ASYMPTOTIC AND INTEGRAL CLOSURE OF ELEMENTS
IN MULTIPLICATIVE LATTICES

John P. Lediaev

1. INTRODUCTION

The cancellation property of ideals (if AB=AC and A #0, then B=C) ina
Dedekind domain does not generalize to arbitrary commutative rings. P. Samuel [7]
showed how to restore the cancellation property in Noetherian rings by replacing the
properties of the ideals themselves with asymptotic properties of their high powers.
For this replacement, the notion of asymptotic closure of an ideal is fundamental. In
this paper we give a lattice-theoretic characterization of asymptotic closure, we
generalize the cancellation law to (commutative) multiplicative lattices that satisfy
the ascending chain condition (Theorem 1), and we investigate some properties of
this closure operation. In particular, we give a lattice-theoretic characterization of
the notion of integral closure of an ideal (in a Noetherian ring), and by means of
E. W. Johnson’s A-transforms of a Noether lattice [3] we show that the asymptotic
closure of an element in a Noether lattice coincides with its integral closure (Theo-
rem 3). Since not all Noether lattices are lattices of ideals of a Noetherian ring [1],
Theorem 3 extends M. Nagata’s result that the asymptotic and integral closure oper-
ations coincide in Noetherian rings [4].

Finally, we establish some relations between the asymptotic closure operation in
a Noether lattice and its A-transforms.

2. ASYMPTOTIC CLOSURE IN MULTIPLICATIVE LATTICES

A multiplicative lattice is a complete lattice provided with a commutative, asso-
ciative, join-distributive multiplication for which the greatest element, denoted by I,
is also the multiplicative identity (0 denotes the null element). In this section, L. de-
notes a multiplicative lattice that satisfies the ascending chain condition. We shall
now generalize the asymptotic closure of ideals (as characterized by D. Rees in [6])
to mu%ti]plicative lattices. The development toward the cancellation law is patterned
after |5§.

Let R denote the ordered additive group of real numbers, together with an ele-
ment «~ that satisfies the relations @ + © =, © 4w =w, o > a (here @ denotes a
real number). A mapping v: L, — R is a pseudovaluation on L if

a) v(0) = o,

b) v(I) =0,

c) v(AC) > v(A) +v(C) (A, C € L), and

d) v(AV C) > min(v(A), v(C)) (A, C € L).
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A pseudovaluation is homogeneous if for all positive integers n it satisfies the fur-
ther condition

e) v(A") = nv(A).

For each element B different from I, we define a function vy on L by defining

o if A <B" for all nonnegative integers n,
VB(A) =
n if A<B®, but A ¢ B,
(For nonpositive integers n, we define B® =1.)

Since vy is a pseudovaluation on L, lim__ ., vp(A™)/n exists for all A, B in L.
The proof of this statement is a straightforward generalization of an argument used
in [6]; we omit the proof.

_ We now construct a homogeneous pseudovaluation vp on L defined by
vp(A) = lim,_, - vg(A™)/n.

LEMMA 1. The function vy is a homogeneous pseudovaluation on L.
Pyoof. For a fixed element B in L, let v =vp, and let v = ¥g. Observe that

Fac) = tim YA CD 5y (YD, ¥CDY - 50450

n— 0 n — 0

and v(A") = 1lim s 30 nv(A™™)/nm = nv(A). To show that V(A VV C) > min (¥(A), ¥(C)),
let B8 be a real number such that B < min (¥(A), v(C)). There exists a positive inte-
ger n such that v(A™)> mp and v(C™) > mg for every integer m > n. Since v is
a pseudovaluation, it follows that

vi(AV C)kn] > min {V(AiCkn'i)}ﬁlo > min {V(Ai) +v(Ckn-i)}§(:no > (k- 1)n8

for all integers k > 1. Consequently, ¥(A VV C) > B. Since B is arbitrary, this com-
pletes the proof of the lemma.

If B is different from I, B is the join of all elements A that satisfy the condi-
tion vg(A) > 1; otherwise, Bg = I. Since Bg is a join of finitely many elements A
that satisfy the inequality VB(A) > 1, and since vy is a pseudovaluation (Lemma 1),
we conclude that D < By if and only if vg(D) > 1. The mapping B — Bg is called
the AC-operation on L.

The following lemma is an immediate consequence of the definition of vy .

LEMMA 2. Let o be a positive rveal number. A necessary and sufficient condi-
tion that vg(A) > o is that to each rational number 0 < p/q < a, there corresponds
a positive integer n such that A" < BP™,

By Lemma 2 above and by Lemma 1 in [5], we conclude that if L* is a lattice of
ideals of a Noetherian ring, then the AC-operation on L* is precisely the asympto-
tic closure operation on L*.

We now say that the AC-operation on L is the asympitotic closure operation on
L. For each element A in L, we call Ag the asympiolic closure of A. If A = Ag,
then A is asympitotically closed.

LEMMA 3. If A and B arve elements of L diffevent from 1, and n is a positive
integer, then
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a) Vo <Vvp whenever A <B,
b) Ag < By whenever 75 <¥p,

C) n‘-fAn:-T/A,

d) A;Bg < (AB)g, hence (Bg)" < (BY)g,
e) VA=Ya_,
f) A; < By whenever A < Bg,and
g) Vo < Vg whenever Ag < Byg.

Proof. Statements a) and b) are obvious, while both f) and g) are immediate con-
sequences of a) and e). To prove c¢), let D € L, and let p/q be a rational number
such that 0 < p/q <Vv4(D). There exists a positive integer k such that

Dngkm < Anpkm 41 every integer m > 1 (Lemma 2). Therefore,

vAn(ankm)/nqkm > p/nq.

Since D and p/q are arbitrary, we conclude that m’fAn > v . The opposite inequal-

ity is proved by a similar argument. For each rational number 0 < p/q < 1, there
exist positive integers m and n such that AZ™ < AP™ and B3" < BP"; hence
(Ag Bg yak < (AB)PX (k = mn). Statement d) now follows by Lemma 2.

Finally, we prove that ¥4 =va_. Let D € L, andlet 0 <p/q < 1TJAS(D). For
some positive integer k, DI¥ < (AS)pk < (Apk)S . Consequently,

(@/p)7A(D) = qk\'prk(D) = ‘—’Apk(Dqk) > 1.

From this, we deduce that v5,(D) > ¥ A, (D). The opposite inequality holds by a).

A mapping x: L —» L (A — A ) is a semiprime operation on L if it satisfies the
following conditions for all A B € L:

a) A<A,,

b) if A <B,, then A, < B, and

c) AyB, <(AB),.

The integral closure operation and the radical operation in a Noetherian ring R are
semiprime operations on the lattice of ideals of R. The asymptotic closure opera-
tion on L is a semiprime operation (Lemma 3).

LEMMA 4. If A and B are elements in L. diffevent from 1, then

1 1 1

T ap0D = T,00 T 7,00

fo7‘ all M € L with GAB(M) +0.

Proof. H 0 <n/m <7,(M) and 0 < p/q < 7p(M), then there exist positive inte-
gers j and k such that M™J < A™ and M9X < BPX, From this we deduce that
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VAB(M (mp+nq)kjt) np

(mp + nq kit ~ mp + nq

for every positive integer t. Therefore, 1/¥v ,5(M) < m/n + q/p. To complete the
proof, let n/m approach v,(M) and let p/q approach Vg(M).

LEMMA 5. Let A and B be elements of L. different from 1. Then
limn__,wm'rAn B(M) exists for all M € L. Moreover,

a) lim
M™ < B;

b) lim__,, n¥

w DV (M) =7V (M), if there exists a positive integer m such that
A" B

(M) = 0, if M™ L B for all integers m; and

A"B
c) lim 1 00 m’rAn B(M) =¥ A(M) for all M € L., if there exists a positive integer
m suchk that A™ < B.
Proof. If M™ £ B for all integers m, then ¥(M) = 0. Since ¥ np <V for

all n, statement b) holds. Now assume that there exists a positive integer m such
that M™ < B. If there exists a positive integer n such that x'zAn B(M) = 0, then

v A(M) =0, and lim__,, n\'rAn B(M) exists and is equal to zero. Assume that

v _ (M)> 0 for every positive integer n. Then, by Lemmas 3 and 4,

A B
1 1 1

nv ) S 5.0 T aeem ¢

n

From this we deduce that

) 1 < lim s 1.1 .
im Sle—n‘_, ] (M) = im Sup \'rA(M) n\_’B(M) - vaA(M) ’

n-— oo An B n—co
Consequently,

voM) < liminfnv , (M) < limsup nv , (M) < ¥,(M).
- n— oo A B - n— ©o A B -
Statement c) follows from a) and b).

THEOREM 1 (Cancellation Law). Let A, B, and C be elements in L. If
(AC), < (BC), and A™ L C for some integer m, then Ag < Bg.

Proof. The relation (AC), < (BC), implies that (A™C)s < (B™C)y < (B")g for
each integer n > 1. Consequently, \‘rAn c < i?Bn for each integer n > 1 (Lemma 3).
Therefore,

TAM) = lim nv _ (M) < (M)
n—> o0 AT C -

for all M € L (Lemma 5); hence A_ < B,.

In Lemma 2, the integer n depends upon the rational number p/q. We shall now
show that n depends only on the element B, and we shall use this result to give a
simpler characterization of the asymptotic closure.
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LEMMA 6. Let B be an element of .. There is a positive integer n such that
(Bs)"? < B"P for each rational number p/q (0 < p/q < 1). Furthermore, M < Bg if
and only if theve exist inlegers n and k such that (MP)Y<t1 < (B} for every integer
i>1.

Proof. For each integer m > 1, let

By, = {Me€ L| Mkl < B™K for every integer k> 1},
and let

(Bm)' = {M ¢ L] there exists an integer i < m such that i (k1) < Bik
for every integer k > 1} ;

Then (By,)' € (B,,+1)' for each m. By the ascending chain condition, there exists
an integer n* such that

B* = \/( U (Bm)') -V,
m=1

flinse B, © Bq if p divides g, and since By, C (Bpy)' C BH{i|0<igm} , it follows
a

*
B :\/BII{1|0<i_<_n*}—>—\/Bm for all m.

Next we prove that B* € B, for some integer n. Let C and D be elements in

By, - Then
m(k+1)

(C v py™k+1) - \/ c(ipmktm-i < gmik-2)
i=0

for all integers k > 1. Therefore, (C VV p)3mimk  pmk g5 93] integers k > 1,

From this, we deduce that CVV D € B3, . Since B, C B3, and since \/ B, isa
join of finitely many elements of B,, it follows that B* € B, for some integer n.

For each integer k > 1, there exists a positive integer h such that

(Bs)h(kﬂ) < Bhk; hence By < \/( Uonoﬂzl (Bm)') = B*. Since B* ¢ B, for some
integer n, it follows that Bs € B, . Consequently, for any rational number p/q

(0 < p/q < 1), we have the relations (Bg)"? < (Bg yniptl) < B"P . This completes the
proof of the first statement in the lemma.

If M < Bg, then there exists an integer n such that M?2 < B"P for every ra-
tional number p/q (0 < p/q < 1). In particular, (MP)xti < (BP)l for all integers
i>1 and k> 1. Conversely, if there exist integers n and k such that
(Mn)k+i < (B)E for all integers i > 1, then v(M™X"™)/n(k + i) > i/(k + i); hence
M < B, .

For B € L, let

B, = V (M e L| there is a positive integer n such that M < B!
for all integers i > 0} .
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THEOREM 2. B, = Bg for every element B in L.

Proof. There exists an integer n such that BEH < B! for every integer i > 0.
Then vg(B2)/(n+1i) > i/(n+1i); hence B < By. Now let M = B;. By Lemma 6,
there exists an integer n such that M™2 < B"P for every rational number p/q
(0 < p/q < 1). In particular, (M?)i*1 < BM for every integer i > 0. For each inte-
ger i >0, we can write i=ng+r (0 <r <mn). Then

Therefore, By < B...

3. INTEGRAL CLOSURE IN MULTIPLICATIVE LATTICES

Throughout this section, L. denotes a multiplicative lattice that satisfies the
ascending chain condition.

An element M is a-dependent on B if there exists a positive integer n such

k . .
that M™1 < B(M Vv B)". Since (B\V M)k = \/izo MiBk-i for every integer k > 0,
it follows that M is a-dependent on B if and only if (B V M)?*! = B(B Vv M)? for
some integer n > 1. Let B, denote the join of all elements that are a-dependent on
B. By the ascending chain condition, B, is a join of finitely many such elements.
We call the mapping B — B, the IC-operation on L.

LEMMA 7. If M and N ave a-dependent on B, then so is MV N. Therefore By
ts a-dependent on B.
Proof. The identities (B M)™mtl = B(BVV M)™ and (B V N)»*! = B(BV N)»
imply that
min+l
(BV MV N)m+n+l — \/ (B v, M)i (B Vi N)m+n+1 -1
i=0
m+n

< \/ BBV M)I(BV N - BBV MV NP,
i=0

Therefore, if M and N are a-dependent on B, then so is MV N. Since B, is a
join of finitely many elements that are a-dependent on B, it follows that B, is a-
dependent on B.

We shall now prove that the IC-operation on L is a semiprime operation. If
A < B and M is a-dependent on A, then M is a-dependent on B; hence Az < Bj.

Now let M be a-dependent on B,, so that (B, V M)2*l = B (B,V M) for some
positive integer n. By Lemma 7, B, is a-dependent on B; therefore Bkt! = BBk

for some positive integer k. Consequently,

(B Vi (Ba \V M))n+k+l - (Ba Vi M)n+k+1 - Bla<.+l(Ba Vi M)n

BBX(B, V M)® = B(B, V M)™* = B(B V (B, VM))™**;

hence M < B, . In particular, we conclude that B,; = B, and that A < B, implies
A, < B,, = B,. Finally, the relation A, B, < (AB), follows from the fact that if N
is a-dependent on B, then MN is a-dependent on B (for any M).
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If L* is a lattice of ideals of a Noetherian ring R, then the IC-operation on L*
is precisely the integral closure operation on L*. Let B € L*, and let By denote
the integral closure of B in R. Since B, is a-dependeni on B (Lemma 7), there

exists a positive integer k such that BX*! = BBX. This implies that B and B, have
the same integral closure in R [4]; hence B, C B¢. Conversely, if b € B¢, then
there exist elements b; € Bl such that b?*! +b; b + -+ + b, b+ b, = 0. Conse-
quently, (bR)**! ¢ B(bR + B)® and bR C B, . Therefore B, = By.

We now say that the IC-operation on L is the integral closure operation on L.
We call B, the irntegral closure of B, and we say that B is infegrally closed if
B=B,.

4. ASYMPTOTIC AND INTEGRAL CLOSURE IN NOETHER LATTICES

Throughout this section, L. denotes a Noether lattice [2]. In order to show that
the asymptotic closure of an element in a Noether lattice coincides with its integral
closure, we introduce the notion of an A-transform of L.

Let A #1 be a fixed element of L, and consider the collection R(L, A) of all

o0
formal sums Ei:-oo B; of elements B; of L for which the relations
A' > B; > B;;+1 > AB; hold for all integers i. For elements B, C € R(L, A), we
define

BVC=2(B;VC), BACS=2(BAC), B-C-= Z)( \V4 BrCt),
i r+t=i
and we say that B < C if and only if B; < C; for all i.

The collection R(L, A), together with the operations V, A, - and the relation <,

is called the A-fransformof L. If C ¢ L and C < A™, then C[?] is the least ele-
ment D of R(L, A) for which D, > C. In the following lemma, we summarize some
results from [3].

LEMMA 8. a) The A-transform of L is a Noether lattice.

b) If C < AP, then clrl= 20 cai-n,
c) If C, D < A®, then cl”lv p[rl= (¢ v D)m].

d) If B € R(L, A) and C <A™ in L, then BClal = 2B, __c.

e) If C and D are elements of L such that C < A™ and D < A™, then
clolplm] = (cp)lntm],

f) If B is a principal element of L. such that B < A™, then Bln] is q principal
element in R(L, A).

Let a' and s' denote the integral closure and the asymptotic closure operations
in R(L, A), respectively.

THEOREM 3. For every element A € L, the equality A, = Ag holds, and
M < Ag implies that M is a-dependent on A.

Proof. We show first that if B is a principal element and M < Bg, then M is
a-dependent on B. Since Bg = B, (Theorem 2), there exists a positive integer n
such that M?t! < Bi for every integer i > 0. Hence
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Mn+1 S Bi A (M \V B)n+i - Bi((M VB)n+i . Bi)

for every integer i > 0 (the equality follows since Bl is a principal element [2, p.
485]). By the ascending chain condition in L, there exists a positive integer r such
that

(M V; B)n+r+i . Br+i - (M \/ B)n+r . BT
for every integer i > 0. Therefore
Mn+r+l S B[Br((M V. B)n+r . Br)] S B(M v B)n+r;

hence M is a-dependent on B.

Now let A (A #I) be an element of L, and let M < A;. There exists an n> 0
such that M™"* < A! for every i > 0; therefore

-l < - ahlil,

Consequently, MLO] < I[s R 1] . Since I['l] is a principal element in R(L, A) (Lemma
8), M[O] is a-dependent on 1l-11] . Therefore, there exists an n > 0 such that

(*) al-11 v mlolyn+1 = -1 l-11\/ plOlyn |

The O component of the left side of (*) is (A V M)®*! while the Oth component of
the right side of (*) is A(A V M)™. Therefore (AV M)%*! = A(AV M)?, and M is
a-dependent on A. In particular, Ag < Ag implies that Ag < A;. Since A, is a-
dependent on A (Lemma 7), there exists an integer k > 1 such that A§+l < AA%;
From this, we conclude that (A_); < Ay (Theorem 1). Therefore A, = Ag.

COROLLARY. Let A and B be elements of L. Then Ag= Bg if and only if
theve exists an element C € L such that AC = BC and (A V B)* < C for somej)osi—
tive integey n.

Proof. Let Ag = Bg. By Theorem 3, (BV A)™*l = B(B V A)™ and
(B v A)<tl = A(B v A)K for some positive integers n and k. Consequently, AC = BC
for C = (BV A)kX*n_ The converse follows from Theorem 1.

Let x denote a semiprime operation on L. For each B in R(L, A), the formal
sum B_j = 27 [(B, ) A\ A?] is also in R(L, A). Furthermore, the mapping

x*: R(L, A) - R(L, A) is a semiprime operation on R(L, A). By means of this in-
duced semiprime operation, the following theorem relates the asymptotic operation
in L to the asymptotic operation in the A-transforms of L.

THEOREM 4. For each B € R(L, A), the velation B < By, holds. Further-
o n] _ [n]
move, if P < A", then PE*] = P[S, .

Proof. The relation M < (B x), implies that MEH < B,(M v/ Bn)k for some

positive integer k. Consequently, (vk+1)lnkin] < (B,(M Vv ]:",n)k)[nk+ n| By
Lemma 8,

(M[n])k+l - (Mk+ 1)[nk+n] —<_ (Bn(M v Bn)k)[nk+n]

= Bl v B = Bl v BlPh* < il v B);
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hence M[n] < B,:. This completes the proof of the first statement.

Now let P < A", By the first statement, it is sufficient to prove that
P[n] < P[n] The relation M < (P[n])k implies that (M[k])m+1 < pll (M[k] V P[n])m

for some positive integer m. By Lemma 8, (M[k])rn+1 (Mm+1)[km+m] . Conse-
quently,
m
Mm+1 < (P[n] (M[k] \V; P[n])m)km+k — ( \/ (M[k])i(P[n])rn+1 —i)
i=0 km+k
m
- (\/ (Mi)[ik] (Pm+1 —i) [nm+n-in])
i=0 km+tk
m m
\é ((M1Pm+1-1)[nm+n 1n+1k])k e = \ﬁ M Pm+1 -1A(k-m)(m+l -i)
1= 1

I
<38k

Mipak-mmti-i  (ce m+1-i>0)
i=0

= (PAX ™) (M v (PAK-))™

Therefore M < (PAX-M)_ A Ak = (pl2]) |
s* 'k
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