LINDELOF REALCOMPACTIFICATIONS
R. T. Ramsay

A topological space X is called an I-space if every collection of closed sets
with the countable intersection property (c.i.p.) is contained in a maximal collec-
tion of closed sets with the c¢.i.p. This notion was introduced by R. W. Bagley and
J. D. McKnight [1]. Examples of I-spaces are the Lindeldf spaces and the countably
compact spaces. In this note, we examine under what conditions the realcompactifi-
cation vX of an I-space X is a Lindeltf space. We also settle a question raised by
the paper of Bagley and McKnight. .

We refer the reader to L. Gillman and M. Jerison [3] for such matters as the
definition and the basic properties of vX, where X is a completely regular space,
and for terminology. For example, a z-filter is a “filter” of zero sets of continuous,
real-valued functions on X [3, page 24]. All spaces in this paper are completely
regular.

LEMMA 1. The realcompactification vX of X is a Lindelof space if and only if
every z-filter in X with the c.i.p. is contained in a z-ultrafiltey with the c.i.p.

Proof. Note that if Z is the zero set of a continuous real function f on X and
cl,x denotes the closure operator in vX, then clyx Z is the zero set of {V, the
natural extension of f to uX [3, page 118]. Also, if Z; (i =1, 2, --*) are zero sets,
then

clyx ﬂ Z; = ﬂ clyx Z; -
1

i

Thus, the collections of zero sets of X having the c.i.p. are paired by extension
with the collections of zero sets of vX having the c.i.p. Since every z-ulirafilter in
uvX with the c.i.p. has nonempty intersection, our lemma can be restated as follows:
vX is a Lindeldf space if and only if every z-filter in vX with the ¢.i.p. has non-
empty intersection. We have thus reduced the lemma to Problem 8H.5 of [3].

LEMMA 2. If X is an I-space, then vX is a Lindelof space.

Proof. Let ¥ be a z-filter with the c.i.p. Let & denote a maximal collection
of closed sets with the c.i.p. containing #. Let €' denote the collection of zero
sets in ¥. Using the maximality of € and an argument of the type appearing on
page 30 of [3] we see that €' is a prime z-filter. Thus Z(0P) C €' C Z(MP) for
some p € BX, and the z-ultrafilter containing %' has the c.i.p. by Problem 7H.3 of
[3]. By Lemma 1, vX is a Lindeldf space.

Our first theorem generalizes Theorem 2 in [1].

THEOREM 1. A space X is both realcompact and an I-space if and only if X
is a Lindelof space.

Proof. If X is a Lindel&f space, then X is realcompact, and as we remarked
above, X is an I-space. The converse follows from Lemma 2. (J. E. Keesling has
obtained an independent proof of Theorem 1.)
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One might conjecture that X is an I-space if and only if vX is a Lindeldf space.
This is not true. Exercise 5I on page 79 of [3] furnishes a counterexample. The
space ¥ defined in this exercise is a completely regular, pseudocompact space that
is not countably compact. The pseudocompactness of ¥ implies that v¥ is compact,
hence a Lindeldf space. However, ¥ contains a closed, discrete, uncountable subset.
An uncountable discrete space is not an I-space (provided the cardinal of the space
is nonmeasurable [1]), and hence it follows that ¥ is not an I-space. However, we
shall prove the following result.

THEOREM 2. If X is normal and countably pavacompact, then X is an I-space
if and only if vX is a Lindelof space.

Proof. Let uX be a Lindelof space, and let ¥ denote a collection of closed sets

with the c.i.p. Consider the collection of zero sets ¥ = { Z: 72D ni Ci, Ci€ € }
The set ¥ is a z-filter with the c.i.p. By Lemma 1, there exists a z-ultrafilter %
with the c.i.p. containing ¥. Let %' be some maximal collection of closed sets
with the finite intersection property containing %. Using Urysohn’s Lemma, we see
that %' D €. C. H. Dowker [2] characterizes the normal, countably paracompact
spaces as follows: For every decreasing sequence of closed sets F12 F,2 -+ with
empty intersection, we can choose a sequence of neighborhoods U; D F; such that

i Ui = &. Using this characterization together with Urysohn’s Lemma, we can see
that %' has the c.i.p. The proof is complete.

An example of a normal space X that is not an I-space, while vX is a Lindeltf
space, would be of great interest. By Theorem 2, such a space would fail to be
countably paracompact, and it would give a negative answer to the famous question of
Dowker [2]. That is, X would be a normal space such that X X I is not normal,
where I is the unit interval.
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