REPRESENTATIONS OF SOLVABLE LIE ALGEBRAS
Bruce E. Reed

Ado’s theorem [1} states that every finite-dimensional Lie algebra over a field of
characteristic zero has a faithful finite-dimensional representation. The proofs of
this theorem in the literature at the present time do not appear to provide a bound
for the dimension of the representation space.

In a forerunner to the theorem of Ado, G. Birkhoff proved that a finite-dimen-
sional, nilpotent Lie algebra has a faithful representation whose space has dimension
not greater than 1 +n+n2 + «-- + nk*!  where n is the dimension of the algebra and
k is the nilpotency class [2].

The main result of this paper is that every finite-dimensional, solvable Lie alge-
bra over an algebraically closed field of characteristic zero has a faithful represen-
tation whose space has dimension not greater than 1 +n + n™, where n is the di-
mension of the algebra. In the nilpotent case, we obtain the bound 1 + nX, where k
is the nilpotency class. This is sharper than the bound of Birkhoff.

In particular, Section 1 contains a proof of Birkhoff’s theorem about nilpotent Lie
algebras. We also prove that the enveloping associative algebra determined by the
representation has the same nilpotency class as the original algebra. In the second
part of this section, we prove that if £ is a finite-dimensional Lie algebra that can
be written as a semidirect sum £ = £} + N (N a nilpotent ideal), then Birkhoff’s
representation of N can be extended to Z.

Section 2 deals with splittable Lie algebras. Here we prove that every solvable
Lie algebra £ of finite dimension over an algebraically closed field of characteris-
tic zero can be embedded in a solvable algebra of given dimension, determined by
the dimension of & and the dimension of the nilradical of £Z.

Finally, in Section 3 we obtain a faithful representation of an n-dimensional solv-
able Lie algebra £ over an algebraically closed field of characteristic zero. This
is done by embedding & in a solvable splittable algebra £;, as in Section 2, and
constructing a representation of & ; from the results of Section 1.

1. PROPOSITION 1. Let £ be an n-dimensional nilpotent Lie algebya with
lowey central sevies & = Z1> ¥2> ... 5 @k 5 gkt =0, Then @ is isomorphic
to a Lie algebra <4 of lineav transformations of a vector space M of dimension not
greater than 1 +n¥X. Moveover, the product of any k + 1 elements of A* is zero.

Pyroof. We first choose a basis xj, ***, X, in the following way:
X), ***, Xp(1) 1s a basis for Qk,
X1, s Xp(2) is a basis for gk-1
: b

X), ", Xp(k) = Xp 1S a basis for £.
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Let % be the universal enveloping algebra of £. Recall that by the Poincaré-
Birkhoff-Witt theorem, the element 1 together with elements of the form

x'(l)1 ng xﬁn (called standard monomials) form a basis for % .

Now consider the subalgebra %' of % generated by the standard monomials.
We define a function ¢ from %' into the natural numbers as follows:

¢x;) =m if x;€ 27 and x; ¢ Qm“,

W12 = D .

n
Finally, for a linear combination x = Eizl ciyi of standard monomials y; we
define ¢(x) to be the minimum of the set [¢(y;)].

Now observe that ¢[x;, x;] > ¢(x;) + ¢(x;). This implies that
¢(Yl, R ¥s) > ¢(YI) + et ¢(YS) for yy, =, ys € U'.

Let J={y € #'| ¢(y) >k}. Then J is an ideal of #'. It is also clear that J is
an ideal in %. Consider the quotient algebras % /J and @'/J. We see that #'/J
is an associative algebra whose Lie algebra contains £ (since ¢ of any linear com-
bination of the x; is not greater than k). Moreover, #'/J has the property that the
product of any k + 1 of its elements is zero. Let R be the representation of @'/J
acting in the space % /J induced by the regular representation of % /J. Since
(' /J)@ contains &, R induces a representation R of & acting in the space @ /J.
Let M= %/J and « = R(Z). We need only show that the dimension of M is not
greater than 1+ nk,

The dimension of the space M = % /J is not greater than 1 plus the number of
standard monomials of length less than or equal to k.

If n is 1 or 2, then k = 1, and the result is obvious; now suppose n is greater
than 2. The number of standard monomials of length 1 is n. The number that have
length 2 is n(n + 1)/2, and the number of length j is ni~!(n + 1)/2. Hence, the num-
ber of standard monomials of length less than or equal to k is

2 k-1(,,
1_{_n_l_n(n2+1)_[_n (n2+1)+_._+n (2n+1)

nk_1+n+nk_nk-1 +n+nk
2 “n-1 2 ’

=1+n+n%+ -+

By a straightforward argument, this number is not greater than nk + 1. This com-
pletes the proof.

PROPOSITION 2. Let & be a Lie algebra of dimension n such that £ = £7 + N
(semidivect sum), where N is a nilpotent ideal of % conlaining the center. Let
N=N!> N2> .. 5 N> N = 0 pe the lower central sevies of N. Then & has a
faithful rﬁpresenmtion R with representalion space M of dimension not greatey than
1+n+n*.

Proof. Let % @ and %1 be the universal enveloping algebras of £ and N, re-
spectively. Let J be the ideal of % of the preceding proposition. We shall first
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define a representation of % acting in the space %1, and then we shall show that
this representation induces a representation of &% acting in the quotient space
% /J. Moreover, the representation will be an extension of the representation of
the preceding proposition. With each x € £, we associate a function ¢, mapping
U o into %, defined by ¢,(u) = xu - ux (we now think of x as an element of % g).
Note that ¢, is the extension to % ¢ of the derivation ad x of . Z. With each ele-
ment y € N, we associate a function 6y mapping % g into % g, defined by
(u) = yu.
Y

Now % is invariant under ¢,, for each x € £. For if u =x)(1)X)(s) is a
standard monomial in %7y, then

¢ (u) = El XA(I)XA(Z)'"[XMJ'L)’ X]"'Xh(s)’
1=

and the right-hand side is an element of %1y, since N is an ideal of &. Obviously,
@/st invariant under 6y for each y is N.

Now, for elements x, y € £; and an element u of %y,

[éy, dylu = ¢xdylu) - dydxlu) = dxlyu - uy) - ¢y(xu - ux)

Il

Xyu - Xuy - yux + uyxX - yxu + yux + Xuy - uxy

(xy - yx)u - ulxy - yx) = [x, ylu - ulx, y] = ¢[,, 5] (w)
Thus the mapping defined by x — ¢, defines a representation of &; acting in the
space .

Since each Nj is an ideal in £, it follows that J is invariant under ¢,, for each
X € Z;; hence, lettmg ¢y be the 1nduced operator on %y /J, we now see that the map
X — ¢y defmes a representation of #] with representation space % /J.

Similarly, we obtain a representation y — §y of N on #N/J. Moreover, this
representation is the representation constructed in the previous proposition.

Observe that for x € &; and y € N,

(5, Oylu = ¢y 0 (u) - Oy u = ¢, (yu) - 65(xu - ux)

1]

Xyu - yux - yxu + yux = (xy - yx)u = [x, y]lu = G[X’y](u).

Hence, the map defined by x — ¢, if X € £, ady — 9 if y € N determines a
representatlon of &% with representation space . It follows that the map defined
by x — qu ady — GY determines a representation RT of £ with representation
space “?/N/J Moreover, on N the representation R' agrees with the representation
of the previous proposition, and hence it is faithful on N.

Now let R be the direct sum of R' and the adjoint representation. Since the ad-
joint representation has as kernel the center of &%, and since R' is faithful on N and
hence on the center, it follows that the representation R is faithful on &. Moreover
it is clear that the representatlon space M of R has dimension not greater than
1 +n+nk. The proof is now complete.

b
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2. Malev [5] proved that every finite-dimensional, solvable Lie algebra over an
algebraically closed field of characteristic zero can be embedded in a solvable,
splittable Lie algebra. We prove this theorem in this section, specifying the dimen-
sion of the splittable algebra. Our proof is more constructive than that of MalCev.
We shall need several definitions and results from [5].

Definition. Let £ be a finite-dimensional Lie algebra over an algebraically
closed field of characteristic zero. Then an element x € & is said to be semiregu-
lar if the Jordan form of the matrix of ad X canonical is diagonal.

Definition. Let % satisfy the conditions above. An element x of & is called
splittable if it can be represented as a sum x = a +y, where a is a semiregular
element of £ and y is a nilpotent element of #. If [a, y] = 0, then the decomposi-
tion x =a +y is called normal and the element x is said to be normally splittable.

Definition. A finite-dimensional Lie algebra £ over an algebraically closed
field of characteristic zero is called splitiable if each of its elements is normally
splittable.

THEOREM. Every splittable element of a solvable Lie algebra % is novmally
splittable.

From the above theorem, it follows that if &£ is a solvable Lie algebra and each
element of £ is splittable, then £ is splittable.

Suppose ¥ is a finite-dimensional Lie algebra over an algebraically closed field
& of characteristic zero, and suppose D is a derivation of &. We recall that as a
linear operator, D can be written as the commutable sum of a diagonalizable opera-
tor d and a nilpotent operator n. Moreover, the operators d and n are unique, and
each is a polynomial in D. A proof of this can be found in the book [3] of K. Hoffman
and R. Kunze.

PROPOSITION 3. Let £, D, d, and n be as above. Then d and n are deriva-
tions.

Proof. The derivation D generates an abelian Lie algebra of linear transforma-
tions acting in the space £. Let £ = Zo+ £y + £g + --* + £, be the decomposition
of & into weight spaces relative to this Lie algebra, where £ is the weight space
corresponding to the weight zero.

Let £Z; = ®D + £ denote the semidirect sum of the Lie algebra generated by the
derivation D and &. Then

Z) = (2D+ Zg)+ Lo+ L+ + £,

is the decomposition of £; into root spaces relative to ad @, ®D, where ®D + £
is the root space corresponding to the root zero.

We shall now define a linear operator d on &;. Each element x of #; can be
written as a sum X = xg +Xo + X + - + X, with x9 € @D+ &y, Xg € Lg,
xg € £g, ---. We define d(x) to be

a(D)x,, + B(D)XB + .- ')/(D)x.y.

Clearly, d is a linear operator on £, .

_ We now show that d is a derivation on £). It is sufficient to show that
d[xp, x ] =[dx,, x ] +[x,, dx,], where x, and x,, are elements of the root spaces
£p and £, respectively, in the above decomposition of £ .
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Recall that [Z

0> @nl € £, if p+n isa root and that [2,, €,1=0if p+n is
not a root [4].

If p+n is not a root, then [x,, x,] = 0 and the derivation condition is obviously
satisfied. If p+n is a root, then [x,, x5 € Z;4n and

d[xp, x| = (p+n)(D)[x,, x,].
Also,
[ax,, x | +[x,, dx ]

[p(D)x,, x,] +[x,, n(D)x,]

p(D)[x,, x,] +nD)[x,, x ] = (0 +n)(D)[x,, x_].

Hence d is a derivation of £,. Since £ is invariant under d, it follows that the
restriction d' to £ is a derivation of £. That d' is a diagonalizable operator is
obvious from the definition.

Since each weight space Qp in the decomposition of £ is invariant under the
operator D, we easily deduce that D and d' commute. Letting n=D - d', we see
that d' and n commute. It also follows from the definition of a weight that n is nil-
potent on each weight space in the decomposition of £ and is therefore nilpotent
on ¥.

Thus we have written D as the sum of a diagonalizable operator d' and a nil-
potent operator n that commute. It follows that d' =d and n = n, and that the oper-
ators d and n are derivations.

PROPOSITION 4. Let & be a solvable Lie algebra of dimension n over an
algebraically closed field of characteristic zero, and let k be the dimension of £/N,
where N is the nilradical of £. Then £ is isomorphic to a subalgebra of a split-
table solvable Lie algebra £, of dimension k + n.

Proof. Choose a basis Xy, Xkt+2, ***, Xn for N, and choose x) € &€ so that the
set {Xy, Xx41, Xks2, ***, Xnt is linearly independent. Consider the derivation
ad x;, and let dXl be its diagonalizable part as in the preceding proposition.

Now decompose £ into weight spaces relative to the abelian Lie algebra of
linear transformations generated by dXl . Then

L=2L,+ %y + L+ -+ 2,
(here we are letting £ denote the space corresponding to the weight zero).

Recall that since &£ is a solvable Lie algebra over a field of characteristic zero,
D(£) c N for each derivation D of £. Let x be an element of any nonzero-weight
space in the above decomposition, say x € £, . Then (dXl - a(dxl)l)k(x) =0 for

some integer k. This implies that x is in the image of the derivation dxl and hence
x is in the nilradical N of £.

It follows that there exists an element x, € £ such that {x;, X2, Xx+1, ***, Xn b
is a linearly independent set. (Here we assume that k is greater than 1; for k =1,
we could proceed with the second part of the proof. This will be obvious in what
follows.) Since x2 belongs to the zero-weight space £y, there exists an integer r
such that d;l(xz) = 0. But dXI is a diagonalizable operator; therefore dxl(xz) = 0.

Now form the semidirect-sum algebra @dxl + & and consider its representation

x — ad 5x. The condition dXI(xz) = 0 implies that
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[dXl ,ad x,] = dxlad Xy - adx,d, = 0.
Let dx2 be the diagonalizable part of ad x, acting on &. Since dXZ is a polynomial

in ad x, and ad x, commutes with dXl , we now see that dXl and d, commute.

2
The derivations dXl and dXz generate an abelian Lie algebra of linear transfor-

mations acting on the vector space £. We may now decompose £ into weight
spaces relative to this Lie algebra and choose an element x3 in the zero-weight
space to obtain a derivation dx3 that commutes with (SlxI and dy 5

Continuing the process described above, we obtain elements x;, x2, ***, Xx 0of &
such that the set [x7, ***, Xk, Xx+1, ***, Xn} is a linearly independent set and hence
a basis for £. Moreover, there exist derivations dxl , "t dXk of & that commute

with each other and have the property that the operator ad x; - dXi is nilpotent.

Let A be the Lie algebra generated by the derivations d, R dxk, and form
the semidirect-sum Lie algebra £; = A+ . Observe that ad(x; - dy.) #; € &€ for
B 1
each i and that the operator ad (x; - dxi) restricted to £ is ad x; - dXi . From this

it follows that the elements x; - d_ (1 <i < k) are nilpotent elements of % .
1 s

It is clear that if we let N be the subalgebra of £; with basis
X1 - dxla X2 - dxz: "ty Xk" dxk7 Xkt1ly ", Xn.y

then £; = A+ N, and therefore &) is splittable.

Now we must show that £; has dimension n + k. For this, it is sufficient to
show that the set {dx1 y A,y o dxk} is linearly independent. Suppose this is not

the case. Then there exist elements ¢, ¢, -+, ¢, (not all zero) of the base field
such that

c) dxl+czdxz+---+ckdXk =0.

This implies that
k k .

2’ c;(x; - dxi) = 2J C;X;
i=1 i=1

is a nilpotent element of Z,, hence of & (this follows, since for each i, x;~-d is

X
1

a nilpotent element of &, and the sum of nilpotent elements is nilpotent). But

k
21: 1 C; X; cannot be a nilpotent element of &, since this would contradict our choice
of bases for N and 2. Hence the set {d , o0, d } is linearly independent, and
*1 Kk

the proof is complete.

Actually, N; is the nilradical of £,. To prove this, it is sufficient to show that

no linear combination of the set { dxl’ e dxk} of derivations is nilpotent. Suppose

this is not the case. Then there exist scalars ¢, , ¢,, =+, ¢ in the base field such
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that cjdy, +¢; dXz + e+ ckdxk is nilpotent. The element

k
E cl(Xi - dxi)
i=1

is a nilpotent element of £, since x; - d__ is a nilpotent element of &, . But this,
1

k
along with our assumption that the element Ei:l ¢ dxi is nilpotent, implies that

Eil c; X; is nilpotent in #; and hence in &%. This again, however, contradicts our
choice of bases for N and £.

3. Now we construct a faithful representation of a solvable Lie algebra £ of di-
mension n over an algebraically closed field of characteristic zero. Let ¥, be the
splittable solvable Lie algebra containing &, from Proposition 4, and let N be the
nilradical of &; . The proof of Proposition 4 and the remarks following Proposition
4 imply that the dimension of N is n.

By the corollary following Proposition 2, #; has a representation R' of degree
not greater than 1 + nk, where k is the nilpotency class of N. Since Z; D &, this
representation induces a representation R on % of degree not greater than 1 + nk.
Moreover, since R' is faithful on N and N contains the nilradical of &, R is faith-
ful on the nilradical of & and hence on the center of #. Now let R be the direct
sum of R and the adjoint representation of %. Then R is faithful on £ and has de-
gree not greater than 14 n + nk.

Since the nilpotency class k of N is at most n, we now have the following result.

THEOREM. Let & be a solvable Lie algebra of dimension n over an algebrai-
cally closed field of chavacteristic zevo. Then % has a faithful vepresentation of
degree not greatev than 1 +n +n™,
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