SINGULARITIES OF DIRICHLET SERIES
WITH COMPLEX EXPONENTS

J. R. Shackell

1. INTRODUCTION

In this paper we are concerned with the function f(s) defined by

(1) fs) = T a e Mati¥als

n=1

s

where [, and v, are real numbers and p, increases and tends to infinity.

In order to ensure that the series (1) possesses an abscissa of convergence, and
that this coincides with the abscissa of absolute convergence, we shall assume that

(2) v, = o(i,)

and that

(3) logn 5450 — .
n

It is easy to see that if condition (3) is not satisfied, then the series (1) may fail to
possess an abscissa of convergence, even if {v,} is bounded; as an example, we
consider the series

o0

(4) 27 exp {-[log n + (-1)*27i]s}.
1

For s = 1/4, this series becomes i 22 (—l)nn'l/4, which converges; but for s = 1/2,
the series becomes - 2yn-!/2 , and this diverges.

Our purpose in this paper is to extend to the series (1), where p, and v, satisfy
(2) and (3), the theorem of Vivanti [3], that if the arguments of the coefficients of a
power series all lie within a fixed angle less than w, then the positive point on the
circle of convergence is a singularity of the sum of the series.

THEOREM 1. Suppose that the sevies in (1) satisfies condition (3), that the
abscissa of convergence O is finite, and that

(5) larg ap - ocva| < x < /2,
where -1 < arga, <w. If o_ =0, suppose also that
(6) Ian <M,

where M is some positive constant. Then f(s) has a singulavity at s = 0.
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Condition (5) is in fact a natural condition, since arg a, - 0. v, is the argument
of the nth term of the series (1) at the point s = ¢.. We note that if o_ # 0, (6) fol-
lows from (5).

Lunc [2] has pointed out that the series

[~ o]
h ane—knz - e~le-(1+’ﬂi/2)z+e-le-(l-'iTi/Z)z

n=1

gt e-ke—(k+711/2)z " e-ke-(k—’ITl/Z)z 4o

’

for which |arg a, - 0¢ an <L w/2, does not possess a singularity at the real point on
the abscissa of convergence. We give as our second theorem a slight modification of
Lunc’s result.

THEOREM 2 (compare Lunc [2]). For each o # 0, there exists a Divichlet
series (1) with abscissa of convevgence . such that

() oy - Bp>a>0,
(i1) {v,} is bounded,
(iii) |arg a, - oo vy| < 7/2,
(iv) the point s = o is not a singularity of (s).

Theorem 2 shows that, in the case o # 0, Theorem 1 is the best possible result,
in the sense that Theorem 1 becomes false if we relax condition (5) to allow
|arg a, - 0. v,| < 7/2. In imposing condition (i), we have chosen the case most
likely to yield Theorem 1, in that |vn/pn| = O(1/n) and {vn/(in - pn-1)} is
bounded. It is conceivable that when o, = 0, Theorem 1 is true for some class of
unbounded sequences {v,}. Whether this is the case is not known.

2. PRELIMINARIES TO PROOF OF THEOREM 1

In our proof we shall use the representation of the series (1) as a Stieltjes inte-

gral. Thus we write a, = a, elen, where a;, > 0, and we define the quantities ¢(t),
6(t), and a(t) as follows: Let ¢ and 6 be continuous functions of t (0 <t <)
such that

(i) ¢°is bounded and ¢(t) = 0 for all sufficiently small t;
(i) dlpy) = vy, 0(uy) = 04;
(iii) there exists a number x' with x < x' < 7/2 such that |6(t) - o C¢(t)| <x'
for all t (0 <t < ),

Finally, let af(t) = 2 a,. Then
Hn<t

(7) f(s) = Da e (Hativn)s Sw exp {-s[t+1i¢(t)] +i6(t)} do(t).
1 0

It is easy to see that ¢(t), 6(t), and a(t) can be chosen to satisfy our requirements.
Also, if ¢(t) is chosen as above, then ¢(t)/t is bounded and tends to zero as t tends
to infinity. Let
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(8) M; = sup |o(t)/t] .
Our proof is derived from a method used by Delange [1] to obtain a theorem con-
cerning the singularities of a class of Laplace-Stieltjes integrals.

LEMMA 1 (Delange [1]). Lef x, 4, A, and p. be positive numbers
(0 <X <1< ), and suppose that |y! < ﬁ Let a(t) be an increasing function

o0
such that the abscissa of convergence of the integral S exp (-st)da,(t) is zevo.

0
Then to each positive ¢ there covvesponds an integer N (e) such that for n > N(€)

(9) Sohn/x exp[-(x + iy)t]t"de(t) < n! [ Ae;"’\ 1+ 8):‘
and
co 1- n
(10) S / exp[-(x + iy)t]t"da,(t) < n! [iex—li (1 +s):|
un/x

Our second lemma is a generalization of this in the case y = 0.

LEMMA 2. If x, \,and u ave as in Lemma 1 and the conditions of Theorem 1
ave satisfied, then to each positive ¢ theve corvesponds an integer N(¢) such that
for n> N(e)

An/x /
|A x)| = ‘S;) exp {- ¢(t) (x+ 0 ) +16(t)} [¢(®)]" da(t)
()
|B,(x)]| = X:/ exp {-C(t) (x+ o) +i0(t)}[C®)]"de(t)
(b) n/x

gn![“e (1+a)]n,

where C(t) =t + id(t).
Since S: exp {-s&(t) +1i6(t)} da(t) is absolutely convergent for %is > o, it
follows that ‘S:o exp[-(x + o.)t] da(t) converges for x > 0. We write
5:0 exp[-(x + o, )t]da(t) = SOOO exp (-xt) dg(t),
t
where B(t) = ‘S;) exp (- 0. u)da(u). Now let
(11) zn(t) = (1 +i¢t)/t)".

From (8), we obtain for all t > 0 the inequalities
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(12) lz®)] < @+ |o®)/t)™ < @ +M)?,
while for t > (—1—;’%;—1%; and n > nyle)
(13) |z, ()] < (1+¢/3)7,

since |¢(t)/t| — 0 as t — . Now

An/x
lSO [C®] exp 1-(x + 0. ) E(t) + 1 0(t)} da(t)

An/x
jo t"z (texp {-xt +i[6(t) - (x + o )p(t)]} dB (t)l
(14)

n/x

t" |z (t)] exp (-xt)dB (t) + S: t%| zn(t)| exp (-xt) dp(t)

an/[(l +M] Jex]
<
n/(1+Mj)ex

0

in/x
™ exp (-xt) dB(E) + (1 + S/S)HS exp (-xt) t"as(t).
0

An/[(1+M))ex]
< +M1)n5
0

Applying Lemma 1 to the second integral in the last member of (14), we obtain the
inequality

A/x

(15) So

for n > Ny(e/3).

exp (-xt)t"dp(t) < n! [ re ! (1+ 8/3)]

X

(>0}
Also, since S exp (-¢; t)dB(t) converges for every €, > 0,
0

SM/ [(1+M;)ex]

{ Sl;ln }
. dg(t) < Kjexp T My)ex | *

where K is a constant. Since exp(-xt)t" increases for 0 <t < n/x, it follows that

An/(14+M;)ex (e)/x - 1 — ’
S P exp (-xt) t2 ap(t) <K exPl:—(ll—-i-XM_lEE:l I: (1 +)1\\21)9X:l

0

S U P
(16) <[22 e g exp[a((i; S{;;eml)e)]%

rel=? :'n 1
_<_n!|: - (1+¢/3) ————(1+Ml)n,
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1/n €12
provided we choose €; so that Kj' exp T T M Jex <1+¢/3.
1

Therefore, from (14), (15), and (16) we see that for n sufficiently large

An/x
§,  @Feml-tc+ o)t +100]dx)

X

<[1+(1+¢/3)"n! [ rel (1+¢/3) :ln

< nl [ re! A (1+¢/3) ]n+ n! [ rel -2 (1 + 3g/4) T (e < 3/4)

X X

-2 n -\ n
Szm["el (1+3s/4):| gn!["el (1+e)],

X X

which establishes equation (a). Turning our attention to relation (b), we see from
(13) and Lemma 1 that if € <1 and n > N(g), then

[+

[E®)] exp[-(x + o) E(t) + i 6 (t)] de(t)

pun/x

< Soo £ | zn(t)| exp [-(x + o )t] da(t)
un/x

1- n 1- n
< n![%—u(1+s/2)] 1+e/3)" < n![“ex ¢ (1+s)] :

This establishes relation (b) and completes the proof of Lemma 2.

Completion of Proof of Theorem 1. Now suppose that f(s) is regular at the point
S8 = 0. Then there exists a number p > 1 such that

(=]
floc+8) = 5 exp[-(o. + s)E(t) + 1 6(t)] da(t)
0
is regular in the circle with centre at the point s =1 and with radius p. Then

Un
§ el ot®+10@IRON a® = (DM W) - ay01) - By(0),

and therefore

Hn
Sl exp[-(1+ 0 )¢®) +10®Ie®Pde)| < [£™ @) + |a,] + |B,].

(17)

Let Mg be the maximum of |f(c. + s)| on the circle (centre 1 and radius
p/(1 +¢/2)), and let
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6 = Max(%, ?\el'h, uel‘“) .
Clearly, 6 <1, and by Cauchy’s inequality,

(18) |#0) (1)] < nt M, (1 /2

) < n! Mgl +e/2)8]".

Therefore (12) and Lemma 2 imply that

(" expl-(1 + 0 ) E®) + 18O EOF da(t)
An

(19)
< (Mg +2)n! [(1+¢/2)6]" < n![(1+£)5]"

when n is sufficiently large.

But equation (19) cannot hold. To see this, we proceed as follows.

‘ S * exp[-(1 + 0. ) LM + 14O O da®
An

(20) = | (™ expl-e) + 1100 - 0 401} [EOT dp®)
An

un
> {7 0 {eWexp{i[6) - 0 a0} (KO aB0).

- An
Now
(21) arg {exp [-&(t) +i[6(t) - o S [E®)]"} = - ¢(t) + 6(t) - o ¢(t) +n arg E(t).

But arg ¢(t) = tan~! (¢(t)/t), and for t > An> An,(e),

¢(t) -1 ( $(t) ¢(t)
IT' - tan~! (FF)] <o TI'
Hence, for an <t < un,
1+¢, (1-¢p)
(22) Inarg ¢(t) - o) < |o(t)] max{ oLl

Thus, for each ¢ > 0, we can choose A and u sufficiently close to 1 to ensure that

(23) |n arg ¢(t) - ¢t)] < & |ott)] .

Now we have chosen 6(t) and ¢(t) so that lo(t) - ocqb(t)l < x' and ¢(t) is bounded.

Let M, = sup |¢(t)|, and choose & < 5 2M (277 - x'). Then, by (21) and (23),
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larg {678 exp {1[6(t) - 0. 61} [COT}
(24) < |narg £(t) - o(t)] + | 0(t) - o ¢(t)]
<x' +%(ﬂ/2 -x') = %(ﬂ/2+x') = x" < /2.

Therefore
% {exp[-Ct) +1{0@) - o o®) I E®]"}
(25)° > cos x" |exp [-¢(t) +i(6(t) - o $t)][E®)]"]
> K exp(-t)- (1 - £)™t™,
where K is a positive constant. Therefore, by (20) and (25),

pn
{7 exp (- +1[06) - 001} EOP B
An

(26)

> K(1-¢)” Sun exp (-t)t™ds(t).
An

We now choose n> (. - 1)™! so that pn>n+ 1. Then

l S:n exp {-¢(t) +1[0(t) - o ¢(t)]} [C(t)]ndﬁ(t)l
(27)

n+l n+l
>K(@1-¢)"? 5 exp (-t) t2dB(t) > K(1 - s)ne'n‘lnnS dg(t) .

n

Now, if (19) holds, we obtain from (27) the relations

Snﬂ ag(t) < Ke?*ln™m(1+2ePn![(1+¢€)6]? < Knl/z[(l +4g)6 |7,

n

for sufficiently large n, and hence
n+l 1/n
(28) lim sup {‘S‘ exp (-0, t)da(t)} < (1+4¢)s.

n-— oo n

But (28) holds for every & > 0, and therefore we have only to choose ¢ so that
(1 +4¢)6 <1 to ensure that
n+l 1/n
lim sup { S exp(-o.t) da(t)} < 1.

n— o n



504 J. R. SHACKELL

This being so, there exists an n > 0 such that

n-— oo n

n+l 1/n
lim sup { S exp (- oc t) da(t) } < e,

and therefore, since

n+l n+1
5 exp[(n - oo )tlda(t) < eMm+l) S exp (- o, t)da(t),

n n

we have the inequalities

n+l 1/n
lim sup { § expl(n - o )t] da(t)}

n— oo n

(29)

n+l 1/n
< el lim sup { S exp (- o, t)da(t)} < 1.

n-—oc n

(=]

n+l
Therefore the series 24 S exp[(n - o, )t]da(t) converges, and hence the integral
1«

n

cO
S exp[(n - o )t]da(t) also converges; in other words, the integral
0
o0
S exp (- s {(t) + 1 6(t)) de(t)
0
is absolutely convergent at the point s = 6. - 7. But this contradicts the definition

of o, as the abscissa of convergence of this integral. It follows that f(s) must have
a singularity at s = 0., and Theorem 1 is thus established.

3. PROOF OF THEOREM 2

oD
Consider the series 27 ane—(“nﬂ’/n )s = f(s), where
n=1
Tt -1)%7
a, = exp ; ,  Mp=n1n/2, Vn=(20)
C
Here
5 (-1)°;
(30) f(s) = Eexp{—g(s-oc)____lﬁ}.
1 2 20,

If n is even, we write n = 2r, combine the (2r - 1)st and 2r-th terms, and obtain
the relations
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-r(s-0.) {e(s-o'c)/zeiﬂs/ZO‘C + e—i’ITs/ZOC}

1}
K

f(s)

e

L]
1
et

Ms

(31) = e {5-9¢) {cos 7S [e{s-9¢2 1] 41 sin 12 [ (s-0c)/2 1]}

20 20

r=1

[ (S UC)/Z [ (S O'C)/Z 1]

cos 5 — +1]+1sm

s -0
e C

-1
By choice of a_, the series clearly has abscissa of convergence 0., and we see
from (31) that f(s) is regular at the point o,
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