APPROXIMATION OF Wp,-CONTINUITY SETS
BY p-SIDON SETS

James D. Stafney

1. INTRODUCTION

For two complex-valued functions x and y defined on the integers Z, we define
x*y by

x*ym) = 2x(n - k)yk) (ke 2),

provided the series converges for each n € Z. We let (;, denote the Banach space
of complex-valued functions x on Z such that the norm

Il = (T xwr) "

is finite ( 27 will always indicate summation over Z ) Corresponding to each
function a in the space J of the complex-valued functions on Z with finite support,
we have a trigonometric polynomial

£(6) = 2sam)eln?,

We let |£] Wy and |al| Wy denote the norm of the operator x — a*x on £,. We

are interested in the algebra W, which we now define as follows: a complex-valued
function f on the circle G (reals modulo 27) is in W, if and only if there exists a
sequence {f n} (n=1, 2, ---) of trigonometric polynomials that converges uniformly
to f and also satisfies the condition

”fn‘fm”Wp_’O as m,n — ©,

Let [|[f[|w_denote lim £ ol w_. One can show that with this norm and the point-
P m—oo P
wise operations, Wy is a Banach algebra with the circle as its maximal ideal space;
however, for our purposes we only need to know that | f]| W, dominates the su-

premum norm of f. A short proof of this follows Lemma 2.3. It turns out that Wy
is isomorphic to a closed subalgebra of multipliers (bounded operators that commute
with all translation operators) on Lp(Z) = £;; in fact, this seems to be the natural
way to show that Wy, is a Banach algebra. There is an extensive literature on
multipliers for Lp-spaces over locally compact groups.

Our purpose is to obtain some results concerning Wy-continuity sets, which are
defined in Section 4. It is easy to see that the definition is equivalent to saying that a
compact subset E of G is a Wp-continuity set if Wp| E = C(E), that is, if every
continuous function on E is the restriction to E of some element in Ws. Since W,
is isomorphic to Lj(Z), the W)-continuity sets are precisely the Helson sets. We
shall be interested in the cases 1 <p <2 (W3 = C(Q)).
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A closely related notion corresponding to multipliers for L(G), that of p-Sidon
sets, was introduced by Figi-Talamanca in [2]. Our approach to Wy-continuity sets
is to prove, roughly speaking, that the W,-continuity sets are the sets that can be
approximated by a sequence {E} of finite subsets of G such that corresponding
sets of integers of the form (mj/27r)E- are “uniformly” p-Sidon sets. This is the
content of Theorems 4.2 and 4.3. Theorem 3.3, which is of interest in itself, is a
major step in proving 4.2 and 4.3. It states, approximately, that the norm of a
multiplier on LP(Z) can be determined from the norms of related multipliers on
L,(G).

The value of Theorems 4.2 and 4.3 is that they enable us to reduce questions
about compact subsets of G to questions about finite subsets of Z, which can be
manipulated more easily; in fact, Rudin [8] has established many properties of the
subsets of Z that he calls A(p)-sets. The A(p)-sets are relevant because they are
the same as the p-Sidon sets (see Theorem 5.3); this is also true in a more general
setting [4, Theorem 6].

In Section 6, we use results of Rudin together with Theorems 4.2 and 4.3 to con-
struct a Wp-continuity set that is not a Wp_g-continuity set.

2. PRELIMINARIES

For 1 <p<2, let Lp denote the space of complex-valued measurable functions
g on G with finite norm

27 1/p
lel,, = (& § 7 lstolpac) .

Let P,, denote the space of complex-valued functions x of period m on Z with

norm given by
1/p
e, = (2. 2 o)
m mOSnSm—l

For a in J, we denote by |a|; the operator norm of the operator g — h on Ly,
P

where g and h have Fourier series

27 c, 120 and 2 a(n) c, g-int ,

respectively. Also, we denote by |a| P, the norm of the operator x — a*x on P,.

We shall need the following two lemmas. The first is an immediate consequence of
the famous theorem of M. Riesz on the boundedness of the conjugate operator (see,
for example, [9, Vol. I, p. 253]).

2.1. LEMMA. To each real number p (1 < p <) there corresponds a positive
constant p with the property that, for every function g € Ly with the Fouriey sevies

27 cne"ine and for every pair of integers o and B (o < B), the polynomial

h(9) = 22 cne‘ing
Ol_<_n<ﬁ
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satisfies the inequality |h|; < plsgf . .
P b

The second lemma is due to Marcinkiewicz and Zygmund [6] (see also [9, Vol. II,
p. 30]). We state it in our present notation.

2.2, LEMMA. For each veal number p (1 < p < =), there exist constants g
and | such that every lrigonometvic polynomial

g(x) = 2 cne-inx
as n<a+m
satisfies the condition

wollg@r(-)/mlp < llelle, < & le@nC-)/m)le -

Let G, denote the subset of G consisting of the points 27n/m
(n=0,1, ---, m - 1). For any complex-valued function f whose domain includes
G, we define the functions Smhf and C,f on Z as follows:

f(2rn/m) for 0 <n <m,
S, ,f(n) =
0 otherwise,

m-1 2 f(27n/m) e ~in(2TR/m)  fop 0 <k <m,

Cfk) = 0<n<m
0 otherwise.

These functions will be used later.
2.3. LEMMA. For each { in Wp,

”f”WP > sup {|£(6)]: 6 € G}.

Proof. For m=1, 2
lows:

, »*= and ¢ in G, we define the function U,, g on Z as fol-

1 e—inB

1/ for 0 <n<m,
m*/P -

Um, 0 (n) =
-0 otherwise.

It is easy to show that if f(8) = 20 a(n)ein?f isa trigonometric polynomial, then

a*Um,g = f(Q)U‘m’e +Vm,9’

where ||V, g “gp — 0 as m — . Since ||[Upy g ”ﬂp =1 for each m, we see that
”f”wp > |#(6)]; and, from this last inequality and the definition of the norm | | Wy
on W, we obtain the conclusion of the lemma.

We shall also use the following notation throughout the paper. If f € L, , then
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2T
fa) = -2-1;5 fx)e-i™dx (n e Z).
0

We let T denote the space of trigonometric polynomials, and T,, the elements f in
T such that f(n) =0 if n ¢ [0, m - 1]. For a complex-valued function g defined on a
set E, ||g]| g, denotes the supremum of the numbers |g(x)| (x € E), and ||g] e
denotes the supremum of the numbers |g(x)l (x in the domain of g). For a normed
linear space X, | [k will be used for the norm, and | |x will denote the operator
norm for the space of bounded operators on X.

3. APPROXIMATION TO Wy

3.1. LEMMA. For 1<p <, let p, u, i, be the constants in Lemmas 2.1 and
2.2. Then, for each function f on G,

/po) [Cantlp < [SmflL < (ou/bo)[Cmilp, (m=1,2, ).

Proof. By definition, |Sy,f| Ly, is the norm of the linear transformation g — h

on Ly, where g has Fourier series Ecne'mx and h has Fourier series

27 S, f(n)cye ™ 1t follows from Lemma 2.1 that

2’ cpe-in()

<plelw,
0<n<m-1 p

Lp

where p is a constant depending only on p. Therefore, we can choose

g(x) = 2icye ™ (n=0, 1, -, m-1)
so that
(.11 el <o and lsmilz, = ],

Simple computation shows that
h(2n(-)/m) = Crn £* (g(27(-)/m)).

Combining this with Lemma 2.2 and (3.1.1), we obtain the inequalities

s, <u(%,_2

1l

1/
lh(27m/m)lp) ’

[Smfle

m-1

B |Cm £* (gn(- )/m))||p_ < v |Cmt|p_ |e@r(-)/m)|p,

]

< /o) [Crnflp_ Hg“LP < (pr/ro)|Cmilp_ -

This establishes the second inequality in Lemma 3.1.

On the other hand, since P,, is m-dimensional, we can choose
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gx) = Ziege ™ (=0,1, -, m-1)
so that || g(2n(-)/m)|| p_, =1 and

1/p
|Cant] b, = ucmf*g<zn<->/m)npm=(nil = |h<znn/m>|P)

0<n_§m-l

< ug' ] L, S po' lsmfle ”g”Lp < (/o) ,SmfILp-

This completes the proof of the lemma.

For each a in J, let 1g(a) denote the smallest nonnegative integer s such that a
vanishes outside of an interval of the form k < n <k + s for some integer k.

3.2. LEMMA. Suppose s is a positive integer, a € J, and 1g(a) < s/2; then

(3.2.1) |a|ps <2 ”a”WP’
(5.2.2) laly, < 2lals,.

Proof. First consider (3.2.1). For convenience, we let X; (j = 0, 1) denote the
functions on Z whose supports lie in the set

U (lis/2, G +1)s/2) +ks).

ke Z

Let x € Pg. Obviously, x can be expressed uniquely as a sum Xxg + X) (xJ- € Xj).
For one of the two possible choices of j, we have the inequality

(3.2.9 la*xlp, < 2Ja*x]p -

Using this choice of j, we let y denote the function on Z that agrees with x; on
[0, s) and is 0 outside of [0, s). An elementary argument yields the inequalities

la*xjlle, < )P la*yly, < @7P lalw, Iyl = laltw, =il 2, -
Together with (3.2.3), they yield (3.2.1).

To prove (3.2.2) we need the following proposition.

(3.2.4) If a and x are elements of J such that 1g(a) < s/2 and 1g(x) < s/2,
then [la*x|lo < |alp, %o,

Since the two norms in the conclusion of (3.2.4) are translation-invariant, we may
assume that a and x are supported in the intervals [0, s/2] and [0, s/2), respec-
tively. Let y be the function in Py that agrees with x on [0, s/2). Then

la*xlle, = @YPlaxylp, < &)'/Plalp, Iyvlp, = lalp, I, -

This completes the proof of (3.2.4).
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Continuing with the proof of (3.2.2), we note that each element u in J can be ex-
pressed uniquely as a sum ug +u; (uj € Xj; j =0, 1). For one of the two possible
choices of j, we must have the inequality

(3.2.5) la*ufle, < 2(a*usfle,

We now fix j so that (3.2.5) is valid. Let xj; denote the element of J that agrees
with uj on lis/2, (j +1)s/2) + ks and is 0 elsewhere. Ev1dently, (3.2.4) can be ap-
plied to a and xj, for each integer k, and therefore [a* x| 2, < | al P, I xk” 05

Since the functions a* xj. have pairwise disjoint supports and the functions xi have
pairwise disjoint supports, the inequalities

(la*usle,)? = ZCla*xellg, )P < (lal p)P Sl g,)P = (lale)?(uslg,)?

hold. These inequalities together with (3.2.5) and the fact that J is dense in 25
yield (3.2.2). This completes the proof of the lemma.

3.3. THEOREM. For 1 <p<, let p, u, uo be the constants in Lemmas 2.1
and 2.2. Then, for each positive integer m, we have the inequalities

(3.3.1) lsmfle < 2(pp/1o) |I£] w, @EeWp),
6.3.2) I£lw, < 20/1) 8t
for each trigonometric polynomial of the form

f(x)=Z>aneinx h=a,a+1, -, a+m-1),

wheve « is an integer; and, given f in Wp and a positive rveal numbey €, we can
find a positive integer m such that

(3.3.3) (u/21L0) “f”wp < |smfpr+ €.

Proof. First we prove (3.3.1) for an arbitrary trigonometric polynomial
f(x) = Ea ei™ . Let w be an element in P,,, and note that w is also in Py, for
r=1,2, -, Since w € Py, and C,,f(n) = Z) a(n + jm) (0 <n < m), it is clear that
a*w= C f*w By Lemma 3.2, we can choose r so that
la]p__ < 2]a Wy

With this choice of r and the above observation, we obtain the inequality

ICmtxwlle,, = la*w|p,, = lla*wle,, <2lilw,|wle,.., = 2]tlw, [vle,

rm —

Hence,

(Contl e, < 2 ltlw,-
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This inequality, together with Lemma 3.1, proves (3.3.1) for trigonometric poly-
nomials. We shall now prove (3.3.1) in general. From Lemma 2.3 we know that for
each f in Wy,

”f” W, > the uniform norm of f;

therefore, in particular, || sz |f(x)| for each x in G,. From this observation,

the definition of S,f, and the fact that the range of S, on W}, is finite-dimensional,
we see that there exists a constant Q,,,, depending only on m, such that

lsmfle < Qm nf”Wp (fe Wp).

Given f € Wp, a positive integer m, and ¢ > 0, choose a trigonometric polynomial g
such that |f - g| <&. Then

|Smfle < eQm + lsmgle < £Qm +2(pp/1o) “g” Wp
< @m +2(op/10)) +2(o1 /o) [1£] w, -

This establishes (3.3.1).

To prove (3.3.2), we let f(x) = 27 a(n)ei™  where 1g(a) < m. From the defini-
tion of C,,f it is clear that a is a translate of C.,f; therefore, the. | ]pzm-norms

of C,,f and a are equal. From this observation and from Lemmas 3.2 and 3.1 we
conclude that

||f”Wp <2lalp, =2[|Chilp, < 2(ko/w |Smf|Lp-
To prove the last assertion of the theorem, let f € Wy, and choose a trigonomet-
ric polynomial g(x) = 27 ane™ (n=q, @ +1, -, @ + m - 1) such that
|t - g| < min(e/(pr/ug), &/(1/10)).
Together with this inequality, (3.3.1) and (3.3.2) imply that

|Smtlr, +e/2 > [Smelr, > /200 llelw, > (w/200) [tlw, - &/2.

This completes the proof of Theorem 3.3.

3.4. Remavrks on the theorem., We now consider the cases p=1 and p = <.
Since both of the norms that appear have the same values for p =1, ©, we need only
consider the case p = 1. For each trigonometric polynomial

f(X)=Z>aneinX (n=a,a+1, "',Ol+q-]_),

where & is an integer and q is a positive integer, we consider the related poly-

nomials F(x) = 2o Sufm)e "™ (m =1, 2, ---). Since Lj[0, 27) has an approximate
identity, it follows that
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1 27
(3.4.1) ISmf]Ll =27 ), | F(x)| ax.

Since

F(217n/m)=mZ_>a. for m>0and n=0,1, -, m -1,
J

ntjm

we see that

m-1

27 | F2mm/m)| (m >q).

n=0

1
@.4.2) i, = Z Jal = &
From (3.4.1), (3.4.2), and [9, Vol. 2, Chap. 10, Section 8], we see that the constant
2pp/1Lg in (3.3.1) cannot be replaced by any constant independent of m. From
(3.4.1) and (3.4.2) it is clear that 2(ug/p) can be replaced by 27 in (3.3.2) when
p =1, and that p/2ug can be replaced by (27)-! in (3.3.3).

4. APPROXIMATION OF W,-CONTINUITY SETS

Let E be a compact subset of the circle G. We let Hp(E) (1 < p < 2) denote the
infimum of the numbers K in [0, «] (including +) that satisfy the following condi-
tion: for each continuous function g on E, there is an f in Wp such that f=¢g on E
and [f]] <K "g”E00 . We call E a Wp-continuity set if Hy(E) <. Note that the
W -continuity sets are precisely the Helson sets. We shall only deal with the case
1 <p < 2. For finite subsets F of Z, the number 0(F) (see the definition after
Lemma 5.2) is the analogue of H,. Our purpose in this section is to compare Hp(E)
with 0p((m/27)Ey), where Ey is a sequence of special finite subsets of G that ap-
proach E in a certain sense. This comparison is the content of Theorems 4.2 and
4.3. (The constants p, g, and y are defined in Lemmas 2.1 and 2.2.)

4,1. LEMMA. If E C G, and h is a complex-valued function on E, there exists
an £ in T,, such that f=h on E and

It < 2600/1)o(E) Il

wheve F = (m/27)E.

Proof. For each n in F, let a(n) = h(27n/m). There exists a function B8 on Z
such that 8 = o on F and

(4.1.1) 1Bl < (0p(®) +¢) | a]r, o -
P

Let y be the function that is 0 at each integer outside the interval [0, m) and agrees
with B8 at each integer in the interval [0, m). By Lemma 2.1, it is clear that

(4.1.2) I'yle < plﬁpr.

There exists an f in T,, such that S,,,f =y, and Theorem 3.3 implies that

4.0 Il < 260/u) |21,
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Clearly, f =h on E. Noting that

lellp, o = Inlg, e

we can combine (4.1.1), (4.1.2), and (4.1.3) to conclude that

Il < 20(:0/8) (05 (F) + &) [b]lg, o -

Since T,, is compact, we can remove the €. This completes the proof.

4.2. THEOREM. Suppose that E is a compact subset of G, and that there exists
a sequence of sets EJ- (j=1, 2, ---) such that for each index j

(i) E;C ij for some mj, where mj — <,

(ii) each point in E is within a distance (mod 27) of r/mj of some point of Ej,
and each point of Ej is within a distance (mod 27) of r/mj of some point in E.
Let K =2p(p o /1) sup op((mj/ZW)Ej). If Kr < 1, then

j
Hy(E) < K/(1 - rK).

Proof. Let g be a continuous function on E. Fix j, and define the function h on
Ej; as follows. For x in Ej, choose a point t in E that is nearest to x, and let
h(]x) = g(t). By Lemma 4.1, there exists an f in ij such that f=h on E; and

(4.2.1) lilw, <xlnle, < Klele,w

We now consider how close f and g are on the set E. Let x be a point in E. Let t
be a point in E; that is nearest to x. Let y be a point in E that is nearest to t and
for which h(t) = g(y). The choice of y is possible because of the definition of h.
Since f(t) = h(t) = g(y), we see that

|f(x) - gx)| < |f(x) - £¢t)] + |gly) - gx)] .

Since the distance from x to t does not exceed r/ mj, we conclude from Bernstein’s
inequality that |f(x) - f(t)] <r [|f] . From this, (4.2.1), the inequality
[£]le < ”f”wp , the continuity of g on E, and the fact that the distance from y to x

does not exceed 2r/mj, we conclude that

”f - g"E,oo S rK ”g“E,oo'I'w(g, 2r/mj);

where w(g, 0) is the modulus of continuity. Since g is continuous, mj — «, and K
is independent of j; we have proved the following.

For each € > 0 and each continuous function g on E, there is a trigonometric
polynomial f such that

(4.2.2) ||f||wp <K|zglg, e

and
(4.2.3) I£- gl < @K+¢)|glE, o -
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We can now complete the proof of the theorem by the usual method of successive ap-
proximations based on (4.2.2) and (4.2.3). In particular, we can choose a sequence of
trigonometric polynomials f, (n=1, 2, ---) such that

”g - (fl + e +fn+1)”E.oo < (rK+8)n+l ”g"E,OO’

[£0+1 |l w, < K(rK +¢)" lell £, -

From this we conclude that if ¢ is chosen so that rK + ¢ <1, then f ( =2 i, ) is
in W,, f=g on E, and

l£llw, < &/ -1K-e)|elr,w-

Therefore, by definition, Hp(E) < K/(1 - rK), and the proof is complete.

4.3. THEOREM. If E is a Wp- continuity set and D C E N Gm, then
GP(F) < 2(pu/p.0)Hp(E), where F = (m/27)D.

Proof. Let a be a complex-valued function defined on F. Choose a continuous
function f on E such that ||[f|g o = ||oz”1z~,°o and f(27n/m) = a(n) for each n in F.
For each ¢ > 0, there is an element g in Wy such that g=f on E and

(4.3.1) lellw, < (& +HpE) t]E,x-

We now define the function 8 on Z by the rule

g(2rn/m) if 0 <n<m,
B(n) =

0 otherwise.

From the choice of f, g, and B, it is clear that @ =8 on F. By Theorem 3.3,

(4.3.2) |81, < 2(u/p0) &l w,-

Since ¢ is arbitrary, the conclusion of the lemma follows from (4.3.1) and (4.3.2).

5. COMPARISON OF CERTAIN CONSTANTS

The purpose of this section is to give three results, Theorem 5.3, and Lemmas
5.4 and 5.5, that will be used in the next section. Lemmas 5.4 and 5.5 are due to
Rudin, and they appear in [8] as Theorems 3.5 and 4.5, respectively. Theorem 5.3
would be a special case of [4, Theorem 6], except that we state explicitly the relation
of certain constants. [4, Theorem 6] is a general result for all compact groups, and
the proof requires knowledge of representation theory. For this reason we have in-
cluded a short proof of Theorem 5.3. Our proof depends on Theorem 5.1, which is
due to Figh-Talamanca [3], and Lemma 5.2. Lemma 5.2 is essentially a part of [5,
Theorem 1]. A short proof of Lemma 5.2 is given in [7, p. 48]. Further discussion
of trifgcinometric series with random coefficients can be found in Section 8 of Chapter
V in |[9].

Let M, denote the space of functions h on Z such that hf is the Fourier trans-
form of a Function in L, for each f in Lp. It is well known that each h in Mp
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determines a bounded operator Uy on Ly, where Upf is the function in Lp with
Fourier transform hf. Evidently, My is a Banach algebra with this operator norm.
For each subset F of Z, let MPI F denote the quotient space of My with respect to
,the subspace of all functions h; in M, that vanish on F, and give Mp[ F the usual
quotient norm; that is, if h™ is the coset containing h, let

”h~”MplF = inf{"h - hl”Mp: h; € Mp, h; =0 on F} ]
It will also be convenient to let | || My | F denote the pseudonorm on My that has the
value [h™ [y | v at h in M.

Let A, denote the linear space of functions k of the form

(5.0.1) k= 2fj*g;  (=1,2, ),
where f; € Ly, g; € Lg, and
(5.0.2) Zgl, ey <= G=1,2 ).

If we let k|| A, denote the infimum of the numbers in (5.0.2), where f; and gj sat-

isfy (5.0.1), then A, with this norm is a Banach space. One of the important fea-
tures of the Banach space A, is described in the following theorem due to Figa-
Talamanca [3, Theorem 1], who first introduced the space Ap.

5.1. THEOREM. For each h in My, the function ¢n defined by

dplk) = 4? (Upf;)* g;0),

where k is vepvesented as in (5.0.1), is a well-defined bounded linear functional on
Ap. Furthermore, the map h — ¢y is an isometric linear map from Mp onto the
dual of Ap.

5.2. LEMMA. If g is a trigonometric polynomial and q is a veal number
(2 < q < =), there exists a function ry on Z such that rn =1 or -1 for each n and

el ey < Rlele,,

wheve g,(n) =r, §(n) (n € Z) and R is a constant that depends only on q.

Suppose FC Z, 1 <p <2, and p-l1+q-1 =1. A trigonometric polynomial f will
be called an F-polyrnomial if f(n) =0 for n ¢ F. We now define the three constants
Bp(F), Ap(F), and op(F). We define Bp(F) as the infimum of all real numbers K
(possibly +«) such that

27 |fn)g(m)| < K”f"Lp ”g”Lq

for all trigonometric polynomials f and all F-polynomials g. Let AP(F) denote the
infimum of all real numbers K (possibly +«) such that



172 JAMES D. STAFNEY
lelz,, <% lsl,

for all F-polynomials g. Finally, let 0, (F) denote the infimum of all real numbers
K (possibly +«) such that

Inlae e < X bl

for all h in Mp.

5.3. THEOREM. To each p (1 <1< 2) there corresponds a positive number Rp
such that

RpAp(F) < 0p(F) < A(F)

for each subset F of Z.

Proof. To prove the theorem, it clearly suffices to establish the three inequali-
ties

(5.3.1) RpAp(F) < Bp(F),
(5.3.2) o p(F) < Ap(F),
(5.3.3) Bp(F) < o p(F).

First consider (5.3.1). Suppose g is an F-polynomial and € > 0. Choose a
trigonometric polynomial f such that ||f” Ly =1 and

(5.3.4) el <&+ |2 ) gty -

By Lemma 5.2, we can choose r, =+1 so that [g| L, <R "g“LZ , where
g,(n) =r,g. Thus,

| Zi)em)| < 2 |raf)em)] < 8p I, lerlloy < BoR lglL, -

The assertion (5.3.1) follows from these inequalities and (5.3.4).
In order to establish (5.3.2), it clearly suffices to show that

(5.3.5) ||€h“Mp <2 hg, o,

where £ is the characteristic function of ¥ as a subset of Z. Each multiplier h in
My, defines a linear transformation on the space T by restricting Upn to T; further-
more, from the definition of Uy and the fact that Ly, and Lg are dual spaces, it is
clear that |Up|x = |Uh| Y, where X and Y denote T with norms || ”Lp and

| Ly’ respectively. For any trigonometric polynomial f, Ug,f is an F-poly-

nomial; therefore

MUentllL, < 2p(F) [UntllL, <2p@ [l¢h]z, ., Itle, < 2@ [hlr,q Ifl,

These inequalities together with our remarks prove (5.3.5), and this completes the
proof of (5.3.2).
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Now consider (5.3.3). Suppose f is a trigonometric polynomial and g is an F-
polynomial. Let F; be the set of integers n such that g(n) # 0. Let h be a
complex-valued function on Z such that h is 0 on the complement of Fj,

Inf 2, =1, and

(5.3.6) 27 h(n)f@)gm) = 27 |fm)gm)] .
By hypothesis, we can choose h; € My so that hy =h on F, and
(5.3.7) |y || M, < 0p(F) +¢,

where ¢ is an arbitrary positive number. From the definition of Uh1 and the fact
that h=h; on F it is clear that

(5.3.8) 27 h() fn) ) = (Up £)*g0).
Since f*g € A, and 1£* gl Ap < £l Ly, lell Lq> it follows from Theorem 5.1 that

(5.3.9) (U D*e@] < [Innllng 2l lelle, -

The inequality (5.3.3) now follows if we combine (5.3.6), (5.3.7), (5.3.8), and (5.3.9).
This completes the proof of Theorem 5.3.

We now state two lemmas due to Rudin, [8, Theorem 3.5] and [8, Theorem 4.5].
For each subset F of Z and each positive integer n, let @(F, n) denote the maxi-
mum number of elements that can occur in the intersection of F and an arithmetic
progression of n terms. Corresponding to each set of nonnegative integers F, each
positive integer s, and each nonnegative integer n, we let rs(F, n) denote the num-

ber of different s-tuples (n;, -+, ng) with nj € F (=1, 2, ---, s) and
n; +ny + - +ng =n.
5.4. LEMMA. If FCZ, n=1,2 -, 1<p<2, andpl +q1= 1, then

a(F, n) < 4(p(F)%n?/4,
5.5. LEMMA. If F is a set of nonnegative integers and s is an integer (s > 2),
then

Ap(F) < max (rs(F, n)!/s,
ne€ zZ

where p~! + (2s)-! = 1.

6. A WP—CONTINUITY SET THAT IS NOT A W5.¢-CONTINUITY SET

In this section, we describe a set E that is a W4/3-continuity set, but is not a
Wp-continuity set for p < 4/3 (Theorem 6.1). Let 2 = p; <pz < *:* denote the
prime numbers, and for m =1, 2, ---| let D, denote the set of numbers

vp %) +k(@py) (k=1,2, -, py-1),

Pm
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where vg (n) =n (mod q) and 0 < vy4(n) < q for each positive integer q and integer
n. Let N,, denote the maximum element in Dy,. Since

(2p2,)1/2

@Dy, Nyp) > Pm-1 > pm/2 = VoA

and N, < Zp%n, we have the inequality
(6.0.1) a(Dy,, Npy) > 273/2N1/2
This, together with the following result due to Erdos [1], will be used in the proof of

the theorem.

(6.0.2) If m;, my, n;, and ny are all in some set Dx and m] + m2 =n1 +nz,
then {m;, mp} = {n;, ny}.

In order to define the set E, let t denote a real number subject to the condition

(6.0.3) t > max {3, 4p(u0/u)}

where p, (Lo, and u (see Lemmas 2.1 and 2.2) correspond to the value p = 4/3. Let
ry, rp, --- be integers such that tN,, <r,, for m =1, 2, ---. For each real num-
ber q and each set S of real numbers, we let qS denote the set {qx: X € S}. Let E
denote the set

fobu U b e, .
1< k<w

It is convenient to let F,, denote the set
{0} UrgrrmbDiyur3zcrmDaU = UDp.

Recall that HP(E) is defined at tﬁe beginning of Section 4.
6.1. THEOREM. For the set E defined above,

H4/3(E) < e  and HP(E) = for 1<p<4/3.

Proof. Let E, = (2n/r] *+* r1y)Fn . The main idea of the proof is to show that
the sequence of sets E,, is related to E in such a manner that Theorems 4.2 and
4.3 can be applied. We fix m at an arbitrary value, and for convenience, we let

Bl =D B2=1‘ D ..., Bm=1"2r3 ser I Dl.

m?’ m-~-m-1? m

Since 3Ny < rj for each positive integer k, it is clear that the largest integer in
F,,, namely r, *** r N;, is less than r; --- r,,,. We shall now complete the proof,
assuming that

(6.1.1) r(F,,n <4 (m=1,2 -;neZ),

and then we shall prove (6.1.1).
From Theorem 5.3, Lemma 5.5 (with s = 2), and (6.1.1), we see that

(6.1.2) 04/3(Fm) < 2q/3(Fr) < 4t/2,
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Furthermore, E,, C E, and Ny,+1/r] -** 'mm+1 iS the element in E that is farther
from Ep, than any other element in E. If we let mj=rj --- rj in Theorem 4.2, then
it is clear from the inequality tN,,+; < r;n+1 that the number r in Theorem 4.2
does not exceed 1/t. From (6.1.2) we see that the constant K in Theorem 4.2 cor-
responding to p = 4/3 does not exceed 4p(ug/). Therefore it follows from our
choice of t (see (6.0.3)) that Kr < 1. We conclude from Theorem 4.2 that

H4/3(E) S K/(l - I'K).

We now consider the second assertion in the theorem. Suppose that 1 <p <4/3
and p-! +q-1 =1, so that q > 4. From (6.0.1), the inclusion Dy, C Fp,, Lemma
5.4, and Theorems 5.3 and 4.3, respectively, we obtain the inequalities

- 2.2
273212 < (D, Nim) < @(Fim, Nu) < 405(F ) NG
-2 -2 2 2.2
< 4R;2 (0 f(F))?NE/Y < aR;% (201 /1) (Hy(E)NZLS.

Since q >4 and N, — « as m — o, it is now clear that Hy(E) = .

We now complete the proof of the theorem by establishing (6.1.1). The following
fact is needed, and it is easily proved.

(6.1.3) If a1, 4z, and q3 avre all in some set Byx and €5 = -1, 0,07 1 for
j=0,1, 2, then either

IZ)sJ-qu =0 orelse

|Z)ajqj| > 3|q| foreach q andi (q € Bi, i<j).

In order to prove (6.1.1) it clearly suffices to prove that r(F, \ {0}, n) < 2.
Let m;, my, n, and n, be elements in F, \ {0} such that

(6.1.4) m1+m2 = n1+n2.

Let k be the largest integer such that By contains one of these four numbers. We
may clearly assume, by changing notation if necessary, that m; < mj, n; <nj3, and
m, < n,. If we rearrange equation (6.1.4) so that precisely the numbers in By ap-
pear on the right side of the resulting equation, we have the six possibilities

(1) m;+my=n;+ny, (4) m)+mz-n) =nz,
(2) mj; =nj;+nz-my, (5) mp;-n; =nz-my,
(3) 0=n;+n;-m;-my, (6) -n; = nz-my-my.

From (6.1.3) and the fact that none of the four numbers is 0, we see that (1), (2), (4),
and (6) are not possible. In the case of (3), all four numbers belong to By, and after
factoring out a product of r;’s, we conclude from. (6.0.2) that {m; , mz} = {n; , ng}.
In the case of (5), it follows from (6.1.3) that m; =n; and n; = m,. We have there-
fore shown that (6.1.4) can happen only if {m;, m2} = {n;, n2}. This shows that
r(F, \ {0}, n) <2.
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