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INTRODUCTION

Our main theorem concerns geodesic polygons in hyperbolic geometry; it gives a
necessary condition for certain finite sets of real two-by-two matrices to generate
discrete groups. We suppose that we are given a. compact polygon with a finite, even
number of sides, and we suppose that the sides are matched in pairs by linear frac-
tional transformations satisfying an orientation condition. If the group generated by
these transformations is discrete, then the theorem is that the translates by the
group of this polygon cover most of the points in the hyperbolic plane the same num-
ber of times.

This result is stated more precisely and proved in Section 1. The rest of the
paper illustrates the theorem by applying it fo the following question: When is a
doubly generated group of analytic automorphisms of the upper half-plane discrete?
The theorem of Section 1 will be used to answer the question for the case where
neither generator is hyperbolic. The nature of the criterion we give is that one need
only find whether the trace of the product of a well-determined power of one genera-
tor by a power of the other generator appears in a list. For example, if both gener-
ators are elliptic, the list contains two classes of major cases corresponding to clas-
sical presentations of triangle groups, and it contains five classes of exceptional
cases corresponding to some geometric configurations discussed at the beginning of
Section 3 (see Theorem 2.3).

The polygon theorem is given in Section 1, the criterion for groups with two elip-
tic generators is stated in Section 2 and proved in Section 3, and doubly generated
groups at least one of whose generators is parabolic are treated in Section 4. I wish
to thank B. Maskit for suggesting the problem solved by Theorem 2.3 and for his
advice connected with these results, and I wish to thank the referee for some im-
provements in the exposition.

1. POLYGON THEOREM

Throughout this section, U denotes the upper half-plane with the hyperbolic
geometry. The hyperbolic area of a set X is m(X), the boundary of X is 89X, and
the image of X under a set D of transformations of U is D(X).

THEOREM 1.1. Let P be an open, simple, finite-sided geodesic polygon in U
whose closure P in U is compact, Suppose that all the sides of P are matched in
disjoint pairs by analytic automorphisms of U. Say, Ly(s,) = s,:. As an ovientation
condition on the tvansformations L, suppose that for each x within the side s,,
each sufficiently small disc N centered at x satisfies the inclusion condition

N C s, U PUL;(P).
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Finally, suppose that the group D genevated by the transformations L, is discrete. |

(i) Then the set U - D(dP) is open, and every point in it is equivalent to mem-
bers of P under exactly t elements of D, where t is a finite integer independent of 1
the point.

(ii) Moreover, if Q is a standard open fundamental polygon for D, then
m(P) = tm(Q).

Before giving the proof, we make a few remarks. Informally, the orientation
condition is that if the s, are oriented consistently, then L, carries s, into s,
with reversed orientation. The nontrivial part of the conclusion of the theorem is ]
the second half of (i). It cannot be changed to say that each point of U - D(@P) is
equivalent under D to t elements of P, unless'we count fixed points of elliptic
transformations according to their multiplicities. The proof of the theorem will
suggest (but it does not establish definitely) that P actually decomposes into the
union of t disjoint fundamental sets for D; however, we shall not need to know
whether this stronger assertion is true.

It is easy to see that U - D(9P) is open, in other words, that D(@P) is closed. |
The set 9P is compact, and the discreteness of D implies that if K is any compact
set in U, then d(@dP) N K is empty for all but finitely many d in D. Hence ;
K N D(3P) is compact, and D(3P) must be closed. ;

If x is in U, we denote by t(x) the number of members of D that map x into P.
Before proving Theorem 1.1, we shall establish three lemmas about t(x) for x in P.-

LEMMA 1.2. For each x in U, t(x) is finite. |

Proof. The lemma is an immediate consequence of the compactness of P and
the discontinuity- of discrete groups of automorphisms of U.

LEMMA 1.3. The function t(x) is constant on each component of the open set i
P - D(@P). |

Proof, Let x be in P - D(@P), let C be the component of x in P - D(0P), and |
let d be an element of D mapping x into P. Since 9P disconnects P from the
complement of P, since C is connected and d is continuous, and since d(C) does
not meet 9P, we conclude that d(C) lies entirely in P or entirely outside of P. But :
d(x) is in P, and thus d(C) is in P. We have therefore proved that t(y) > t(x) for all
y in C. By symmetry, equality must hold. ,

LEMMA 1.4. If x is a point of 9P having a neighborhood in D(@P) that is mere-
ly an arc of a side of P, and if x is not the image under D of a vertex of P, then,
for each sufficiently small disc N about x, N N P lies in a single component of
P - D(@P). If N is sufficiently small, let X' be the unique point of 0P with which x
is matched by a genevator L, of D, and let N' be the image of N under L, . Then
(N N P) = t(N' N P). |

Remarks. The function t is constant on N N P, by Lemma 1.3, and so t(N N P) %
is a well-defined integer. Because N' N P is not the image of N N P under L, the
obvious fact that t assumes the same value on points equivalent under D does not 1
prove the lemma immediately.

Proof. N can be taken as any disc that is hyperbolically centered at x and is so
small that its intersection with D(2P) consists of a single diameter of N. The half- -
disc N N P is connected and is entirely in P - D(0P). Hence it lies in a single ‘
component of P - D(3P).
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Let {(x) be the number of elements of D that map x into P. Then -
t(x) > t(N N P), because each element of D that maps a point of N N P into P must
map N0 P into P and hence must map the closure of N N P, which contains x, into
P. The point of the proof will be to compute the difference between t(x) and
t(N N P).

Suppose d is an element of D mapping x into P. If M is a sufficiently small
subdisc of N, then d(M N P) is in P, since P is open. Since N N P is connected,
d(N N P) is in P. Thus the d’s that contribute to t(x) also contribute to t(N N P).
The remaining d’s that contribute to t(x) map x to a point of 3P, evidently a point
whose local behavior in D(@P) is the same as that of x. These d’s occur in pairs.
In fact, such a d followed by the matching transformation of d(x) (which is uniquely
defined, since d(x) is not a vertex of P) is the other member of the pair. By the
orientation condition on the matching transformation, one of the two transformations
in the pair sends N N P outside P and the other sends NN P inside P. The d’s
with N N P mapped inside P contribute to t(N N P), and the others do not. That is,
t(x) is the sum of t(N N P) and the number of pairs of d’s sending x into dP. Since
t(x') is then the sum of t(N' N P) and the same number of pairs, and since
t(x) = t(x') for the equivalent points x and x', we obtain the relation
t(NNP)=t(N'N P).

Proof of Theorem 1.1. For the proof of (i), we first note that only finitely many
points in 8P are bad in the sense that they fail to satisfy the conditions of Lemma
1.4. In fact, the number of vertices of P is finite, and hence so is the number of
points of 9P that are images of vertices, under D. Consider the points of 9P with-
out neighborhoods in D(sP) that are simply arcs of sides of P. If there are infinite-
ly many such points, let x be one of their limit points. Each neighborhood of x con-
tains a point different from x that belongs to at least two noncollinear sides of
D(3P), and hence infinitely many members of D map points of P into P, contrary to
the discontinuity of D. It follows that the number of points in P N D(@P) equivalent
to the bad points of 0P is finite.

Next, we show that t(x) is constant for x in P - D(dP). In fact, let R be T
minus the points of D(0P) equivalent to bad points. The result of the preceding
paragraph shows that R is connected. R consists of the disjoint union of P - D(0P)
and the set of points of P N D(3P) equivalent to points of Lemma 1.4. We define a
function f on R as follows. On P - D(@P), f(x)=t(x). If x is in R N D(3P),

f(x) = t(y) for all y in P - D(@P) sufficiently close to x. The content of Lemma 1.4
is that f(x) is well-defined. The function f is obviously continuous and integer-
valued. Since R is connected, f is constant. Thus t is constant on P - D(3P).

To complete the proof of (i), it is enough to show that every point of U - D(@3P) is
equivalent under D with a point of P - D(@P). Thus, let y in U - D(@P) be given,
and take any x in P - D(dP). By moving x slightly, we may assume that the geo-
desic arc g from y to x meets no images of vertices under D, since the set of
images of vertices is countable. Since g is compact and the set of images of ver-
tices is closed, g is bounded away from the images of vertices.

Find the point x; of g N dP closest to y. By construction, x) is not a vertex,
and hence it lies within a side s) of P. Let L; be the matching transformation
sending s; into its matched side. By the orientation assumption on L, LII (P)

contains points farther along g toward y than x;. Let x, be the point of

g NL ;1(3 P) closest to y. Then X, is not the image of a vertex, and hence it lies
within the image under Lil of a side s, of P. Let L, send s, into its matched
side. By the orientation assumption, Lil LEI(P) contains points still farther along
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g. Continue in this way, using Lil L'1 Lgl , °**. In finitely many steps, the points

X; reach y. In fact, otherwise the preimages in P of the new pieces of polygons ap-
pearing on g at each stage would accumulate in P. These preimages are geodesic
arcs connecting sides of P, and their lengths tend to 0. Hence they are eventually
close to vertices, in contradiction to the fact that g is bounded away from the images
of vertices. Thus (i) is proved.

For (ii), recall that m is the measure in U. By complete additivity,
m(D(dP)) = 0 and m(D(3Q)) = 0. Part (i) and the known covering property of stand-
ard fundamental regions thus imply that

2 xpldx) =t and 2 xg{d@) =1

debD deD

almost everywhere. Therefore

tm(Q)

SU txghdmbo = § 2 x p(d60) x o) dme)

5,2 xpbox gateam = § I x ) x () dmGe)

Il

SU X px) dm(x) = m(P).

2. GROUPS WITH TWO ELLIPTIC GENERATORS

In this section we give a criterion for deciding when a group of real two-by-two |
unimodular matrices generated by two elliptic matrices is discrete. The proof of [
the result, which is an application of Theorem 1.1, appears in Section 3.

l

Let G be the group of all two-by-two real matrices of determinant one, let ¢ be !
the homomorphism sending the matrix (a, b | ¢, d) into the linear fractmnal trans-
formation z — (az + b)/(cz + d), and let G* be the image of 0. The kernel of ¢ is
the two-element center of G. If a subgroup of G is discrete, then its image under o !
is discrete in G*, and if a subgroup of G* is discrete, then its preimage under o is
discrete in G. This enables us to pass back and forth freely between G and G*.

If @ and B are elliptic elements of G* that generate a discrete group, @ and B
are certainly of finite order. If @ and B are of finite order and commute, the group
they generate is finite and hence discrete. We shall therefore assume that the gen- l
erators o and B are of finite order and that their fixed points FP(a) and FP(B8) in |
the upper half-plane U are distinct. In this case we shall find that if the subgroup D
of G* generated by @ and B is discrete and G*/D is compact (this is the difficult
case), then D must be a triangle group of Schwarz:

{A, B: AP = B9 = (AB)* =1},

where p‘l + q'l +r-l <1, Thus, before stating the theorem, we shall write down
explicitly matrices whose images under ¢ generate such a group.
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If (a, b l c, d) is an elliptic matrix, its conjugacy class within G is determined
by the trace a +d and the sign of b (the trace alone is not enough). To verify this
assertion, conjugate (cos 0, sin ¢ | -sin 6, cos 6) by the most general member of
G and examine the result. The elliptic matrix (a, b | ¢, d) will be said to have ex-
treme negative trace if a+d =2 cos (7 - w/n) for an integer n, and (a,b | c, d) is
novmalized if it has extreme negative trace and if b is positive. If A is an elliptic
matrix of finite order, then there exists an integer k relatively prime to the order
of ¢(A) such that Ak has extreme negative trace. In this case, exactly one of the
powers Ak and A-k is normalized. Thus, in deciding whether a subgroup of G with
two elliptic generators is discrete, we lose no generality by assuming that both gen-
erators are normalized, since the images under o of the normalized generators
generate the same subgroup of G* as the images of the given generators. -

Let A and B be normalized elliptic matrices with distinct fixed points. We wish
to show that the image under o of the group generated by A and B is generated
geometrically from a polygon, in the sense of Theorem 1.1. From the proof we shall
easily see the conditions on A and B in order that ¢(A) and o(B) be the standard
generators of a triangle group, and we shall be in a position to apply Theorem 1.1 to
obtain our criterion for discreteness of the group generated by o(A) and o (B).

To see that o(A) and o(B) generate a group geometrically, we shall conjugate
them so that their fixed points are conveniently located in U. Namely, we can conju-
gate A and B by a single matrix chosen so that the fixed point of 0(A) is at i and
the fixed point of o(B) occurs at ui for some real number u > 1. Then the new A
and B have the forms

cos(m - /L) sin(m - 7/¢) cos (7 - m/m) b
(1) A=< ) and B=( ),

~sin(m - w/2) cos(m - 7/2) c cos (7 - 7/m)

where ¢ and m are positive integers, |c| < |b|, b>0, ¢ <0, and det B = 1. Ac-
cording as AB is elliptic, parabolic, or hyperbolic, o(A) and o(B) have the effect
suggested in Figure ‘1, 2, or 3. We shall verify this assertion only in the elliptic
case, the other cases being similar. (There is, however, a slight difference in the
manner in which the sides are defined in-Figure 3 and in Figures 1 and 2. In Figure

FP(oB)

FP(0BA)

Figure 1
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FP(0 BA) FP(0AB)
Figure 2
3, the sides are defined by the two fixed points and the angles at the imaginary axis,
whereas in Figures 1 and 2 they are defined by the four fixed points.)
LEMMA 2.1. Let M= (a, b | ¢, d) be an elliptic matrix with

a+d=2cos¢ and sign b = sign sin ¢.

Then, at the fixed point of 0(M) in U, o(M) rotates divections counterclockwise
through the angle 2¢.

Proof. Neither the hypothesis nor the conclusion is affected by conjugation within
G, and we may thus assume that M = (cos ¢, sin ¢ | - sin ¢, cos ¢). The fixed point

L. A x s
Distinct Distinct

Figure 3
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of M is i, and the rotation at i is counterclockwise through the angle arg[o(M)'(i)],
which is easily seen to be 2¢.

Return to the verification that ¢(A) and o(B) map the vertices and sides in Fig-
ure 1 as suggested by the picture. The sides in this picture are defined as the geo-
desic ares connecting the indicated fixed points. Since 0(A) carries FP(oBA) into
FP(0AB) and ¢(B) carries FP(0AB) into FP(0BA), 0(A) carries side 1 into side 2
and o(B) carries side 3 into side 4. Lemma 2.1 shows that o(A) rotates directions
at i counterclockwise through 27 - 27/4 or clockwise through 27/¢. Thus the indi-
cated angle between side 1 and side 2 is 27/¢. Similarly, the indicated angle between
side 3 and side 4 is 27/m. The real part of FP(0AB) is

(c +b)sin(m - 7/¢)
2(c cos (7 - 7/2) - cos (w - w/m)sin(r - 7/2))

(2)

The numerator has the sign of b, which is positive, and both terms in the denomina-
tor are positive. Hence FP(0AB) lies in the right half-plane. To complete the
verification, it is enough to show that FP(ocBA) is the reflection in the imaginary
axis of FP(0AB). In fact, the reflection in the imaginary axis of FP(cAB) is the
fixed point of o of

1 0 1 0 1 0 1 0 1 0 1 0
(o2 (o )= GGG )l ) -t -
0 -1 0 -1 0 -1 0 -1 0 -1 0 -1

and hence it is the fixed point of 0 BA. The validity of Figure 1 is verified.

We shall need to know the angles 6 in Figure 1. If the trace of AB is
2 cos(m + ¢) with 0 < ¢ <, then 0 = ¢. In fact, the lower left entry of AB is half
the denominator of expression (2), and that is positive. Hence the upper right entry
of AB is negative (since AB is assumed to be elliptic) and has the same sign as
sin(7 + ¢). By Lemma 2.1, 0dAB rotates directions about FP(c AB) counterclock-
wise through 2( + ¢) or counterclockwise through 2¢. An argument similar to that
in the preceding paragraph then shows that 6 = ¢.

PROPOSITION 2.2. If A and B have the form (1) and if n is any positive inte-
ger, then there ave only finitely many choices of b and ¢ such that (cAB)* =1. If b
and ¢ are chosen so that

(3a) be = -sin?(z - 7/m), |c| < sin(7r - 7/m),
(3b) 2 cos(m - 7/m) cos(m - /L) + (¢ - b)sin(w - 7/L) = 2 cos (7w + 7/n),

then AB has extreme negative trace 2 cos (m + n/n), and if AB has this extreme
negative trace, then o(A) and o (B) generate the (4, m, n)-triangle group of
Schwarz.

Proof. Equations (1) require that b and ¢ satisfy (3a). If (cAB)" = 1, then the
trace of AB must be 2 cos (7 + s7/n) for an integer s with 0 < s <n. This is the
condition that (3b) hold, but with the right side replaced with 2 cos (7 + s7/n). For
each s, the resulting system consisting of (3a) and the modified (3b) has at most one
solution, and the first statement of the proposition follows.

If the system is solved with s = 1, then the trace of AB is 2 cos (7 + 7n/n), and so
6 in Figure 1 is #/n. With 6 = 7/n, Figure 1 becomes the standard picture showing
how the (¢, m, n)-group is generated.
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THEOREM 2.3. Let A and B be novmalized elliptic matvices with distinct fzxed |
points. The group genevated by A and B is discrete if and only if the traces of
AB, A, and B satisfy one of the seven conditions: [

(1) |trace AB| < 2 and AB has extreme negative trace,
(I1) |trace AB| > 2,
(IIT) trace A = trace B and trace AB = 2 cos (7 + 20/n) with n > 3 and odd,

(IV) trace A =0, trace B = 2 cos (7 - 7/n), and trace AB = 2 cos (1 + 27/n) with
n > 3 and odd (or the same thing with A and B intervchanged),

(V) trace A = 2 cos (7 - 7/3), trace B =2 cos (v - 7/n), and
trace AB = 2 cos (7 + 37/n)

with n > 1 and not divisible by 3 (ov the same thing with A arnd B inter-
changed),

(VI) trace A = trace B =2 cos (7 - 7/n) and trace AB = 2 cos (7 + 4n/n), with n > T
and odd,

(VII) trace A = 2 cos(m - w/3), trace B =2 cos (7 - 7/7), and
trace AB = 2 cos (7 + 20/7)

(or the same thing with A and B interchanged).

Remarks. In Theorem 3B of [3], Greenberg lists all triangle groups that are
maximally contained in larger triangle groups. The three entries in his list corre-
spond to our Cases III, IV, and V, but with each divisibility condition replaced by its
denial: he requires n to be even in Cases III and IV and to be divisible by 3 in Case
V. This correspondence is no accident, and the reason for it can be deduced from
Figure 4. Case VI corresponds to no entry in Greenberg’s list, because it is built
out of Cases III and IV together.

3. PROOF OF THEOREM 2.3

Some of the details of the proof of the theorem of the preceding section are repe- :
titious, and we shall omit many of them, since our main interest lies in the geometric
aspects of the proof.

We begin with the proof that Cases I to VII give discrete groups. In Case I, the |
group is discrete by Proposition 2.2. For Case II, once Figures 2 and 3 are verified,
we again have standard pictures associated with two elementary classes of Fuchsian
groups, ]and the group is discrete (by Poincaré’s Theorem, for instance, see [4, pp.
221-2271).

The remaining cases are intimately connected with special geometric configura-
tions. In each case, the method of proving discreteness is suggested by a hyperbolic |
triangle with angles n/¢, 7/m, and s7/n and with the property that it can be parti- |
tioned into congruent subtriangles each of whose angles is 7 times the reciprocal of
some integer (henceforth, we refer to such angles as submultiples of w). These con-
figurations are given in Figure 4. Their relevancy will be apparent from the con-
verse half of the proof. !
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a/2|n/2

Case II

v

/3

VI

/7

VII

Figure 4
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In Case III, let trace A = trace B = 2 cos (r - 7/2) and trace AB = 2 cos (7 + 27/n)
(n odd). Put

%(n+1) if n =3 (mod 4),
(4) k =
-%(n-n if n =1 (mod 4).

The group generated by 0(A) and o(B) is the same as the group generated by o(A)
and 0A-1(AB)X. We claim that A and A~! (AB)¥ are normalized elliptic and that
their product (AB)X has extreme negative trace. (Trace[A~!(AB)X] will be 0.) If
we can prove the claim, then discreteness follows from Case I. We shall have shown
the image under ¢ of the group in question is a (2, ¢, n)-triangle group.

Choose a matrix C such that ¢(C) maps FP(0AB) into i and maps the direction
from FP(cAB) toward i into the upper imaginary axis. Put A' = C(AB)-1C-! and
B' = CAC-l. Since the upper right entry of AB is negative, since A' has its fixed
point at i, and since B' has its fixed point on the upper imaginary axis, A' and B'
have the forms

cos ¢ ~-sin ¢
Al =( ) (¢ =7 + 2m/n),

sin ¢ cos ¢

cos(m - n/2) b'
B' =( ) (c' <0, |b']>|c'], b'c'=-sin?(7 - 1/2)).

c cos(m -m/4L)
Since A'B' is conjugate to B~!, it has the trace of B. That is,
(5) 2 cos(m-7/L) = 2cos(nm - u/L)cos ¢-(c'-Db'")sin ¢.

The trace of A-! (AB)X is the trace of the inverse (AB) XA, and the sign of its upper
right entry is the sign of the lower left entry of (AB)'kA. It suffices to consider the
conjugate matrix (A')XB'. The trace is

(6) trace[(A")XB'] = 2 cos (7 - w/4) cos k¢ - (¢' - b')sin k¢.
Since k¢ =7 + 7/n (mod 27) for any odd n, we obtain the relations
(7) cos k¢ = -sin(¢/2) and sin k¢ = cos(¢/2).

Multiply both sides of (6) by 2 cos k¢, substitute from (7), and add the result to (5).
The result is -2 trace[(A')kB']sin(¢/2) = 0. Since n > 3, sin (¢/2) # 0 and

trace (A')kB' = 0. The lower left entry of (A')XB' is ¢' cos k¢ + cos (1 - 7/L) sin k¢,
and both terms are positive. Hence A-! (AB)X is normalized. Finally, the trace of
(AB)K is the trace of (A')X, namely 2 cos k¢, which by (7) equals 2 cos (7 + 7/n).
That is, (AB)k has extreme negative trace.

In Case IV, let us say

trace A = 0, trace B = 2 cos(r - 7/n), trace AB = 2 cos(m + 27/n).
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Define k as in equation (4). Again, 0 (A) and cA-! (AB)k generate the same group
as 0(A) and o(B). A calculation similar to the one in Case III shows that A and
A-1(AB)k are normalized (with trace[A-1(AB)X] = -1) and that their product has
extreme negative trace 2 cos (7 + n/n). By Case I, the given group is discrete, and
in fact, its image under ¢ is a (2, 3, n)-triangle group.

In Case V, let us say
trace A = 2 cos(m - 7/3), trace B=2cos(m - n/n), trace AB =2 cos(m + 37/n).

Define
n+v ifn=3v -1,

n-v if n=3v-+1.

Again, 0(A) and cA-l(AB)k generate the same group as o(A) and o(B), and calcu-
lations show that A and A-!(AB)X are normalized (with trace[A -1 (AB)k] = 0) and
that their product has extreme negative trace 2 cos (7 + 7/n). By Case I, the given
group is discrete, and in fact its image under ¢ is a (2, 3, n)-group.

In Case VI, trace A = trace B = 2 cos (7 - 7/n) and trace AB = 2 cos (7 + 4n/n).
Put
1

_E( -1) if n=3 (mod 4),

%(n+1) if n=1 (mod 4).

Again o(A) and oA -!1(AB)X generate the whole group, and again the argument in
Case III shows that A and A-!(AB)XK are normalized (with trace[A -1(AB)X] = 0).
Their product (AB)X has trace 2 cos (7 + 27/n), and n is odd. By Case IV, the given
group is discrete, and in fact its image under ¢ is a (2, 3, n)-triangle group.

Finally, in Case VII let us say that
trace A = 2 cos (7 - 7/3), trace B = 2 cos (7 - @/7), trace AB = 2 cos (7 + 2n/7).

Here o(AB)~4 and 0(A) generate the whole group, since o(AB) has order 7. Also,
(AB)-4 and A are normalized with trace (AB)~%*=2 cos(r - 7/7), and (AB)"*A has
trace 2 cos(m + 37/7). The latter statement boils down to the identity

cos 7/1 + cos 3w/7 + cos 5n/7 = 1/2,

an assertion that follows from the fact that the sum of all the seventh roots of -1 is
0. Discreteness now follows from Case V, and the image under ¢ of the group in
question is a (2, 3, T)-group.

We turn to the proof that Cases I to VI are necessary for discreteness. Let A
and B denote normalized elliptic matrices of the form (1), and let D be the subgroup
of G that they generate. We suppose that D is discrete. By Case II, we may assume
that AB is an elliptic matrix, and we may clearly suppose that AB has finite order.
Let the trace of AB be 2 cos (7 + s7/n), with 0 < s <n and with s and n relatively
prime. By Case I, we may assume s > 1. Figure 1 applies, and the angles 6 in that
figure are sw/n. The proofs of the next two lemmas were supplied by B. Maskit.
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LEMMA 3.1. o(D) is a triangle group (with elliptic generators).

Proof. By Theorem 1.1, U/0o(D) is a compact Riemann surface, say of type
(g, n), and so o(D) is isomorphic to one of the standard Fuchsian groups. If
(g, n) # (0, 3), there are uncountably many nonconjugate groups in G* isomorphic to
o(D). (See [1, p. 356] for the case g > 1, for example.) This conclusion contradicts
Proposition 2.2. The proof is complete.

In the remainder of this section, the integers p, q, and r are such that o(D) is a
(p, 9, r)-group with p <q <r.

LEMMA 3.2. The integers {, m, and n each divide one of p, q, and r.

Proof. Let the standard generators of the (p, q, r)-group o(D) be a and B. It
is enough to prove that each element of ¢(D) of finite order is conjugate to an inte-
gral power of @, B, or @f. Take an element of finite order greater than 1, and con-
jugate it by a member of o(D) so that its fixed point x is in the standard funda-
mental polygon for ¢(D). Then x is not an interior point, because interior points
(especially those near x) are inequivalent. It is not an edge point other than a vertex
for the same reason (or, if the element has order 2, because points near x on the
edge are inequivalent). Therefore x is a vertex, and the conjugated element is a
power of ¢, B, aff, or Ba. That power must be a rational power, and the denomina-
tor of the exponent must be 1. In fact, otherwise o(D) would possess an element, a
nontrivial integral power of which is a, 8, af, or Ba, contrary to the fact that points
in a fundamental polygon near a vertex are all inequivalent. Since ¢f and Ba are
conjugate, the lemma is proved.

Now apply Theorem 1.1 to the polygon in Figure 1. By part (i), the translates by
o (D) of this polygon cover most points of the upper half plane t times, where t is
independent of the point. We shall call t the covering number of the polygon. Most
points in a neighborhood of FP(0cAB) are covered s times just by the powers of
0 (AB). Hence t>s. The area of the polygon in Figure 1 and the area of a standard
fundamental region for -o(D) are both computable, and part (ii) of Theorem 1.1 thus
gives us the important relation

@) 1-(%+}&+§)=t[1-(%+%+%)].

We shall describe a partitioning of the polygon in Figure 1 that will give one fur-
ther condition on D. By the remarks preceding Proposition 2.2, ¢ (AB) rotates di-
rections at FP(0 AB) counterclockwise through 2s7/n. Since s and n are relatively
prime, we can choose k so that sk =1 (mod n). Then ¢ of C = (AB)k rotates di-
rections at FP(0AB) counterclockwise through 27/n. Form the powers CJ with
0 <j < s, and then fix j. In Figure 1, draw the geodesic from FP(0AB) at an angle
of jm/n measured clockwise from side 2. This geodesic meets the imaginary axis
at a point x between FP(0cA) and FP(oB) (strictly between them, if 0 < j <s). Let
the arc from FP(0AB) to x be called side 5, and let the reflection of side 5 in the
imaginary axis be called side 6. The quadrilateral 1234 has thereby been parti-
tioned into quadrilaterals 1256 and 6534 (one of them is degenerate if j = 0 or
j =s). We claim that cA-1CJ(side 5) = side 6. In fact, sides 5 and 6 have the
same length, and hence so do o0CJ(side 5) and cA(side 6). If we show that
0 CJ(side 5) and oA(side 6) make the same oriented angle with cA(side 1) = side 2,
then we shall have the result oCJ(side 5) = o A(side 6), that is,

oA~ Ci(side 5) = side 6.
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Thus we need only observe that

angle (o A(side 1), oA(side 6)) = angle (side 1, side 6) = angle (side 5, side 2)

1l

angle (side 2, 0CJ (side 5)).

Let 0<j<s -1, and consider the above construction for j and j+1. Inan ob-
vious notation, quadrilateral 6;5;j5;+1 6j+1 has its sides matched in pairs by mem-
pbers of o(D). Specifically,

oA-! Cl (side 5;) = side 6;  and oA-! CI*1 (side 5541) = side 6j;1 -

Also, oA~ CJ and oA-1Citl together generate o(D), and so by Theorem 1.1 quadri-
lateral 6;5; 5541 65+1 receives a covering number relative to (D). As j varies, we
get a partition of quadrilateral 1234 into s pieces. Each of the pieces has a cover-
ing number, and the sum of these covering numbers is i, almost by definition.

Each of the s pieces is composed of a triangle and its reflection. If one of these
triangles has angle ¢ at a vertex y, then an elliptic transformation that fixes y and
rotates directions at y through 2¢ is a member of o(D). In particular, one of the s
quadrilaterals has covering number 1 if and only if the angles of its component tri-
angles (the two triangles are congruent) are all submultiples of 7. (The “if”-part of
the statement follows from Poincaré’s Theorem, since cA-1CJ and oA-1Citl gen-
erate all of o(D).)

At this point, we have developed all the tools we need, and the proof will be com-
pleted in four steps.

Step 1. If 2 <t <6, the only possible values for t and s are (2, 2), (3, 2), (4, 3),
and (6, 4), and these possibilities lead only to Cases II, IV, V, and VI, respectively.
For the proof we observe that 2<s<t<6. The individual cases are somewhat
alike, and as samples we shall treat only the cases (t, s) = (2, 2), (3, 2), (6, 4), (6, 5),
and (6, 6).

If (i, s) = (2, 2), the quadrilateral 1234 divides into two pieces, and each is
forced to have covering number 1. The angles of the component triangles must be
submultiples of 7, and in particular the four angles at x on the imaginary axis must
each be 7/2. Since the areas of the component quadrilaterals must be equal when the
covering numbers are equal, we must have n/0 = n/m. That is, ¢ must equal m, and
n (being prime to s = 2) must be odd. This is Case II.

If (t, s) = (3, 2), the quadrilateral 1234 divides into two pieces, one with covering
number 1 and the other with covering number 2. Consider the former quadrilateral.
The angle at x of a component triangle is a submultiple of n. Thus the angle at x of
a component triangle of the other quadrilateral is at least /2. But that angle must
also be a submultiple of 27, since the second quadrilateral has covering number at
most 2, and that angle cannot be 7/2 since otherwise the second quadrilateral would
have covering number 1. Hence the angle is 27/3. The other angles of a component
triangle of the second quadrilateral are submultiples of m, and the case (t, u) = (2, 2)
implies that these angles are equal. Bisecting the second quadrilateral as in the
(2, 2)-case, we find that a component triangle of one of the pieces has angles /2,
7/3, and 7/n. A component triangle of the first quadrilateral has angles 7/3, 7/n,
and 7/¢ or m/m. Hence either ¢ or m equals 2, and the other is n. The integer n
is odd, since it is prime to s = 2. This is Case IV.
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If t=6 and s =4, 5, or 6, we appeal to equation (8). Lemma 3.2 shows that
£, m, and n are not greater than r. Since s > 4, the left side is increased if we re-
place it with 1 - 6/r. We see that

9) 1—%26——2-6(%+é—)

with equality only if { =m =n=r and s = 4. Inequality (9) says that
p-1 +q-1 > 5/6, and this is possible only if p =2 and q = 3. We are forced into
Case VI.

The other possibilities for (t, s) with t < 6 are handled by arguments similar to
those for (2, 2) and (3, 2), but some of the other cases are a little more involved.
We omit the proofs.

Step 2. If t> 6, then p=2 and q = 3. In fact, direct calculation shows that only
if p=2 and q = 3 is it possible to satisfy the condition imposed by Lemma 3.2, the
requirement s > 1, and the inequalities

(10) 1-(%+%+%)27[1-(%+%+%)]>0
implied by equation (8).

Step 3. If t > 6, the only possibilities for (t, s; £, m, n; p, q, r) are

(vila) (10, 2; 9, 9, 9; 2, 3, 9),

(VIIb) (18, 2; 7,7, 7; 2, 3, 7),

(VIIc) (10, 2; 3,17, 7; 2, 3, ),

(viId) (9, 3; 8, 8, 8; 2, 3, 8),

(VIIe) (12, 3; 7, 7, T; 2, 3, 7).

For the proof, we recall that p =2 and q = 3. Inequality (10) and the inequalities
2, m,n<r and r > 7 lead to the inequality 6(5 - s) > 7. Hence s =2 or s = 3.

Suppose s = 2. If n <r/2 or if neither ¢ nor m is greater than r/2, inequality
(10) leads to the contradiction r < 6. Thus by Lemma 3.2 we may assume that
m =n = r. Equation (8) becomes

t-3
n

(11) =%(t~6)+%.

If ¢ =n, the only solutions (n, t) to (11) with t > 6 and n odd (recall that s is prime
to n) are (7, 18) and (9, 10), and these give VIIb and VIIa. When ¢ < n/2, equation
(11) gives n <12, and so n =17, 9, or 11. Case-by-case inspection for these values
of n gives VIIc as the only solution to (11) with t > 6 and ¢ <n/2.

Suppose s = 3. Unless £ = m =n =r, inequality (10) and Lemma 3.2 lead to the
contradiction r < 6. With ¢ = m =n = r, equation (8) becomes n = 6(t - 5)/(t - 6),
and the only solutions (n, t) with n > 7, t > 6, and n prime to s = 3 are those in
VIId and VIle.

Step 4. In Step 3, only VIIc can occur, and it is Case VI of Theorem 2.3. In
fact, the values of s, £, m, and n in VIIa and VIIb are covered by Case III; they lead
to discrete groups, but t is 2 for them. Clearly VIIc is Case VII of the theorem.
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Consider VIId. As in Step 1, the quadrilateral 1234 divides into three parts. The
covering numbers of the edge quadrilaterals must be 1, 2, 3, 4, or 6, because in each
case two of the angles of a component triangle are submultiples of 7 (namely, 7/8).
The covering number 1 is impossible, because two of p, q, and r would have to be
8; covering numbers 3 and 6 are impossible because 8 is even; and covering num-
ber 4 is impossible because the angles of the triangle would have to be n/3, 7/8, and
37/8. Therefore the covering numbers for the three pieces are 2, 5, 2. The two
edge triangles are then congruent, and since the sum of the angles in the middle tri-
angle is less than w, the angles are n/3, /3, and 7/8. Since these are all sub-
multiples of w7, the middle quadrilateral has covering number 1, which is a contra-
diction.

Consider VIiIe. Again quadrilateral 1234 divides into three parts. Covering
numbers 1 and 4 are impossible for the edge quadrilaterals, just as in VIId, and
covering number 3 is impossible because the angles of a component triangle would
have to be 7/2, n/7, and 27/7 (whereas two of them are /7). Thus the only pos-
sibilities for the covering numbers are 2, 8, 2 and 2, 4, 6. Possibility 2, 8, 2 does
not occur for the same reason as with 2, 5, 2 in VIId. Possibility 2, 4, 6 does not
occur, because elementary geometry shows that the triangle associated with covering
number 2 and the one with covering number 6 are congruent, in contradiction to
part (ii) of Theorem 1.1.

4. GROUPS WITH A PARABOLIC GENERATOR

If one generator of a doubly generated subgroup of G is parabolic and the other
is elliptic or parabolic, the question of discreteness is more easily settled than when
both generators are elliptic. In this section, we state the results and mention what
tools are used, but we only sketch the proofs.

We may assume that the parabolic matrix generators in question have trace -2,
because the replacement of a parabolic generator by its negative leads to the same
subgroup of G*, and hence discreteness is not affected. For a matrix in G of trace
-2, the signs of the upper right and lower left entries do not change when the matrix
is conjugated by a member of G. (It is enough to verify this assertion for the matrix
(-1, +1 I 0, -1).) Also, the signs are opposite, except that one of the entries may be
0. We shall say a parabolic matrix is normalized if it has trace -2, its upper right
entry is nonnegative, and its lower left entry is nonpositive.

In considering discreteness for the elliptic-parabolic case, we may certainly as-
sume that the elliptic generator has finite order. We may then arrange, without loss
of generality, that both generators are normalized.

PROPOSITION 4.1. If A is a normalized elliptic matrix and B is a normalized
pavabolic matvix, then the subgroup of G that they genevate is discvete if and only if
AB is hyperbolic, or is parabolic, or is elliptic with extreme negative trace,

For the proof, conjugate the group generated by A and B so that the fixed point
of o(A) is at i and the fixed point of 0(B) is at «. The picture is then the same as
in Figure 1, 2, or 3, except that FP(0B) is © and the arcs leading to it are vertical.
Moreover, trace AB < 2, and if trace AB < -2, then Figure 2 or Figure 3 applies,
and the same argument as in the case where both generators are elliptic gives dis-
creteness. If AB is elliptic and 6 in the modified Figure 1 is a submultiple of 7,
the group is discrete. If 0 is a rational multiple of 7 but not a submultiple, then we
can generate the group by A and a power (AB)k such that 0(AB)k rotates directions
at FP(0cAB) through a smaller angle than 0(AB). The result is that translates of a
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compact portion of the polygon in the figure cover all of U. Since U/D cannot be
compact if D is a discrete subgroup of G* containing parabolic elements, the group
in question is not discrete.

For the case where both generators are parabolic, we may assume that both gen-
erators are normalized. The case where their fixed points are the same is simple,
and we assume that the fixed points are distinct. They we can conjugate the normal-
ized generators so that they are of the form

-1 0 -1 b
(12) A= ( and B = with b > 0.
-1 -1 0 -1

The trace of AB is 2 - b.

PROPOSITION 4.2. If A and B are novrmalized pavabolic matrices of the form
(12), then the subgroup of G that they genevate is discrete if and only if b > 4 or
2 - b =2 cos (7 + 2r/n) for an integer n > 3.

In other words, the exceptional case III of Theorem 2.3 occurs also in the case
where both generators are parabolic, but there are no other exceptional cases. In
the proof, trace AB > 2 cannot occur and trace AB < -2 is handled as in the preced-
ing cases. If AB is elliptic and the group is discrete, the angle that corresponds to
6 in Figure 1 must be 27/n, since otherwise we can give an argument similar to the
one in the elliptic-parabolic case to show that U modulo ¢ of the group is compact.
This means that 2 - b must be of the form 2 cos (7 + 27/n) if the group is discrete.
On the other hand, arguments similar to those at the beginning of Section 3 show that
the group is discrete if 2 - b is 2 cos (7 + 27/n).

The referée points out that the situation in Proposition 4.2 was considered by
Brenner [2], who proved that the group in question (call it D) is free if b > 4. Now
if this group D is free, then o(D) is free, and Maskit’s Theorem 4 in [5] shows the
group is discrete. Hence Brenner’s result implies Proposition 4.2 above if b > 4.
Maskit’s theorem also answers a question raised by Brenner: Is there any value of
b with 0 <b < 4 for which D is free? The answer is negative, because ¢(D) would
have to be discrete, and the elliptic matrix AB would therefore have to be of finite
order.
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