TRANSFORMS OF CERTAIN MEASURES
Robert Kaufman

Let G be a locally compact, nondiscrete abelian group, and T" its Pontrjagin
dual. The Fourier-Stieltjes transform [{I of a measure p is defined by the formula

fy) = S'ﬁ??)u(dm (u € M(G), y € T).

We present here generalizations of two theorems of Wik [2] concerning compact sets
P C G with the property that “[1 “ = ll[f/.”00 = “u“ for all p € M(P) (measures sup-
ported in P).

THEOREM 1. If lim sup |{i| < ||u]| for some p € M(P), then || < |x|| for
some X € M(P).

Here lim sup |;1 | = inf sup ]ﬁ(y)l, the infimum being taken over all compact
C ygC
subsets C of I

THEOREM 2. Let T'; be a closed subgroup of T, and let T/T; be compact. If

) 2] = |l for all measures p € M(P) and
(2) sup |5(ry)| = o] for all discvete measures o in P,
Y€,
then
(3) sup |ﬁ(’y1)| = H,u." for all measures in M(P).
Y€1,

A general reference for the duality theory is Hewitt and Ross [1]; specific refer-
ences are given below as needed. The author thanks the referee for pointing out a
certain simplification in the proof of Theorem 1.

LEMMA 1. For any measuve v concentvated on a countable subset D of G,
lim sup |D] = ||D].

Proof. Suppose that lim sup |9]| < ||D]; then |9(yo)| = |#] for some yg € T.
There exist a compact set C C T" and a positive number 6 such that ]‘1)| < | " -0
in the complement of C. Since v is an atomic measure, there exist a finite set
{d;, d5, -+, d,,} € D and a positive number & such that whenever

yeT and |y(d)-1]<e (1<i<n),

then |D(y +v,) - P(yy)| < 6, whence y +y, € C.

If x is a character of G, not assumed to be continuous, then x is in the point-
wise closure of the set

C, = {ye:|vdy - x(dy)] <e/2, 1<i<n}
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(see [1, p. 432, Section (26.16)]). But C; has compact closure in the topology of T,
so that x is necessarily continuous. This evidently implies that every subgroup of
G, and in particular the countable subgroup G generated by D, is closed. Now the
annihilator G§ is compact, so that G is open in G [1, p. 365, Section (23.25)].
This clearly conflicts with Baire’s Theorem; the lemma is thereby proved.

Proof of Theorem 1. We can suppose that P is uncountable and therefore con-
tains a countably infinite subset B such that | 1 I (B) = 0, with a point of accumulation
bo. Suppose also that lim sup || <r < |2, sothat E = {y: r < |i(»)|} is com-
pact. By the definition of Pontrjagin’s topology in T, there exists for each n > 1 a
neighborhood U, of bg such that |'y(x) - 7(bo)| <1/n for all ¥ in E and x in Up.
Let b, and by be distinct elements of U, N B C P, and let A, be the measure with
mass 1 at b, and -1 at b,. For every n, |p +x,| =2, while

2 +8.) < 2+r if y ¢ E.
Finally, X, + [i converges to {i uniformly on E, and

limsup [ +8,] < 2+r < || +2,

n — o

as required.

Proof of Theorem 2. We suppose that 0 € P. The hypothesis on I'; is that
;= 71 for a discrete subgroup Z of G. For a neighborhood U of 0 in T, the co-
sets I'y + U form a neighborhood U* of the identity in the compact group r/T;.
The open set U™ contains the subgroup orthogonal to a finitely generated subgroup
Zy of Z, whence Zé CTI';+U. Inasmuch as Fourier-Stieltjes transforms are uni-
formly continuous on I', we can assume that I'T is in fact finitely generated. The
following consequence will be useful: for each closed subgroup H of I'/T'; there
exists a neighborhood V of 0 in I'/T'; such that H+ V contains no subgroup larger
than H. Less formally, I'/T'; and its factor groups are free of “small subgroups.”

To prove Theorem 2, it is sufficient (and in fact necessary) to verify that for
each y € T and for each measure y > 0 in P there exists a sequence {y,} € I';
such that

§ 1ra) - 769 @) — 0.

Since hereafter only uniform convergence or a weaker convergence is considered,
we tacitly assume that I' is metrizable [1, p. 70, Section (8.3)].

Henceforth, o is a fixed positive measure in P with positive mass at 0; for
each measurable subset T C P, we define a subgroup I(T) C I'/T'; as follows: An
element 6 of I'/T; belongs to I(T) if there exists a sequence {y,} C I'; such that

S |yn®) -1l o(dx) - 0 and y,+T; — 6.
T

Clearly, I(T) is a closed subgroup.

LEMMA 2. There exists an € > 0 such that o(T) > o(P) - € implies
I(T) = I(P).

Proof. Suppose T,C P (n=1,2, «=+), 6(Ty) — o(P), 6, € Ty), and 6, — 6.
For each n, there exists an element y, in T" such that
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(I -1lo@) < /n,  doa+Ty, 0, < 1/,

Tn

Therefore y,+ I'; — 0, while

S lyn(x) - 1| o(dx) < 20(T)) + S lyn(x) - 1| o{dx) — 0.
P Th

Thus 6 € I(P), that is, lim sup {I(T): ¢(T,) — o(P)} =I(P). The lemma is now a
consequence of the property of T'/T'; mentioned at the beginning of the proof.

To complete the proof of Theorem 2, let D be the countable set on which the dis-
crete part of ¢ is concentrated. For each character y € T, there exists by hypoth-
esis a sequence {yn} C TI'"; such that

— S o(dx).

D

IS 7 T (x) 0 (dx)
D

Since o has positive measure at 0, we conclude that S ]yn(x) - ?’(X)l o(dx) — 0.
D

Among the measurable subsets T (P2 T D D) there exists a subset T, that has the
approximation property just described for D and is contained in no subset of larger
o -measure having this property. (This can be proved by an argument similar to that
used in Lemma 1.) Theorem 2 is simply the assertion that ¢(Tg) = o(P); let us as-
sume the contrary and obtain a contradiction, Since T; D D, o is a continuous
measure in T (the prime indicates the complement); therefore 0 < o(Tl) <gg, for
some subset T; of Ty .

Let B € T, and define a measure

v@ = o +oEnTy.
TlﬂE

There exists a sequence {y,} C T such that |?(yn)| — ||v|| = o(P). From the con-
dition {0} > 0 we conclude that

S [y x) - 1| o(ax) = 0  and S |y (%) - B(x)| o(dx) — 0.
T; T,

We may suppose that y,+ I') — 6, and we use the fact that o(T}) > o(P) - g¢,
whence 0 € I(P) = I(T}), by Lemma 2. For some sequence {yst C T,

g\ |v4(x) - 1] 0(dx) — 0 while y5+ I'y — 6. Using the metrizability of T', we
B

choose a third sequence {'y’;} C I'; for which (yr'1 - 'yn) + 'yz — 0. Then

§ lrw-tle@ o, [ |y - 8o - o.
T T

Finally, let @ € T. There exists a sequence {x_ } C I'; such that
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S |e(x) - Xn(X)l odx) <1/n (n=1,2 ).
To

In the previous calculation, we set 8 = X,, @, and we thus obtain characters Xlll cr 1
such that

S |xh(x) - 1| o(@x) < 1/n  and S |x1(x) - X, a(x)]| o(dx) < 1/n.
TO Tl
Then

ST la(x) - x,®)x &) o@dx) -0 (i=0,1).

1

Consequently, T3 U T ; has the approximation property; this contradiction completes
the proof of Theorem 2.
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