AN EXTENSION OF WEYL’S THEOREM TO A CLASS
OF NOT NECESSARILY NORMAL OPERATORS

S. K. Berberian

1. INTRODUCTION

A bounded linear operator T on a Hilbert space is called-a Fredholm operator if
its null space N(T) is finite-dimensional and its range R(T) is a closed subspace of
finite codimension (see [4, p. 91]); the index of a Fredholm operator is defined as

i(T) = dim N(T) - dim R(T)Y (= dim N(T) - dim N(T*)).

Every invertible operator is trivially a Fredholm operator with index 0.

The spectrum o(T) of T is defined by the formula
o(T) = C{x: T - AI is invertible}.
Analogously, the Weyl spectrum w(T) of T is defined by the formula
(1) w(T) = C {x: T - AI is a Fredholm operator of index 0} .

Obviously, w(T) € ¢(T). The concept of Weyl spectrum is relevant only for infinite-
dimensional spaces: ®(T)= @ when the space is finite-dimensional, all operators

being Fredholm operators of index 0. For technical reasons, it is convenient to al-
low finite-dimensional spaces. When the space is infinite-dimensional, w(0) = {0}.

The Weyl spectrum (also called the essential spectrum) occurs in the theory of
perturbation by compact operators; it has the agreeable property of being invariant
under such perturbation; that is, w(T + K) = w(T) for all compact K (see [9]). We
shall not use this property, but we remark that it implies that

(T) = N {o(T +K): K is compact }

(L. A. Coburn [3] used this formula to define Weyl spectrum), and that w(T) = {0}
when T is compact and the space is infinite-dimensional.

Modulo the above remarks, the Weyl spectrum tends to be large:

LEMMA 1. o(T) - w(T) is either empty or consists of eigenvalues of finite
multiplicity.

Proof. If A € 0(T) - w(T), then S=T - Al is singular and is a Fredholm opera-
tor of index 0. In particular, dim N(S) < «, thus the problem is to show that
N(S) # {0}. Assume to the contrary that S is injective; then 0 = i(S) = 0 - dim R(S)*,
and since R(S) is closed, this implies S is surjective. Thus S is bijective and
therefore invertible [4, Problem 41], a contradiction.

Extending a classical result of H. Weyl for normal operators, Coburn [3] showed
that if T is any hyponormal operator, then
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(2) w(T) = 6(T) - 7myo(T),

where 7y (T) denotes the set of isolated points of ¢(T) that are eigenvalues of finite
multiplicity.

In general, if an operator T satisfies (2), one says that Weyl’s theorem holds for
T. This condition is clearly equivalent to

2') o(T) - o(T) = 70(T).

It follows from Lemma 1 that if T has no eigenvalues of finite multiplicity, then
w(T) = 0(T), and in particular, Weyl’s theorem holds for T. When the space is
finite-dimensional, Weyl’s theorem holds trivially for every T: mo(T) = ¢(T) and

w(T) = @.

V. Istré'.tescu [5] showed that Weyl’s theorem holds for a certain class of opera-
tors that are not necessarily hyponormal (the precise result is stated in the next
section).

The aim of this note is to prove that Weyl’s theorem holds for a class of opera-
tors that includes both the hyponormal operators and the class of operators consid-
ered by Istritescu.

2. STATEMENT OF RESULTS

Consider the following conditions that an operator T may satisfy:

Gy) (T - ALl | < [dist(a, o(T))]~! for all A not in o(T). (Note that the
right side is equal to the spectral radius of (T - AI)~1 , so that we actually have
equality; thus, T satisfies (G;) if and only if (T - AI)-! is normaloid for all A not
in o(T).)

(Gy) Every isolated point of ¢(T) is an eigenvalue of T.

1

() The restriction of T to any invariant subspace satisfies (Gy).
(a') The restriction of T to any reducing subspace satisfies (Gj).

(a") The restriction of T to any invariant subspace is convexoid (that is, T is
restriction-convexoid in the sense of [2]).

(™) The restriction of T to any reducing subspace satisfies (G)); in other
words, an isolated point of the spectrum of a direct summand of T is necessarily an
eigenvalue for the summand.

(8) Each point of o(T) is a bare point of o(T) (that is, it lies on the circum-
ference of some closed disc that contains o(T); see [7]).

(B') Each eigenvalue of T of finite multiplicity is a semibare point of ¢ (T)
(that is, it lies on the circumference of some closed disc that contains no other point
of o(T); see [14]).

It is obvious that all of these conditions are translation-invariant: if T satisfies
one of them, then so does T - pI (T and T - pl have the same invariant subspaces
and the same reducing subspaces).

Since (G;) = (G)) by a result of J. G. Stampfli [12, proof of Theorem Cl, we
have the implication (a') => (@"). Since every operator satisfying (G;) is convexoid
(see [7, Theorem 2], [12, p. 474]) the implication (@) = (a@") holds; also,
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(a") = (a") [2, Lemma 2]. Thus (@) = (a') = (@") and (@) = (a") = (a").
Obviously (8) = (8') (consider tangent circles). Thus (a™), (8') is the weakest pair
of conditions.

Istritescu [5] showed that if an operator T satisfies (&) and (B8), then Weyl’s
theorem holds for T. A hyponormal operator satisfies (o) (see Stampfli [12, Theo-
rem 1]) but of course it need not satisfy (8); thus Istratescu’s result complements
but does not include Coburn’s.

In the present note, we generalize Coburn’s and Istrajescu’s results simultane-
ously by showing that Weyl’s theorem holds for every operator T that satisfies (a")
and is reduced by each of its finite-dimensional eigenspaces. It follows that the con-
ditions (@) and (B8) in Istratescu’s theorem may be replaced by the weaker condi-
tions (a') and (B') (see Corollary 2 below).

3. WEYL’S THEOREM FOR A CLASS OF OPERATORS

In connection with reducing eigenspaces, we remark that N(T) reduces T if and
only if N(T) C N(T¥*); the proof is elementary.

THEOREM. If T is an operator that satisfies (a™) and is veduced by each of its
finite-dimensional eigenspaces, then Weyl's theorem holds for T.

Proof. Following Coburn [3], we first reformulate the problem: since T - Al
also satisfies the hypotheses of the theorem, it suffices, in view of (2'), to show that

(*) 0 € 15o(T) <> T is a singular Fredholm operator of index 0.

Next, we observe that each side of (*) implies that 0 is an eigenvalue of T of
finite multiplicity. For the leit side, this is trivial. On the other hand, if T is a
singular Fredholm operator of index 0, then the proof of L.emma 1 shows that
N(T) # {0}, so that 0 is an eigenvalue of finite multiplicity dim N(T). Thus, in
view of the hypothesis of the theorem, each side of (*) implies that N(T) is a (non-
zero, finite-dimensional) reducing subspace of T,

(3) N(T) ¢ N(T*) = R(T)*,
and, writing
(4) T=0®T,,
where 0 denotes the zero operator on N(T) and T; =T | N(T)" is injective, we have
(5) o(T) = {0} U o(T)).
Proof of =. Assume 0 € 7o(T). Of course, T is singular; it is to be shown

that T is a Fredholm operator of index O.

We assert that T; is invertible. Assuming to the contrary that 0 € o(T ), we
see from (5) that o(T) = ¢(T;). Then O is an isolated point of o(T;) (because
0 € 7yo(T)); therefore, by (a™), it is an eigenvalue of T, a contradiction.

In particular, T; is surjective: T(N(T)‘) = N(T)*. This obviously implies that
N(T)! < R(T). On the other hand, (3) implies that R(T) Cc R(T)t1 < N(T)'. Thus
R(T) = N(T')*, and in particular, R(T) is closed. Also, the subspace R(T)' = N(T) is
finite-dimensional; therefore T is a Fredholm operator of index 0.
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Proof of <=. Assume T is a Fredholm operator of index 0. As we noted above,
0 is an eigenvalue of T of finite multiplicity; it remains only to show that 0 is an
isolated point of ¢(T). In view of (5) and the fact that o(T;) is closed, it will suffice
to show that 0 ¢ o(T)), that is, T; is invertible. Since T; is known to be injective,
the proof will be complete if we show that T; is surjective, that is,
T(N(T)*) = N(T)*.

Since T is a Fredholm operator, R(T) is closed. Moreover,
dim N(T) = dim R(T)* < «,

because T has index 0; it then follows from (3) that N(T) = R(T)-, and therefore
N(T)* = R(T). Our task is thus reduced to showing that T(R(T)) = R(T). Obviously,
T(R(T)) € R(T). Conversely, suppose y € R(T), say y = Tx. Write x = Tu + 3,
where z € R(T)* = N(T). Then y = Tx = T(Tu) + Tz = T(Tu) + 0 € T(R(T)).

It follows from the remarks in Section 2 that the theorem remains true with (a™)
replaced by (@), (a'), or (a").

COROLLARY 1 (Coburn [3, Theorem 3.1]). If T is hyponormal, then Weyl's
theovem holds for T.

Proof. As we noted in Section 2, T is hyponormal => (@) = (a™), and T is
reduced by each of its eigenspaces [1, p. 168, Exercise 5]. It follows that Weyl’s
theorem holds for any seminormal operator; see Example 6 below.

The extension of Istratescu’s result requires another lemma:

LEMMA 2. If T satisfies (Gy) and ) is a semibare point of o(T), then
N(T - AI) = N(T* - ) and thevefore N(T - M) veduces T.

Proof. Since T - M also satisfies (G;), one can suppose X = 0. Choose a com-
plex number Ag-# 0 such that the disc {A: | - 20| < [x0|} meets o(T) only at 0.
Obviously, dist (Ao, o(T)) = |ro[; therefore [(T - xoI)~!|| < 1/|xr0|, by (Gy). Thus,
setting W = - 3o(T - 2oI)-1, we see that |W| < 1;that is, W is a contraction. (In
fact, ||[W| =1, but we do not need this.)

Suppose Tx =0. Then (T - 2gI)~lx = -a5lx, by elementary algebra; thus
Wx = x. By an elementary property of contractions (see F. Riesz and B. Sz.-Nagy
[8]), W and W* have the same fixed points; thus W*x = x, and therefore T*x = 0.
Thus Tx = 0 implies T*x = 0, and the argument is reversible.

The following corollary extends the result of Istratescu [5] cited above.
COROLLARY 2. If T satisfies (a') and (B'), then Weyl's theorem holds for T.

Proof. As we noted in Section 2, (a') = (a¢™). If X is an eigenvalue of T of fi-
nite multiplicity, then A is a semibare point of o(T), by the hypothesis (8'); there-
fore N(T - M) reduces T, by Lemma 2. Incidentally, (G;), (@™), (8') are sufficient
for the proof; the full force of (a') is not used.

4, EXAMPLES

1. In the theorem, one cannot dispense with (a¢™) altogether. For example, let
T=T @ T, , where T} is the one-dimensional zero operator and T2 is an injective
generalized nilpotent compact operator (for example, let T e, = (1/n)ept ; see [1,
p. 178, Example 1]). Since T is compact, w(T)= {0}, as we remarked in the intro-
duction; o(T) = {0} and 7go(T) = {0}, and therefore o(T) - w(T) = @ #moo(T).
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Thus Weyl’s theorem fails for T, even though the only eigenspace of T is reducing.
Of course, T does not satisfy (« '") since 0 is an isolated p01nt of 0(T,) but is not
an elgenvalue of T,.

2. The spectrum in Example 1 was necessarily stingy, because Weyl’s theorem
holds trivially for every compact operator T with infinite spectrum w(T) = {0}
and m((T) = o(T) - {0}.

3. If R(T) is closed, then so is R(T*) (see [13, p. 227, Problem 7]); it follows
that T is a Fredholm operator if and only if T* is a Fredholm operator, and there-
fore w(T*) = (w(T))". Also, o(T™*) = (c(T))". However, in general

7T00(T*) #* (HOO(T))_;

thus it is to be expected that Weyl’s theorem may hold for T but not for T*. Indeed,
if T, is the operator described in Example 1, then o(T)) = w(Tz) = {0} and
Too(T2) = @ (thus Weyl’s theorem holds for TZ) but 79o(T3) = {0} (thus Weyl’s
theorem fails for T3).

4. If Weyl’s theorem holds for T and ¢ (T) has no isolated points, then Weyl’s
theorem holds for T%*; this follows at once from the formulas in Example 3 and the
fact that 7go(T) = 79o(T*) = @. An example is the unilateral shift Te, = ens1 14,
Problem 67].

5. If T is reduced by its finite-dimensional eigenspaces, then it can be written
in the form T =T, 3 T,, where T is normal and w(T2) = ¢(T2) (see [3, Corollary
3.3] for the case where T is hyponormal). The proof runs as follows. The finite-
dimensional eigenspaces of T are mutually orthogonal (see the remark at the begin-
ning of Section 3); let M be their closed linear span (that is, their orthogonal direct
sum). Then M reduces T, T; =T | M is normal, and T has no new eigenvalues
(in other words, the elgenvalues of Ty are premsely the eigenvalues of T of finite
multiplicity; see [1, p. 164, Example 5]). Let T, =T | M<L. Since T; has no new
eigenvalues, it follows that if A is an eigenvalue of T2, then N(T - AI) € M and
therefore N(T - AI) = N(T, - AI). Thus the eigenvalues of T, are precisely the
eigenvalues of T of infinite multiplicity (for both T and T;). In particular, T, has
no eigenvalues of fmlte multiplicity; therefore w(T2)= 0(T>), by the remark follow-
ing (2'). Moreover, T* = T*(® T%, where T} is normal and w(T3) = o(T%) (see the
formulas in Example 3); for example such a decomposition of T* is available when
T is hyponormal (see also Example 6 below). Incidentally, if T =T; (® T, with T
normal, then w(T) = w(T;) U w(T,); this follows at once from (1) and the fact that if
T, - AI is a Fredholm operator, then by normality it must have index 0.

6. If T satisfies (G;) (equivalently, T* satisfies (G1)) and A is an isolated
point of ¢o(T) (equivalently, X is an isolated point of ¢(T¥)), then

N(T - AI) = N(T* - XI),

by Lemma 2, since an isolated point is obviously semibare. (The fact that A, X are
eigenvalues of T, T* [12, proof of Theorem C] is immaterial here.) It follows at
once that if T sat1sf1es (G}), then mpo(T*) = (moo(T))”, and therefore Weyl’s theorem
holds for T if and only if it holds for T* (see the formulas in Example 3). In par-
ticular, if T is hyponormal, then Weyl’s theorem holds for T* (see Corollary 1);
thus Weyl’s theorem holds for every seminormal operator.

7. The final result can be put informally as follows: If a generalized nilpotent
operator N is perturbed by a compact operator K, and the resulting operator N + K
is “pleasant”, then N must also be compact.
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Specifically, suppose T = N + K, where o(N) = {0} and K is compact, and sup-
pose that (i) Weyl’s theorem holds for T, and (ii) T satisfies either (a') or (a").
Then T is a compact normal operator, and therefore N =T - K is compact.

The proof is as follows. If the underlying Hilbert space is finite-dimensional,
then either of (a'), (@") implies that T is normal [12, Theorem C], [2, Theorem 2].
Assume that the space is infinite-dimensional. Then @ # w(N) C o(N) = {0}; thus
w(N) = {0}, and therefore w(T) = w(N+K)=w(N)= {0}. Citing (i), we have the
relation

(*) Too(T) = o(T) - {0};

in particular, every nonzero point of ¢(T) is an isolated point of o (T); therefore

o (T) has at most one limit point (namely, 0). It follows that T is normal and the
underlying Hilbert space is the orthogonal direct sum of the eigenspaces of T; this
is proved in [2, Lemmas 3, 4], under the assumption that T satisfies (a"), and the
proof is easily adapted to operators satisfying (a'). Since the eigenspaces belonging
to nonzero eigenvalues are finite-dimensional, by (*), and since the nonzero eigen-
values either are finite in number or form a null sequence, T is clearly compact
(see [1, p. 187, Exercise T]).

Conditions (i) and (ii) hold if T is seminormal (see Example 6) or if T satisfies
(a') and (8') (see Corollary 2). The result proved above is due to J. Schwartz in the
case where T is assumed to be self-adjoint [10, Lemma 2.2] and to K. Kitano in the
case where T is assumed to be normal [6, Lemma 2.3].

The result can also be formulated in terms that are suggestive of the theory of
spectral operators: If a compact operator is the sum of a “pleasant” operator and a
generalized nilpotent, K = T + N, then T and N are also compact and T is normal.

Addendum. That Weyl’s theorem holds for a seminormal operator (see Example
6 above) is proved in a forthcoming book by Professor Schechter. In his proof also,
the key observation is that N(T - AI) = N(T* - XI) for an isolated point A of o(T);
the argument for this involves showing that the idempotent operator

P = (1/2ni) S (zI - T) ldz,
C

where C is a sufficiently small circle enclosing A, is the projection with range
N(T - AI) (see Stampfli [11, Theorem 2] ).
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