RANGES OF NORMAL AND SUBNORMAIL OPERATORS

C. R. Putnam

1. Let T be a bounded operator on a Hilbert space H, and denote its spectrum
by sp(T) and its range by R(T). (Only bounded operators will be considered.) For
each set E of complex numbers, let S(T; E) be the subset of H defined by

(1.1) ST;E) = [) R(T -t),  S(T; empty set) = H.
teE

Denote the interior of E by int(E) and the complement of E by C(E). Clearly, S
is a decreasing function of E in the sense that S(T; E;) C S(T; E) if E; D E;.
Also, since R(T - tI) = H whenever t does not belong to sp(T),

(1.2) S(T; sp(T)) € S(T; E) for each E.

If T is normal and has the spectral resolution
(1.3) T = Sszz,

let K(E) denote the associated projection measure defined on the Borel sets E of
the plane. We shall prove the following result.

THEOREM 1. If T is normal and has the spectral resolution (1.3), and if E is
any Borel set of the plane, then

(1.4) S(T; C(E)) c R(K(E)) c S(T; int (C(E))).
Consequently,
(1.5) S(T; sp(T) - E) = R(K(E)) if E is a closed subset of sp(T),

and, in particular,
(1.6) S(T; sp(T)) = 0.

To obtain (1.5) from (1.4), note that now C(E) = int (E) and hence, by (1.4),
R(K(E)) = S(T; C(E)) = 8(T; sp(T) N C(E)) = S(T; sp(T) - E).

We see that if T is normal, then S(T; sp(T)) = 0 but S(T; E) # 0 whenever E is
small relative to sp(T), more precisely, whenever the closure of E is a proper sub-
set of sp(T). In case T is not normal, simple examples show that even (1.6) can be
false. We need only consider an operator T # 0 for which sp(T) is the single
point O.
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Recall that T is subnormal if it has an extension T; that is normal on a Hil-
bert space H; D H, and if moreover T leaves H invariant and T; =T on H. (See
P. R. Halmos [3, pp. 100 ff.] for properties of such operators.) It is known that if
T; is the minimal extension of T, then sp(T;) C sp(T) (Halmos [2]) and, in fact,
that sp(T) is obtained from sp(T;) by filling in some of the holes of the latter set
(J. Bram [1]). Further, by (1.6),

(1.7) S(T; sp(T)) < S(T; sp(Ty)) C S(Ty; sp(Ty)) = 0.

For example, let A denote the unilateral shift defined on the Hilbert space of

sequences {xn}:lozl satisfying the condition 20 Ixnl 2 < e, Then A has the matrix
representation A =(a;;) (i, j=1, 2, ---), where aj;) ;=1 and a;5=0 (j#i-1). It
is known that A is subnormal and that sp(A) is the closed unit disk. Further, the
minimal normal extension of A is the unitary operator B = (bij) (i,j=0,+1, ---) on

the Hilbert space of sequences {yn} :fz - satisfying 2 Iynl 2 < oo, where the ele-
ments b;; are defined by bj1,; =1 and bj;=0 (j #1 - 1). The spectrum of B is
the circle

(1.8) C = {z: |z| =1}.

It is clear from (1.7) that if T is subnormal, in contrast to the situation where
T is normal, then it is possible that S(T; E) = 0 when E is small relative to sp(T).
Thus, when T = A, S(A; C) =0, where C is the circle of (1.8). In fact, we shall
prove the following proposition.

THEOREM 2. Let A be the unilateval shift defined above. Then

(1.9) S(A;E) =0

if either

(1.10) E is an infinite set having a limit point inside C,
or

(1.11) m(ENC) > 0,

wheve m denotes ordinary Lebesgue measuye on C.

2. Proof of Theorem 1. Let E denote any Borel set of the plane, and let
f € S(T; C(E)), so that whenever c belongs to C(E), f = (T - cI)g for some g = g..
Let ¢ =a +ib (a, b real), and let Dg denote the disk 0 < |z - c| <sfor s>0. It
follows from (1.3) that

s72 |k(D,)£]|* = 572 [(x - 2)% + (v - 0)2]d | K, g]*< d|x.gll® = o,
SDS SDS'{O}

as s — 0. Thus, the symmetric derivate of the set function [|K(X)f[? (S. Saks [4,
p. 149]) is 0 at all points of C(E), and hence [4, p. 155] K(C(E))f = 0. Thus, if
f € S(T; C(E)), then f € R(K(E)), so that the first relation of (1.4) is proved.

If ¢ € int (C(E)), then, for each f in H, K(E)f = (T - cI)g., where

g = S (z - c)"1dK 1.
E
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This establishes the second part of (1.4), and the proof of Theorem 1 is complete.

3. Proof of Theorem 2. We see that each vector u(z) = {1, z, 22, -} (|z| < 1)
is in the eigenspace of A* belonging to z. If f= {f;, fz, -} belongs to S(A; E),
where E satisfies (1.10), then f = (A - zI)g, for each z in E and some vector g,,
and therefore

[>e]
(£, u@) = 27 szk =0 for each z in E.
k=0

It follows from (1.10), by a basic property of power series, that fy = 0 for all k,
that is, f = 0, and so (1.9) is proved.

It remains to prove (1.9) under the assumption (1.11). Suppose then that

f = (A - zl)g, where g =g, for z in E N C, where C is defined by (1.8). It is easily
verified that if g = {g;, g, -}, then

(3.1) g, = -(1/z)™* 22 szk
k=1

Note that g, = gn(z), and let z = e® (0 < 6 < 2r). For each fixed z in E,
lg.] = | 2o, fireikf], and since 20 |g |2 <o, g, — 0 as n — «.
Let F(6) denote the function in L2(0, 27) defined by

[}

(3.2) F(6) ~ 2 fielkd .
k=1

If F(0) = Z)k 1 fkelke then F(6) —» 0 as n — «, for each 6 in the set
Q=16:0<6<2m ¢ i0'¢ E}. Clearly,

27
(3.3) S |F(6) - Fo(6)|2d0 — 0 asn— .
0

In view of (1.11), Q has positive one-dimensional Lebesgue measure. By Egoroff’s
theorem, there exists a subset Q; of Q such that Q; has positive measure and such
that Fn(G) — 0 as n — «, uniformly for 6 in Q). Since |F - Fy|2 < (|F| + const.)?
on Q; and (| F| + const.)é € L(0, 27), it follows from (3.3) and Lebesgue’s
dominated-convergence theorem that, as n — =,

(3.4) S | F(6) - F(0)|? a0 — S | F(6)|%d6 = 0.
Ql 0] ]
Thus, F(0) = 0 almost everywhere on Q), and hence, by the theorem of F. and M.

R1esz (see Halmos [3, p. 82] for example), F(8) = 0 almost everywhere on
L (O 27). Hence fyx = 0 for all k, and again (1.9) holds.
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