ON COMMUTATORS IN IDEALS OF COMPACT OPERATORS
Carl Pearcy and David Topping

1. INTRODUCTION

Let & be an infinite-dimensional, separable Hilbert space, and denote by
Z() the algebra of all bounded, linear operators on &#. All operators to which
we refer will be bounded and linear. We denote by ¢ the (two-sided) ideal in
#(s#) consisting of all compact operators, and we recall that & isa C*-algebra
(without identity). The ideal & is the only ideal in 2(¢) that is closed in the
operator norm, but & contains a whole chain of other ideals--the Schatten p-ideals.
For our purposes, it will be convenient to employ Dixmier’s method [3, p. 296] of
defining the Schatten p-classes €, where p is any positive number. To do this,
one first defines the {race class € as follows. Suppose K € o, and let K = UP be
the canonical polar decomposition of K. Then P is a positive compact operator, and
thus is unitarily equivalent to a diagonal matrix—say (0;). One says that K € #%; if
the sequence {51} belongs to the Banach space (£;). The trace norm of an opera-
tor K € €, is defined by |K|; = |{6;}]|,, where the norm on the right is the norm
on the Banach space (£;). The set of all operators Al/ P, where A runs over all
positive operators in €;, is the positive part of an ideal in & [3, Proposition 1, p.
296], and we denote this ideal by ©p. It is easy to see thatif K € €p and K has a
canonical polar decomposition K = UP, then PP € %, and we define the Schatten
p-norm of K by |K|[, = | PP|| 1P It is known that ¢p is a Banach *-algebra
under the Schatten p-norm [6]. Furthermore, it is not hard to see that for every
pair p, q of positive numbers p and q,

(1) Cp€q = Cr,

where r-1 =p-1 +q-1, and where the left-hand side represents the set of all finite

sums of the form 27 A;B; (A € €y, Bj€ "éq). The ideals %) and €, are more
important than the other Schatten p-ideals. The trace class ¢; may be character-
ized as the set of all compact operators K with the property that the matrix of K
with respect to every orthonormal basis of ¢ has absolutely summable trace
(whose value is independent of the orthonormal basis). We shall denote the trace on
@) by tr(-), and we recall that it has all the usual properties of a trace [6]. The
ideal @, is called the Hilbert-Schmidt class, and it may be characterized as the set
of operators K in £(s#) such that some (and therefore every) matrix for K has
square-summable entries [6]. We refer the reader to [6] for more detail concerning
the Schatten p-classes.

If 4 is any ideal in £(s¢ ), we denote by C(.#) the set of all commutators of
elements of .#. In other words, C(.#) consists of all operators A (necessarily in
() such that there exist operators B, C € 4 with A= BC - CB. We also denote
the linear span of C(#) by [.#, .«]. In other words, [ .#, .#] consists of all
finite sums of elements from C(.#). In the case # = Z(s¢), the identification of
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C(£Z(s)) was accomplished in [2], where it was shown that C(Z(.#)) consists of
the union of & and the class of operators of type (F). Earlier, it had been shown
[4] that [Z( o), 2(x)] = 2(x).

2. SOME OPEN QUESTIONS

The purpose of this paper is to raise some questions and to provide some
answers concerning the identity of the classes C(.#) and [ 4, . ], where M4 = K
or M =&y (p > 1). Unfortunately, many of the questions seem difficult.

PROBLEM 1, Is C() = «?

What makes this problem so difficult is that we cannot get started. We cannot
show that every projection of rank 1 is the commutator of two compact operators.
(We know from [1] that every compact operator is a commutator AB - BA of two
bounded operators A and B; but inspection of the relevant proofs shows that, in
general, neither A nor B is compact.) The question of the identity of [ , A ] is
somewhat easier, and we show (Theorem 1) that [, o] = .

Turning our attention to the Schatten p-classes %p (p > 0), we observe (see (1))
that if A, B € €, then AB - BA € @p/2, so that C(&2p) C €p, and it is impos-
sible that C( %p) = @, . Thus, the appropriate question in this case is the following:

PROBLEM 2. Is C(&3,) = €, (p>1)?

It is only appropriate to ask this question for p > 1, because the existence of a
trace on @; shows immediately that any operator in C(¥,) must be a trace-class
operator having trace zero. Let us denote the class of operators in &, with trace
zero by ¢ .

PROBLEM 3. Is C(%,) =@ ?

The techniques involved in giving an affirmative answer to this question would
likely enable us to solve some stubborn problems in the theory of commutators in
finite von Neumann algebras (see [5]). Problem 3 is so intractable that we cannot
even answer a weaker question:

PROBLEM 8'. Is [%,, ©,]= ¢)?

3. SOME PROGRESS

In this section we prove the following theorems.

THEOREM 1. The linear span of C(H) is H itself; thatis, [K, K] = A .
THEOREM 2. The velation [€,,, %,,]= €, holds for every real p > 1.
THEOREM 3. The velation [€, ., €,,.]1= &, holds for every & > 0.

In view of the preceding remarks, all of these results are best possible. The
proofs of all three theorems proceed along the same lines, as follows. Let T be an
arbitrary operator in & [respectively, in %p]. Let ¢ be a unitary isomorphism of
< onto # @ o, and observe that this isomorphism carries T onto a 2-by-2

- matrix

- T, T
% = (
T3 T4
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that acts on & (P o in the usual way. It is clear that each T; belongs to o [re-
spectively, each T; belongs to E?p], and also that it suffices to prove the theorems

for T in place of T. We write

. T, O 0 T, 0 0 0 0
(2) T=( )+( )+( )+( )’
0 0 0 0 T3 O 0 Ty
and symmetry considerations show that to prove that T € [ , A ] (respectively,
T e [?‘2 s %Zp] ), it suffices to prove this for the first two summands on the right-
hand side of (2). We deal first with the second summand. Let T, = UP be the

unique polar decomposition of T, , and note that P1/2 € o [respectively,
Pl/2 € #,,]. Then

(0 TZ) (UPI/Z 0) (0 PI/Z)
0 0 0 o/ \o o ’

and each of the matrices on the right belongs to & [to ?zp]. Thus, to complete the
proofs of Theorems 1, 2, and 3, it suffices to prove the following lemma.

LEMMA. The opevatoy matvix

S 0
Co)
0 O

is the sum (AB - BA) + (CD - DC) of two commutators. Furthermore, if S € K
lif Se #,, #p (0> 1)], then each of the four operators A, B, C, D can be taken to
belong to H [to €,.¢ (8 > 0), %Zp]

Proof. If the second copy of & in o# @ o is identified with countably many
copies of o#, then the Hilbert space o @& ¢ becomes identified with

H=AHDHD DK ),

and the operator (3) becomes unitarily equivalent to the diagonal operator matrix
Diag(S, 0, 0, --+) in Z(o¢). We write

Diag(s, 0, 0, -+, 0, --+) = Diag (S, -8, §/2, -S/2, -, S/n, -S/n, ***)
(4)
+ Diag (0, S, -5/2, S/2, :--, -S/n, S/n, --+),

and we observe that the proof may be completed by showing that each of the sum-
mands on the right in (4) is a commutator of the appropriate type. To accomplish
this, we first introduce some convenient notation.

If (AIJ)1 j=1 is an infinite operator matrix (with entries from £( o)) that

represents an operator in £( af) and if the only nonzero entries occurring in (AIJ)
occur on the diagonal directly above the main diagonal, we write

UDiag (B, By, ***, B,, ***) = UDiag({B,})
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for the matrix (A;;). This implies, of course, that Aj2 =B}, Az3=B3, ---. Simi-
larly, for a matrix (Aij) all of whose nonzero entries lie on the diagonal directly
below the main diagonal we write

LDiag(Cly CZ’ ) Cn’ “.) = LDiag({Cn});

where C; = Az;, Cz = A3, ---. Itis easy to verify directly that if {an}:f:l isa
bounded sequence of scalars and S is the operator in £(<¢) appearing in (4), then
the commutator

(5) [LDiag ({a, S}), UDiag ({a, 1, 1]

is equal to the operator

Diag(af S, (ag - a‘i‘)S, 2 (ozflJrl - ai) S, ).

Thus the first summand on the right-hand side of (4) is the commutator (5), where
the sequence {a, } is defined by the rule a,,_; = ap, =1/vn (n=1, 2, ---). With
this definition of the sequence {an}, it follows easily that the operator
UDiag({a, 1, }) belongs to every ideal €p (p >2). Furthermore, it is easy to
see that if S is compact, then the operator LDiag({a,S}) is also compact, and if
S € %, then LDiag({®,S}) belongs to #,,. for every positive number &. Fi-
nally, if S € &p for p > 1, then LDiag ({a, S}) belongs to C2p . (All of these re-

sults are easy consequences of the fact that the series E:=l n~P converges for
p>1.)

To complete the proof of Lemma 4, we must show that the second summand
Diag ({B,,S}) on the right-hand side of (4) is a commutator of operators of the ap-
propriate types. This is harder, however, because the sequence {Bn}§=l of co-
efficients of S on the diagonal is

s
H ;

Bl

11 1
(6) 0: 17 _E! _2_’ Tty _H3

and the series Z):lozl Bn converges conditionally to 1. (This implies that if we try to
make Diag ({8,S}) a commutator of the form (5), then the sequence {@,} will not
converge to zero, and thus the operators in (5) will fail to be compact.) Thus, we
need the following auxiliary proposition.

The conditionally convergent sevies

1. 1 1
(7) 0+1—§+§—§+

QO] bt

can be rearvanged into a servies a; + ap + a3+ -+ that converges to zevo and has
the furthev property that

n
Eai

i=1

=N

(1 <n< ).

(8) <

That the series (7) can be rearranged into a series converging (conditionally) to
zero is a well-known elementary theorem due to Riemann. The desired series
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@) +a, + -+ is exactly the series that is produced by the standard proof of Rie-
mann’s theorem. More precisely, we define o; =0 and a, =1, and then we add
negative terms a3, -, akl (in the order of their occurrence in the original series)

until the partial sum o) + - + Qy, becomes negative. We then define Qe +1 = 1/2,
note that the partial sum o +--- + @k, + 0 41 is positive, and add additional nega-
tive terms Qe 425 7y Ok, (again in the order of their occurrence in the original
series) until the partial sum a; + -+ + @y 2 again becomes negative. Continuing

this, we obtain by induction the series o + @, + «-- + @, + --- whose sum is ob-
viously zero. That (8) is valid is a consequence of the following three properties of
the rearranged series:

(a) The first few terms of the series are

(b) The series does not contain two consecutive positive terms.
(¢) The series does not contain four consecutive negative terms.

Both (b) and (c) are easily verified by induction based on (a) and the elementary in-
equality

1 .1, 1

St itHm T T

S

The details of these induction arguments and the verification that (8) follows from
(a), (b), and (c) are left to the reader.

We return now to complete the proof of the lemma. We must show that
Diag ({8, S}) is a commutator of the right type, where {8,} is the sequence (6).
Let {a,} be the permutation of the sequence {8, } described in the auxiliary
proposition. The operator Diag ({8, S}) is clearly unitarily equivalent to the oper-
ator Diag({ans}), so that it suffices to prove the result for the operator

n
Diag({anS}). Let the (complex) sequence {'yn} be defined so that 'yﬁ = 2k=1 oy .
With this definition of the sequence {7, 7}, it is clear that Diag({c,, S}) is the com-
mutator [LDiag({y,S}), UDiag ({7, 1o })] (see (5)). Furthermore, by virtue of
(8), we have the inequality I'yn < 2/v¥m for every positive integer n. It now fol-
lows, just as before, that UDiaLg({'yn 14 }) belongs to every ideal €p for p > 2.
Moreover, if S belongs to & [respectively, to €, to €, (p > 1)], then
LDiag({a,S}) belongs to # [respectively, to €,,¢, to ©2pl. This completes
the proof of the lemma, and therefore of Theorems 1, 2, and 3.
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