \alpha$, then $\mathcal{M}_{n}[q] \subseteq K_{n}$

The proof is entirely straightforward, and we omit it.

It is an immediate consequence of Lemma 1 that

$$[\mathcal{M}_{n}:K_{n}] = [\mathcal{M}_{n}:\mathcal{M}_{n}[q]]/[K_{n}:\mathcal{M}_{n}[q]]$$

when $q = p^{\beta}$ (as it will be throughout the remainder of the paper), and since $[\mathcal{M}_n: \mathcal{M}_n[q]]$ is known, the problem of determining

$$A_{2n}(p^{\alpha_1}, p^{\alpha_2}, \dots, p^{\alpha_{2n}}) = [\mathcal{M}_n: K_n]$$

has been reduced to the evaluation of $[K_n: \mathcal{M}_n[q]]$. A matrix $M \in \Omega_{2n}$ is said to be symplectic modulo q if

$$M'JM \equiv J \pmod{q}$$
.

If M is symplectic modulo q, then by Theorem 1 of [3] there exists an N $\in \mathcal{M}_n$ such that N \equiv M (mod q).

LEMMA 2. $[K_n: \mathcal{M}_n[q]]$ is the number of matrices $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \Omega_{2n}$ that are incongruent (mod q) and symplectic modulo q, and whose entries satisfy (in the obvious notation) the conditions

(6)
$$\begin{cases} a_{ij} \equiv 0 \pmod{p^{\alpha_j - \alpha_i}} & (1 \leq i \leq j \leq n), \\ b_{ij} \equiv 0 \pmod{p^{\alpha_i - \alpha_j}} & (1 \leq i, j \leq n), \\ d_{ij} \equiv 0 \pmod{p^{\alpha_i - \alpha_j}} & (1 \leq j \leq i \leq n). \end{cases}$$

Proof. Suppose that $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \Omega_{2n}$ is symplectic modulo q and satisfies (6). Then there exists $N \in \mathcal{M}_n$ such that $N \equiv M \pmod{q}$. Since $\alpha_1, \alpha_2, \cdots, \alpha_n$ satisfy (5), it is easy to see that the entries of N also satisfy conditions (6), and by a simple exercise this implies that $N \in K_n$. To complete the proof, observe that $N_1, N_2 \in K_n$ lie in distinct cosets of $\mathcal{M}_n[q]$ in K_n if and only if $N_1 \not\equiv N_2 \pmod{q}$.

Let the set of matrices $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \Omega_{2n}$ that are symplectic modulo q and whose entries satisfy (6) be denoted by $L_n(\alpha; \alpha_1, \alpha_2, \cdots, \alpha_n)$, so that $M \in L_n(\alpha; \alpha_1, \alpha_2, \cdots, \alpha_n)$ implies the existence of an N in K_n such that $N \equiv M \pmod{q}$. Also, write $\ell_n(\alpha; \alpha_1, \alpha_2, \cdots, \alpha_n)$ for the number of matrices in $L_n(\alpha; \alpha_1, \alpha_2, \cdots, \alpha_n)$ that are incongruent (mod q). Then

$$\ell_n(\alpha; \alpha_1, \alpha_2, \dots, \alpha_n) = [K_n: \mathcal{M}_n(q)],$$

by the lemma.

At this stage, assume that

$$(\alpha_1, \alpha_2, \dots, \alpha_n) \equiv (\underbrace{a_1, \dots, a_1}_{r_1 \text{ terms}}, \underbrace{a_2, \dots, a_2}_{r_2 \text{ terms}}, \dots, \underbrace{a_k, \dots, a_k}_{r_k \text{ terms}}),$$

where α_1 = $a_1 < a_2 < \cdots < a_k$ = α_n and $r_1 + r_2 + \cdots + r_k$ = n, $r_i \ge 1$. THEOREM 4.

 $[K_n: \mathcal{M}_n[q]]$

$$= \begin{cases} q^{n(2n+1)} p^{-\alpha n(n+1)/2} \prod_{j=1}^{n} p^{2(n+1-j)\alpha_{j}} \prod_{i=1}^{k} \begin{Bmatrix} r_{i} \\ \prod_{j=1}^{r_{i}} (1-p^{-j}) \end{Bmatrix} & \text{if } 2\alpha_{n} < \alpha, \\ q^{n(2n+1)} p^{-\alpha n(n+1)/2} \prod_{j=1}^{n} p^{2(n+1-j)\alpha_{j}} \prod_{i=1}^{k-1} \begin{Bmatrix} r_{i} \\ \prod_{j=1}^{r_{i}} (1-p^{-j}) \end{Bmatrix} \cdot \prod_{j=1}^{r_{k}} (1-p^{-2j}) \\ & \text{if } 2\alpha_{n} = \alpha. \end{cases}$$

Proof. Let
$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in L_n(\alpha; \alpha_1, \alpha_2, \dots, \alpha_n)$$
. Then, since $(a_{11}, \dots, a_{1n}, b_{11}, \dots, b_{1n}, q) = 1$,

there exist integers λ_1 , λ_2 , \cdots , λ_{2n} such that

$$\lambda_1 a_{11} + \cdots + \lambda_n a_{1n} + \lambda_{n+1} b_{11} + \cdots + \lambda_{2n} b_{1n} \equiv 1 \pmod{q}$$

with $(\lambda_1, q) = 1$ (see [1, Lemma 2]). Write

$$\mathbf{U}_{1} = \begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 & 0 \\ \lambda_{2} & 1 & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \lambda_{n-1} & 0 & \cdots & 1 & 0 \\ \lambda_{n} & 0 & \cdots & 0 & \lambda_{1}^{-1} \end{bmatrix},$$

where λ_1^{-1} is the inverse of λ_1 (mod q), and let V_1 be a matrix such that $U_1V_1'\equiv I \pmod{q}$. Such a matrix exists, since det $U_1\equiv 1 \pmod{q}$. Further, let

$$X = \lambda_1^{-1} \begin{bmatrix} \lambda_{n+2} - \lambda_2 \\ \lambda_{n+3} - \lambda_3 \\ \dots \\ \lambda_{2n} - \lambda_n \end{bmatrix} \pmod{q},$$

and choose s so that

$$s \equiv \lambda_1^{-1}(\lambda_{n+1} - [\lambda_2, \lambda_3, \dots, \lambda_n]X) \pmod{q}$$
.

Then $S = \begin{bmatrix} s & X' \\ X & I \end{bmatrix}$ is symmetric and

$$SU_{1} \equiv \begin{bmatrix} \lambda_{n+1} \\ \lambda_{n+2} \\ \dots \\ \lambda_{2n} \end{bmatrix} \pmod{q}.$$

It follows that $M_1 = \begin{bmatrix} U_1 & 0 \\ SU_1 & V_1 \end{bmatrix}$ is symplectic modulo q and

$$\mathbf{MM}_{1} \equiv \begin{bmatrix} 1 & * \\ * & * \end{bmatrix} \pmod{q}.$$

Note that since U_1 is a lower-triangular matrix, V_1 may be taken to be upper-triangular, and hence the entries of M_1 satisfy conditions (6); that is, $M_1 \in L_n(\alpha; \alpha_1, \alpha_2, \cdots, \alpha_n)$ and there exists an $M_2 \in K_n$ such that $M_2 \equiv M_1 \pmod{q}$. Thus

$$MM_2 \equiv \begin{bmatrix} 1 & * \\ * & * \end{bmatrix} \pmod{q} \quad (M_2 \in K_n).$$

Suppose that the first row of MM2 is congruent to

$$(1, a'_{12}, \dots, a'_{1n}, b'_{11}, \dots, b'_{1n}) \pmod{q}$$
,

so that

(7)
$$a'_{1j} \equiv 0 \pmod{p^{\alpha_j - \alpha_l}} \quad \text{and} \quad b'_{1j} \equiv 0 \pmod{p^{\alpha - \alpha_j - \alpha_l}}.$$

Let U_2 be the unimodular matrix

$$U_{2} = \begin{bmatrix} 1 & -a'_{12} & \cdots & a'_{1n} \\ 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 1 \end{bmatrix},$$

and let $T = [t_{ij}] \in \Omega_n$ be the *symmetric* matrix defined by

$$\begin{split} t_{11} &= -(b_{11}^{'} + b_{12}^{'} a_{12}^{'} + \cdots + b_{1n}^{'} a_{1n}^{'}) \,, \qquad t_{1j} = -b_{1j}^{'} \quad (1 < j \le n) \,, \\ t_{ij} &= \delta_{ij} p^{\alpha - 2\alpha_{j}} \quad (1 < i, j \le n) \quad (\delta_{ij} \text{ is the Kronecker delta}) \,. \end{split}$$

Then $M_3 = \begin{bmatrix} U_2 & U_2 T \\ 0 & U_2^{'-1} \end{bmatrix} \in \mathcal{M}_n$; in fact, careful examination shows that $M_3 \in K_n$; that is, the entries of M_3 satisfy condition (6). For if $U_2 T = [t_{ij}^!]$, then

$$\begin{split} t_{11}' &= -b_{11}', \quad t_{1j}' &= -b_{1j}' - a_{1j}' p^{\alpha-2\alpha j} \quad (1 < j \le n), \quad t_{i1}' &= -b_{1i}' \quad (1 < i \le n) \,, \\ t_{ij}' &= \delta_{ij} \, p^{\alpha-2\alpha j} \quad (1 < i, \, j \le n) \,, \end{split}$$

and as a result of (7) we easily see that $t_{ij}' \equiv 0 \pmod{p^{\alpha-\alpha_i-\alpha_j}}$ ($1 \le i, j \le n$). We also see that the entries of U_2 and $U_2'^{-1}$ satisfy the required conditions. Hence $M \: M_2 \: M_3 \equiv \begin{bmatrix} 1 & 0 \\ * & * \end{bmatrix} \pmod{q}$, with $M_2 \: M_3 \in K_n$.

However, $\mathrm{M}\,\mathrm{M}_2\,\mathrm{M}_3$ is symplectic modulo q, and hence

(8)
$$\mathbf{MM}_{4} \equiv \begin{bmatrix} 1 & 0 & 0 & 0 \\ \mathbf{Z}' & \mathbf{A}_{1} & 0 & \mathbf{B}_{1} \\ \mathbf{c} & \mathbf{X} & 1 & \mathbf{Y} \\ \mathbf{W}' & \mathbf{C}_{1} & 0 & \mathbf{D}_{1} \end{bmatrix} \pmod{q},$$

where $M_4 = M_2 \, M_3 \, \epsilon \, K_n$, A_1 , B_1 , C_1 , $D_1 \, \epsilon \, \Omega_{n-1}$, and X, Y, Z, W are row vectors of dimension n - 1. Since $MM_4 \, \epsilon \, L_n(\alpha; \, \alpha_1 \,, \, \alpha_2 \,, \, \cdots \,, \, \alpha_n)$, it is readily verified that $\begin{bmatrix} A_1 & B_1 \\ C_1 & D_1 \end{bmatrix} \, \epsilon \, L_{n-1}(\alpha; \, \alpha_2 \,, \, \cdots \,, \, \alpha_n) \, \text{ and }$

(9)
$$[X \ Y] \equiv [Z \ W] \begin{bmatrix} -C_1 & -D_1 \\ A_1 & B_1 \end{bmatrix} \pmod{q};$$

in other words, X and Y are uniquely determined (mod q) by A_1 , B_1 , C_1 , D_1 , Z, and W.

An analysis of the construction of M_4 shows that it depends only on the *first* row of M, so that if the first row of N \in L_n(α ; α_1 , α_2 , \cdots , α_n) is congruent (mod q) to the first row of M, then NM₄ \equiv $\begin{bmatrix} 1 & 0 \\ * & * \end{bmatrix}$ (mod q). It follows that,

corresponding to each $\begin{bmatrix} A_1 & B_1 \\ C_1 & D_1 \end{bmatrix}$ in $L_{n-1}(\alpha; \alpha_2, \cdots, \alpha_n)$, each set of row vectors X, Y, Z, W of dimension n - 1 related by (9), and any preassigned first row of M, the other rows of M are uniquely determined (mod q). Thus

(10)
$$q^{2n-1} \ell_{n-1}(\alpha; \alpha_2, \dots, \alpha_n)$$

is the number of incongruent (mod q) matrices in $L_n(\alpha; \alpha_1, \cdots, \alpha_n)$ whose first rows are congruent (mod q) (since there are q^{2n-1} choices for Z, W, and c).

We now examine the number of possible incongruent (mod q) choices of a first row of a matrix in $L_n(\alpha;\alpha_1,\cdots,\alpha_n)$. This is the number of 2n-tuples $(a_{11},\cdots,a_{1n},b_{11},\cdots,b_{1n})$ of integers in a complete system of residues (mod q) such that

(11)
$$\begin{cases} (a_{11}, a_{12}, \dots, a_{1n}, b_{11}, b_{12}, \dots, b_{1n}, q) = 1 \\ and \\ a_{1j} \equiv 0 \pmod{p^{\alpha_j - \alpha_1}}, b_{1j} \equiv 0 \pmod{p^{\alpha - \alpha_1 - \alpha_j}} & (1 \le j \le n). \end{cases}$$

Case (i). $2\alpha_n < \alpha$.

Here α - α_1 - $\alpha_j \neq 0$ for any j, since $\alpha_1 + \alpha_j \leq 2\alpha_n$, and it is obvious that (11) is satisfied if and only if $(a_{l\,l}$, \cdots , $a_{i\,r_l}$, q) = 1 and

$$a_{1j} \equiv 0 \pmod{p^{\alpha_j - \alpha_1}}, \quad b_{1j} \equiv 0 \pmod{p^{\alpha - \alpha_1 - \alpha_j}} \quad (1 \leq j \leq n).$$

Since the number of incongruent (mod q) solutions of $(a_{11}, \dots, a_{1r_1}, q) = 1$ is $q^{r_1}(1 - p^{-r_1})$, it follows immediately that the number of incongruent (mod q) solutions of (11) is

$$q^{r_1} (1 - p^{-r_1}) \prod_{j>r_1} p^{\beta-\alpha_j+\alpha_1} \prod_{j=1}^n p^{\beta-\alpha+\alpha_1+\alpha_j}.$$

We can simplify the last expression to

$$q^{2n}(1 - p^{-r_1})p^{2n\alpha_1-n\alpha}$$
.

Thus, by (10),

$$\ell_{n}(\alpha; \alpha_{1}, \dots, \alpha_{n}) = q^{4n-1}(1 - p^{-r_{1}})p^{2n\alpha_{1}-n\alpha}\ell_{n-1}(\alpha; \alpha_{2}, \dots, \alpha_{n}),$$

and an easy induction argument proves the first part of the theorem.

Case (ii).
$$2\alpha_n = \alpha$$
.

The induction argument used above works until we reach the stage $\ell_{r_k}(\alpha; \alpha_n, \cdots, \alpha_n)$. Observe that when $2\alpha_1 = 2\alpha_2 = \cdots = 2\alpha_n = \alpha$, the number of solutions of (11) is precisely $q^{2n}(1-p^{-2n})$. Thus, putting $n=r_k$, we obtain the formula

$$\begin{split} \ell_{\mathbf{r}_{k}}(\alpha;\,\alpha_{n}\,,\,\cdots\,,\,\alpha_{n}) &= \,q^{4\mathbf{r}_{k}-1}\,(1-p^{-2\mathbf{r}_{k}})\,\ell_{\mathbf{r}_{k}-1}(\alpha;\,\alpha_{n}\,,\,\cdots\,,\,\alpha_{n}) \\ &= \,q^{\mathbf{r}_{k}(2\mathbf{r}_{k}+1)}\,\prod_{j=1}^{\mathbf{r}_{k}}\,(1-p^{-2j}) \end{split}$$

by induction. This completes the proof.

The following is an immediate consequence of Lemma 1 and Theorem 4. COROLLARY 1.

 $[\mathcal{M}_n: K_n]$

$$\frac{1}{2} \left\{ \begin{array}{c} p^{\alpha n(n+1)/2} \prod_{j=1}^{n} p^{-2(n+1-j)\alpha_{j}} \frac{\prod_{j=1}^{n} (1-p^{-2j})}{\prod_{i=1}^{k} \left\{ \prod_{j=1}^{r_{i}} (1-p^{-j}) \right\}} & \text{if } 2\alpha_{n} < \alpha, \\ \prod_{i=1}^{n} \left\{ \prod_{j=1}^{r_{i}} (1-p^{-j}) \right\} & \text{if } 2\alpha_{n} < \alpha, \\ p^{\alpha n(n+1)/2} \prod_{j=1}^{n} p^{-2(n+1-j)\alpha_{j}} \frac{\prod_{j=1}^{n} (1-p^{-2j})}{\prod_{j=1}^{r_{k}} (1-p^{-2j}) \cdot \prod_{i=1}^{k-1} \left\{ \prod_{j=1}^{r_{i}} (1-p^{-j}) \right\}} & \text{if } 2\alpha_{n} = \alpha. \\ \sum_{j=1}^{n} \prod_{i=1}^{n} \left(1-p^{-2j} \right) \cdot \prod_{i=1}^{n} \left(1-p^{-j} \right) \right\} & \text{if } 2\alpha_{n} = \alpha. \\ \end{array}$$
Since $\left[\mathcal{M} : K \right] = A_{2} \left(n^{\alpha_{1}} n^{\alpha_{2}} \cdots n^{\alpha_{2n}} \right) \text{ and }$

Since
$$[\mathcal{M}_n: K_n] = A_{2n}(p^{\alpha_1}, p^{\alpha_2}, \dots, p^{\alpha_{2n}})$$
 and

$$h_n(p^{\alpha}) = \sum A_{2n}(p^{\alpha}l, p^{\alpha}2, \dots, p^{\alpha}2n)$$

the summation being over all 2n-tuples $(\alpha_1, \alpha_2, \cdots, \alpha_{2n})$ of nonnegative integers satisfying (5), we can calculate $h_n(m)$ in a finite number of steps.

REFERENCES

- 1. N. J. Fine and I. Niven, The probability that a determinant be congruent to a (mod m). Bull. Amer. Math. Soc. 50 (1944), 89-93.
- 2. C. C. MacDuffee, The theory of matrices. Chelsea Publ. Co., New York, 1946.
- 3. M. Newman and J. R. Smart, Symplectic modulary groups. Acta Arith. 9 (1964),
- 4. C. L. Siegel, Symplectic geometry. Amer. J. Math. 65 (1943), 1-86.
- 5. E. Spence, m-symplectic matrices. Trans. Amer. Math. Soc. (to appear).

University of Glasgow Glasgow, Scotland