COMPACT, ACYCLIC SUBSETS OF THREE-MANIFOLDS
D. R. McMillan, Jr.

1. INTRODUCTION

Let G be a nontrivial abelian group. If X is a compact absolute neighborhood
retract (abbreviated: CANR), then X is said to be G-acyclic if it is connected and
the homology groups H;(X; G) vanish for each i > 0. We shall be concerned with
the cases G = Z (the additive group of integers) and G = Z2 (the integers modulo
two). We present here some theorems that we believe will frequently be useful in
proving that a Z,-acyclic CANR X embedded in a 3-manifold M3 is a compact
absolute retract (CAR). This turns out to be the case, for example, if M3 is Eu-
clidean 3-space E3, and a question of Borsuk [3, p. 216] is thus answered in the
affirmative. In fact it follows from Corollary 4.1 that a Z;-acyclic CANR X in M3
is a CAR provided H;(M3; Z) is a free abelian group, and provided that every Z-
acyclic finite polyhedron in M3 is simply connected.

A G-acyclic CANR X in M3 actually possesses a property that we call strongly
G-acyclic (see Section 3), and many of our proofs use this alternate hypothesis.
This permits applications to other problems. A compact decomposition of M3 isa
decomposition whose elements cons1st of the components of a compact set S C M3
plus the individual points of M3 - S. Such a decomposition is upper- semlcontmuous
(see [8]). A corollary of Theorem 5 is that 1f G is a compact decomposition of the
3-sphere S3 and the decomposition space S /G is a 3-manifold, then each element
of G is cellular. In fact, it follows from our results and from those of R. J. Bean in
[2] that an equivalence between S3 and S3/G can be demonstrated by means of a
pseudo-isotopy.

Some of our results are valid with either of the coefficient groups Z or Z,. In
this case, terms such as Z -acyclic or Z -homology will be used, with the under-
standing that the reader may interpret Z, consistently as either Z or Z; in a given
proof or discussion.

We adopt the convention that manifolds are connected. A closed manifold is
compact and without boundary. We use the terms “surface” and “closed 2-manifold”
interchangeably. “Mapping” means “continuous mapping”; S™ denotes the n-sphere.
If £ X% [0, 1] > Y is a mapping and t € [0, 1], we let f;; X — Y denote the mapping
defined by f(x) = f(x, t), and we say that f: X — Y is a homotopy. A loop in Y isa
mapping f: S! - Y. If loops fg and f; in Y are homotopic as mappings of S! into
Y, we call them freely homotopic, as opposed to “base-point preserving” homotopic.

Finally, the algebraic topology used has a strongly geometric orientation. A
good reference is [11]. For information on CANR’s, see [3] or [5].

2. SIMPLE MOVES IN THREE-MANIFOLDS

Throughout this section, M3 will denote an orientable, nonclosed, piecewise-
linear 3-manifold, and 73 will denote a compact polyhedron in Int M3 such that
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each component of Z3 is a 3-manifold with nonempty boundary. Lemmas A, B, C,
and D given here will be cited later. Their proofs are either routine or well-known.

Suppose there is a polyhedral i-cell Bic Int M3 (i = 1, 2, or 3) such that
oBi C9Z3 and Z3 NiInt Bl = (4. Then, if N(B!) is a “nice” regular neighborhood of
Bl in M3 - Int Z3, we say that Z3 U N(B') is obtained from Z> by adding an i-
handle in M3 . In this case, we shall say that Z3 u N(Bi) is obtained from Z3 by a
simple annexation in M3 of type i if

(@) i=3, or
(b) i =2 and 9B? fails to bound a 2-cell in 3Z3, or

(c) i=1 and 98B! intersects at least one 3-cell component of Z3 in exactly one
point.

Suppose there is a polyhedral 2-cell B2 c Z3 such that B2 N 372 = 9B2 and
9B2 fails to bound a 2-cell in 9%Z3. Then, if N(Bz) is a “nice” regular neighborhood
of B2 in Z3 , the closure of 73 - N(Bz) is said to be obtained from Z3 by a simple
reduction. A simple move in M3 means either a simple annexation in M3 or a
simple reduction. We associate with Z3 an integer c(Z3) defined by

¢(z3) = 27 (n+1)%g),

n=0

where g(n) is the number of surfaces of genus n in 9Z3.

Suppose, for the rest of this section, that Z 3 is obtained from z3 by simple
moves in M3. Then the following propositions hold.

LEMMA A. 1< c(Z3) < c(z3).
LEMMA B. Each loop in Z3 is freely homotopic in M° to a loop in Z°.

It is clear from Lemma A that by simple moves in M3 we can always obtain
from Z3 a Z(3) such that no further simple moves can be applied to Zg in M".

Such a Z3 is said to be simple in M3 .

If S is a polyhedral, two-sided (and hence orientable) surface in Int M3, then S
is called incompressible in M3 provided either S fails to be a 2-sphere and for each
polyhedral 2-cell B2 C Int M3 such that B2 N S = 9B2, it follows that 9B% bounds a
2-cell in S, or else S is a 2-sphere that bounds no 3-cell in M3. It follows from
[12] that a surface S other than a 2-sphere is incompressible in M3 if and only if
the inclusion of S into M3 induces a monomorphism on fundamental groups.

LEMMA C. If 73 is simple in M3, then the inclusion of each component of 73
into M3 induces a monomovphism on fundamental groups.

LEMMA D. If Z3 is simple in M3 and 73 is not a 3-cell, then each component
of 973 is incompressible in M3.

Retaining the notation at the beginning of this section, we shall now obtain the
following result.

THEOREM 1. Suppose Zg is oblained from 7,3 by simple moves in M3. Let
H 8 C Int M3 be a compact polyhedral 3-manifold-with-boundary such that
Zg C Int Hg Then there exist a compact polyhedral 3-manifold H3 with boundary
(H3 c Int M3) and a piecewise-linear homeomorphism h of M3 onto M3 such that
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i) we can obtain H> from H% by adding 1-handles in M3,

ii) h s isotopic to the identity, through an isotopy that rveduces to the identity in
the complement of some compact subset of Int M3 , and

iii) Z3 c Int h(H3).

Proof. It suffices to consider the case where Zg is obtained from Z3 by one
simple move in M3 . In case the simple move is an annexation, there is nothing to
prove. In case the simple move is a reduction, we complete the proof by the tech-
nique described at the end of Section 2 of [7].

3. NEIGHBORHOODS OF STRONGLY ACYCLIC SUBSETS

A compact set X in Int M3 is strongly G-acyclic if it is connected and each
open set UCM 3 containing X contains an open set V such that X C V and such
that for i > 0, the image of H;(V; G) in H;(U; G) is zero under the inclusion-induced
homomorphlsm If X is a CANR, then arbitrarily close pairs U, V can be chosen
so that X € V C U and so that X is a strong deformation retract of V in U (see (5,
proof of Theorem 1.1, p. 111]). Hence a' CANR X in M3 is G-acyclic if and only if
it is strongly G- acychc (For a G-acyclic X in M3 to be strongly G-acyclic, it
suffices that X should be homologically locally connected in dimensions 0 and 1.) It
can be shown that if X € M3 is compact and strongly G-acyclic, then all embeddings
of X in a 3-manifold are strongly G-acyclic. Further, strong Z-acyclicity implies
strong Z,-acyclicity. The proof of the following lemma is straightforward.

LEMMA 1. Let X be a compact subsel of Int M3, where M3 is a compact,
piecewise-linear 3-manifold with nonempty boundary, and each component of X is
strongly Z.-acyclic. Then theve exists a compact, polyhedral, orientable 3-mani-
Jfold N3 with connected boundary such that

X C Int N3 ¢ N3 c Int M3

and such that, for i > 0, each i-cycle in N3 Z,-bounds in M3 .

ADDEE%NDUM 1. Each polyhedral 2-spheve in Int N3 bounds a Z,-homology 3-
cell in N°.

ADDENDUM 2. If X is connected, locally connected, and strongly Z-acyclic
and if H 1(M 7) is torsion-free, then N3 can be chosen so that each loop in N3 7Z-
bounds in M3 and so that each polyhedral 2-sphere in N3 bounds a Z-homology 3-
cell in N3,

Proof. We choose N3 according to Lemma 1; because X is connected and lo-
cally connected, we may take N3 so close to X that each loop in N3 1s freely ho-
motopic in M3 to a loop in X. Since each loop in X Z2-bounds in N3 , the Z-
homology class of each loop in N3 is divisible by an arb1trar1ly large power of 2 in
H;(M3; Z). Hence, this class is zero.

’

Addendum 2 implies that the entire conjugate class of elements in 1r1(M3) deter-
mined by a loop in N3 is contained in the commutator subgroup of 7;(M3). An ex-
tension of this line of reasoning yields, in the terminology of [6, p. 293] a further
result:

ADDENDUM 3. If X is connected, locally connected, and strongly Zz—acyclzc
and if X has arbitvarily close, compact polyhedral neighborvhoods W in M3 for
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which H{(W; Z) is torsion-free, then N3 can be chosen so that each loop in N> be-
longs to every group of the derived series for 171(M3)

A homotopy (Z,-homology) 3-cell is a compact, contractible (Z,~-acyclic) 3-
manifold-with- boundary A (Z,-homology) cube-with-handles is obtamed by addi-
tion of orientable 1-handles to the boundary of a (Z,-homology) 3-cell. Similarly,
we define a homotopy cube-with-handles.

THEOREM 2. Let X be a compact subset of Int M3, wheve M3 is a piecewise-
linear 3-manifold and each component of X is stvongly Z, -acyclic. Then

X = n1 1 Hi, where each component of H; is a polyhedral, Z, -homology cube-with-
handles in M3 and H;,, C Int H;.

Proof. Because of Lemma 1, we may assume without loss of generality that aM3
is nonempty and connected, and that M3 is compact, orientable, and separated by
each polyhedral surface in its interior. Further, by Addendum 1 to Lemma 1, we
may suppose that each polyhedral 2-sphere in Int M3 bounds a Z, -homology 3 cell
in M3. It suffices to show some neighborhood in M3 of X isa Z -homology cube-
with-handles.

According to the Finiteness Theorem of W. Haken, [4, p. 48], there exists a
positive integer H such that Int M3 does not contain H or more disjoint, incom-
pressible polyhedral surfaces no two of which are topologically parallel (see below
for the definition).

To make our argument more concise, we adopt several conventions for the re-
mainder of this proof. A cycle will bound if it is Z,-homologous to zero. “Incom-
pressible” will mean “1ncompress1b1e with respect to M3”, The phrase “for each
i” will mean “for i =1, 2, , H,” with poss1b1y additional qualifications. Z; will
always denote a compa,ct polyhedron in Int M3 each of whose components is a 3-
manifold.

We shall consider nested, ordered H-tuples
z =12, Z3, -, Zu}

of such Z;’s, with the property that, for each i, each 1-cycle in Z; bounds in
Int Z;_1 (we put Zo = M3). Observe that there is such a sequence,

0= {29, z9, -, z2}},

for which in addition X C Int Z% . This follows from Lemma 1. We extend the
definition of ¢ in Section 2 by putting
H

c(Z) = 27 c(Z)).
i=1

H
We shall also write 92 = Ui=1 07Zi.
Suppose there is a polyhedral 2-cell B2 c Int M3 such that

BN 3z = 3aB%*cazZ; (i>0)
and such that B2 bounds no 2-cell in 9Z;. Then we can apply a simple annexation

of type 2 or a simple reduction to Zj m Zl 1 without disturbing any Zj (j #1i). If
this simple move transforms Z; into Zl, we say that
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= {Zl , Zi—l’ Z Z1+1 , ZH}

is obtained by simplifying =.

Note that =' possesses the required properties (see Lemma B for the case of a
simple annexation). Since by Lemma A, 1 < ¢(Z') < ¢(Z), there exists a

= {ZT; Z;) Tty Z>IEI} ’

obtained from 9 by a finite number of simplifying operations, such that =* cannot
be simplified further. It follows that no 2-cell B2 of the type described in the pre-
vious paragraph can exist for =*. Hence, by a routine “trading disks” argument,
each component of 3=* that is not a 2-sphere is incompressible.

We claim that some az* consists entirely of 2-spheres. Suppose not. Then our
choice of H implies that for i <k there exist fopologically parallel surfaces
S; C az and Sy C azk in M3 that are not 2-spheres. (That is, there exists a com-
pact polyhedron A C Int M3 such that some piecewise-linear homeomorph1sm of
S; x [0, 1] onto A carries S;x {0} onto Sj and S; x {1} onto Sk.) We may as-
sume that no surface in (Int A) N 3Z* is parallel to S; in A. According to [13,
Corollary 3.2], each incompressible surface in Int A is parallel to S; in A. Hence
(Int A) N 9Z* consists entirely of 2-spheres. Since A is irreducible, it follows that
A minus the interiors of a finite d1s;oint collection of polyhedral 3-cells is con-
tained in Z¥. But each loop in Z} bounds in Z¥, so that each loop in S; bounds in
Z’i" . This yields a contradiction, na,mely that S; is a 2-sphere (see [10, Lemma 1]
the proof given there for the mtegral case extends to the Z,-case). Thus, az*
(say) contains only 2-spheres.

Since each component of 9Z¥, bounds a Z,-homology 3-cell in M3 there exists
a Z,-homology 3-cell HO such that

7¥ C It Hy C H C Int M°.
Applying Theorem 1, we obtain a Z, homology cube- w1th handles H3 and a piece-
wise-linear homeomorph1sm h: M3 — M3 such that 70 < Int h(H3). Since

X C Int Z?n, the proof is complete.

Following S. Armentrout [1], we say that X C M has property n-UV in M if
each open set U C M containing X contains an open set V C M such that X C V and
such that each singular n-sphere in V is contractible in U. We say that X has
property UV™ provided it has property i-UV for each i <n. Property UV™
means that arbitrarily close pairs U, V can be chosen as above so that V is con-
tractible to a point in U. )

THEOREM 3. Let X be a compact subset of Int M3, where M3 is a piecewise-
linear 3-manifold and each component of X is stvongly Z,-acyclic and has property
[~ e]

2-UV in M3. Then X ='ﬂi:1 H;, wheve each component of H; is a polyhedral
homotopy cube-with-handles in M3 and H;,; C Int H; .

Proof. By Theorem 2, there exist polyhedra H; C M3 (i > 0) such that each
[>0]

component of H; is a Z;-homology cube-with-handles, such that X = ﬂi:o H;, and
such that H;,; C Int H;. Using property 2-UV, we may choose the polyhedra so that
each singular 2-sphere in H; (i > 1) is contractible in H;_;. Hence, for i > 1, each
(nonsingular) polyhedral 2-sphere in H; bounds a homotopy 3-cell in H;_; (see the
first paragraph of the proof of Theorem 2 of [9]). Since the boundary of each
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component of H; is connected, this homotopy 3-cell lies in H;. Thus, for i > 1,
each component of H; is a homotopy cube-with-handles.

The next corollary follows from Theorem 3, Addendum 3 to Lemma 1, and the
fact that for a free group G (we take G = 71(H;) below) with derived groups

{1 g2 ... we have ﬂn:1 G = 11} (see [6, pp. 311 and 312]).

COROLLARY 3.1. Let X be a compact, locally connected subset of Int M3,
wheve M3 is a piecewise-linear 3- manifold. Suppose also that X is strongly Z,-

[>e]
acyclic and has propevty 2-UV in M3. Then X = ﬂizl H;, wheve H; is a homolopy
cube-with-handles in M3, H;,, C Int H;, and H;,, is contractible to a point inH; .

In particular, X has property UV®™ .

COROLLARY 3.2. Let X be a compact subset of Int M3, where M3 is a piece-
wise-linear 3-manifold. Suppose that X is strongly Zp-acyclic, that X has prop-
erty 2-UV in M3, and that each open set U in M3 containing X, contains an open
set V such that X C V and each loop in V - X is contractible in U - X. Then X
has arbitravily close compact, polyhedral neighborhoods F> in M3 such that F3 is
a homotopy 3-cell and F3 - X is topologically S? x [0, 1).

Proof. This follows from Theorem 3 and the proof of [8, Theorem 1] (see the
last three paragraphs of the proof cited).

4. SOME APPLICATIONS

We first give a characterization of CAR’s in 3-manifolds.

THEOREM 4. Let X be a compact, Z-acyclic, locally contractible subset of
M3 , Whevre M3 isa piecewise-linear 3-manifold. Then X is an absolute retract if
and only if 1(X) = 0, or, equivalently, if X has property 2-UV in M3,

Proof. The “only-if” part is clear. Let us consider the converse. We may as-
sume X C Int M3. Since X is compact, finite-dimensional, and locally contractible,
it is a (connected) CANR (see [3, Corollary 10.4, p. 122]). Let U be a neighborhood
of X in M3 that retracts onto X. Since X has property 2-UV and is strongly Z,-
acyclic, there exists (by Corollary 3.1) a neighborhood V of X suchthat XCVCU
and V is contractible to a point in U. It follows that X is contractible in itself and
hence (see [3, Theorem 9.1, p. 96]) is a CAR.

Using the same method of proof, together with Theorem 2 and Corollary 3.1, we
have the following result.

COROLLARY 4.1. Let X be a compact, Z-acyclic, locally contractible subset
of M3 , where M3 is a piecewise-linear 3-manifold containing no Z, - homology 3-
cells that fail to be simply connected. Then X is an absolute retract.

We indicate next how to use our results to study compact decompositions of 3-
manifolds that yield 3-manifolds.

THEOREM 5. Let M3 and N> be closed, piecewise-lineayr 3-manifolds, and let
f be a monotone, continuous mapping of M> onto N3. Put

S¢ = {x € M3: £-1£(x) is nondegenerate } .

Suppose that for each component C of Sy theve exists a homotopy 3-cell in M3 con-
taining C in its interiov, and that the closure X of £(Sy) is 0-dimensional. Then
each component of S¢ has property UV®,
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Proof. Note that the components of S; are exactly the nondegenerate point-
inverses of f. (The requirement that f be monotone is actually redundant in the
presence of the other hypotheses, but here we do not prove this.) The argument to
follow has two main steps. Since these steps are essentially the same, we treat them
together.

Suppose that we have X expressed as ﬂ ;=1 H;, where each component of H; is
a tamely embedded homotopy cube-with-handles in N3, and that H;,; C Int H;, H;,,
is contractible in H;, and each component of f~ 1(H;) is interior to a homotopy 3-
cell in M3. Such sequences exist, by Theorem 2 (in fact, each component of H; can
be chosen to be a polyhedral cube—with—handles). Let Ki+1 and K; be components of
H;;; and H;, respectively, such that K;;; C Int K;j, and consider the following con-
sistent diagram of compact, connected sets: "

1K, ) > 71K,

fl ‘.
kY

Kiy1 —K;

where j and k are inclusions and the vertical arrows are restrictions of f.

Note that we obtain corresponding induced algebraic diagrams of (a) first Z-
homology groups and (b) fundamental groups, and that in each case k, is trivial.
Also, in each case it is true that the vertical arrows represent epimorphisms, since,
for example the restriction of f to 2(f-1(K;)) is 2 homeomorphism onto 9K;. In the
d1agram of case (a), the vertical arrows also represent 1somorph1sms smce each of

1(K1+1) and f- l(K ) is interior to a homotopy 3-cell in M3 and hence has the same
first Z-homology as K;,.; and K;, respectively. Hence, in case (a), Jx =0, and it
follows that each component of f-1(X) is strongly Z- acychc

o0

Hence, by Theorem 2, we can write £~1(X) = ﬂi=1 J;, where J; is a compact
polyhedron in M3 each of whose components is a polyhedral homotopy cube-with-
handles, and the sequence H; = f(J;) satisfies the conditions of the second paragraph
of this proof. Now consider the diagram in case (b) for this choice of H; and with
K;;; and K; as before. The vertical arrows represent epimorphisms of free groups
of the same f1n1te rank, and hence they represent isomorphisms, by [6, Theorem
2.13, p. 109]. Agam we find that j, is trivial, and hence each component of f- 1(x)
has property uv®

From [8, Theorem 2], we obtain two further results:

ADDENDUM 1. Each component C of Sf has arbitrarily close, compact poly-
hedval neighborhoods F3 in M3 such that F3 is a homotopy 3-cell and F3 - C is
topologically 8% x [0, 1). Hence, if a component C of Sg lies in the interior of a 3-
cell in M3, then C is cellular in M3,

ADDENDUM 2. If for each component C of Sg there exists a 3-cell in M3 con-
taining C in its intevior, then some pseudo-isotopy of M3 onto M3 shrinks the col-
lection of components of Sg to points. In particular, M3 and N3 are homeomorphic.

©0

Proof. Theorem 2 yields the relation S¢= ni:1 H;, where each component of
H; is a polyhedral cube-with-handles in M3 and H;,; C Int H;. We can now con-
struct the pseudo-isotopy as in [2].
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