DIMENSIONS OF COMPACT TRANSFORMATION GROUPS
L. N. Mann

1. INTRODUCTION

A well-known result of Montgomery and Zippin [6], [7] states that the dimension
of a compact Lie group of homeomorphisms acting effectively on a connected n-
dimensional manifold cannot exceed n(n + 1)/2. This result does not hold for actions
on nonmanifolds. It is easy to construct effective actions of tori of arbitrarily high
dimension on finite connected 2-complexes, and in fact even an effective action of the
infinite-dimensional torus on a compact connected 2-dimensional space. For exam-
ple, consider the 2-complex consisting of a line and r disjoint closed discs with
centers on the line. We obtain an effective action of the r-torus TT on this space
by leaving the line point-wise fixed and letting the ith factor group of T* act as the
group of rotations on the ith disc while leaving all other discs pointwise fixed.
Clearly, this action has r distinct isotropy subgroups (excluding T¥ itself). In Sec-
tion 2 we consider actions of a compact transformation group G on a space X, and
we investigate the connection between the dimension of G and the isotropy structure
of the action. The results are simple to state, and the proofs are straightforward.

In [4] it was shown that for an effective action of a compact Lie group H on a
connected n-manifold, many dimensions of H less than n(n+ 1)/2 are also excluded.
In Section 3 we show that the same pattern of gaps in dimension occurs for transitive
actions of compact non-Lie groups.

Finally, in Section 4 we investigate actions of compact connected non-Lie groups
on manifolds. It is of course an unsettled question whether compact non-Lie groups
can act effectively on manifolds. By a result of Bredon [2], a compact connected
non-Lie group acting on an n-manifold has orbits of dimension at most n - 3. Using
Bredon’s results and the results of Section 3, we show that a compact non-Lie group
acting effectively on a connected n-manifold has dimension at most
(n-4)(n-3)/2+1.

We assume that all transformation groups are metrizable and that all spaces are
separable and metrizable. The reader is referred to [6] or [7] for terms such as
effective, free, transitive, orbit, isotvopy or stability subgroup, and orbit space.
The author is grateful to Professor T. S. Wu for his help and encouragement, and in
particular for his clever suggestions in the proof of Lemma 1.

2. DIMENSION AND ISOTROPY STRUCTURE

It is known that a compact group G acting transitively and effectively on a finite-
dimensional space X is finite-dimensional [6, Theorem 4], [7, p. 239]. In fact, even
more is true: dim G < n(n+ 1)/2, where n = dim X [6, Theorem 10], [7, p. 243].
However, since there appears to be a slight inaccuracy connected with the proof of
Theorem 10 in [6], we prefer to give an alternate proof based on the following theo-
rem. A transformation group G on a space X is said to be almost effective if
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there exists a 0-dimensional subgroup Gg of G acting trivially on X such that the
natural action of G/Ggy on X is effective.

THEOREM 1. Let G be a compact group acting transitively and effectively on
an n-dimensional space X. Suppose that F is a 0-dimensional subgroup such that

G/F =H
is a compact Lie group, and let X/F denote the orbit space of F on X. Then
dim X/F = n,

and H is almost effective and transitive on the compact manifold X/F.

Proof. We show first that dim X/F =n. Let G* denote the isotropy subgroup of
G at x in X. Then

(1) X ~ G/G*.

Consider the projection

and let
H* = 7(G*).

Now H acts transitively on X/F. Letting H* denote the isotropy subgroup at F(x)
of this action, we see that

(2) X/F ~ H/H*,
and we shall show that H* = I—i*, from which it will follow that
(3) n = dim X = dim G/G* = dim H/H* = dim H/H* = dim X/F.
It is fairly obvious that H* C H*. We show H* C H*. Let
heH*, h=gF,

where g €.G, 7(g) = h. Now,

F(x) = h[F(x)] = gF[F(x)] = F(gx).
Hence, gx = fx for some f € F, and

f-lg e G*.
Finally,
h = n(g) = 7" 1g) e w(G*) = H*.
Since H is a compact Lie group, it follows from (2) and (3) that X/F is a compact
n-manifold.

It remains to show that H is almost effective on X/F. Suppose K C H acts
trivially on X/F, and let
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L = 7-1(K).
Now
L(x) Cc F(x) forall xe X,

since F(x) = ¢F[F(x)] = F(£x) and therefore ¢x € F(x) for all ¢ in L. Let L% be
the identity component of L. Then

L) = x  for all x,

since F(x) is O-dimensional. Therefore L? acts trivially on X, and since G was
assumed to be effective on X, L0 is trivial. It follows that

dimXK =dim L =0,

COROLLARY (Montgomery and Zippin). Let G be a compact group acting tran-
sitively and effectively on a connected n-dimensional space X. Then

dim G < n(n+1)/2.

Proof. Using Theorem 1, we simply apply the previously mentioned result for
compact Lie groups acting effectively on manifolds. Our Theorem 1 replaces the.
material immediately prior to Theorem 10 of [6].

THEOREM 2. Let G be a compact connected group acting effectively on an n-
dimensional space X with s distinct conjugate classes of isotropy subgroups (G ex-
cluded). Then

dim G < sn(n+ 1)/2.

Proof. Let X* denote the complement of the fixed point set of G. Then G is
effective on X*. Let X;, X,, -+, X, denote the point-set unions of the orbits cor-
responding to the s conjugate classes of isotropy subgroups. Of course,

We proceed by induction on s. I s =1, the result actually follows by the Corollary
to Theorem 1, since the isotropy subgroups at all points of X; are conjugate.
Therefore, if T denotes any isotropy subgroup, then

K, = ﬂ ng‘l
geq

is a normal subgroup of G acting trivially on X;, and such that G/K; is effective
on X; = X*. Therefore K 1 is trivial. But clearly G = G/K; is also effective on
each single orbit in X; . The result follows.

For general s, let K; (j =1, 2, -*-, s) denote the normal subgroup of G acting
trivially on X; such that G/Kj is effective on X;. Now

G/(K, NK, N - NK, )
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is effective on X; U X, U --- U X, _; with s - 1 conjugate classes of isotropy sub-
groups. Therefore, by the induction hypothesis,

(1) dim[G/(K; N K, N+ NK _1)] < (s~ I)n(n+1)/2.
But K; n - NK,_; is effective on X3, and therefore
(2) dim(K; N -+ DKy ;) < dim G/Kg < n(n+1)/2.

The result follows from (1) and (2).

To see that Theorem 2 is best possible, consider the effective action of the di-
rect sum of s copies of the special orthogonal group SO(n + 1) on the disjoint union
of s n-spheres. If the space X is required to be connected, much sharper results
are obtained. We proceed to investigate this situation.

LEMMA 1. If a compact, finite-dimensional group G acts effectively and non-
lransitively on a connected, locally compact, n-dimensional space X, then the maxi-
mal dimension r of the orbits is at most n - 1.

Proof. This result is quite apparent when G and X are both manifolds. If G is
a Lie group (X not necessarily a manifold), the result follows from standard local
cross-section theorems of Gleason [3]. For choose a point y in X such that the
isotropy subgroup Gy has minimal dimension and fewest components. Then G(y) is
an orbit of maximal dimension. It follows that there exists an invariant neighborhood
W of y such that Gy is conjugate to Gy for all x in W, and consequently the orbits
of G have a local cross-section at p [7, pp. 221, 222]. Actually, W is a locally triv-
ial fiber bundle over the orbit space W/G with typical fiber G(y). Since X/G is
connected and is not a single point, dim X/G > 0 and each open subset of X/G has
positive dimension. Now G(y) is a manifold, and it follows that

dim G(y) < dim W < n.

In the general case, we attempt to use a result of Bredon [2] on local cross-
sections for actions of compact non-Lie groups. Locally, G is of the form L X N,
where L is a local Lie group and N is a compact 0-dimensional group such that
G/N is a Lie group. From Theorem 1 it follows that

dim G(x) = dim G/N[N(x)] for each x in X,

where G/N[N(x)] represents the orbit of the action of G/N on X/N at the point
N(x). Let W be an invariant set of the type mentioned at the beginning of the proof
for the action of G/N on X/N. Then, if 7 denotes the orbit projection

7: X — X/N,

the G-orbit of each point of 7-!(W) has maximal dimension, say k. Let p € 7~ 1(W).
By Bredon [2, Theorem 4a], there exist a closed subset C of X containing p, and a
closed k-cell K in L such that the natural map

KX C — K(C)

is a homeomorphism onto a compact neighborhood V of p in X contained in 7-1(W).
If we knew that dim C > 0, we would of ¢ourse be finished. This would always be the
case, for example, if X is locally connected. (Since X is assumed to be locally
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compact, a closed subset has dimension zero if and only if it is totally disconnected.)
In any case, at 7(p) there exists a local cross-section D with respect to the orbits
of G/N. Because of the bundle structure of W, we may take D to be a positive-
dimensional compact subset of X/N with D C #(int V). By assuming that C is
totally disconnected, we shall arrive at a contradiction.

We first show that 7-1(D) N V is totally disconnected. Now
i) nVv =1l NnExC),

and since C is totally disconnected, each component of 7-1(D) N V is contained in
K x {c}, for some c € C. It is therefore sufficient to show that each

7 1(D) N (K x {c})
is totally disconnected. We claim that
D) N ®x{c}) =77 @) n Kx{c})

for some d € D (this will yield the desired conclusion, since 71(d) = Nd and N is
totally disconnected). Suppose #~!(d;) and w-1(d,) both meet K X {c}. Now

& x {c}) = U Nke) ¢ a/N[n(c)],

k €K
since KN N = {e}. But D is a local cross-section for G/N on X/N, and therefore
dl = dz .
Next we show that 771(D) is totally disconnected. We claim that

7-1(D) = N(V n 7~ 1(D)).

Now N(V a7 1(D)) c Ne~1(D) = n~1(D). Since D c ﬂiV) 7"}(D) C NV. Therefore,
if x € 7-1(D), x = nv for some v in V. But nv € 7~ (D) = Nn‘l(D) and therefore
v € 771(D).

Now
N@YD) n v) = 771(D) < N(int V)
and 7-1(D) N V, and hence N(7~1(D) N V) is compact. Therefore
N(#-!(D)NV) Cn;VUn,VU--UnV
for some n;, n,, -*-, n, in N. But
N@E-iD)Nnv)nnv = n{N@-1@nVv)nv} = n@z-1(D) N V).

It has already been observed that 7~ 1(D) NV is totally disconnected. Therefore

7-1(D) is a finite union of compact 0-dimensional sets and is therefore 0-dimen-

sional. 7~1(D) is invariant under N, and since the orbit projection map
m1: 7~1(D) — D is open, D is also O-dimensional, which is a contradiction.

It seems likely that both the assumptions that G be finite-dimensional and X be
locally compact can be dropped, with a more careful argument.
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THEOREM 3. Lelt G be a compact, connected group acting effectively on a con-
nected, locally compact, n-dimensional space X with s distinct conjugate classes of
isotropy subgvoups (G possibly included). Then

n(n+ 1)/2 (s =1),
dim G <
(s-1)(n-1)n/2 (s>2).

Proof. The case s =1 follows from Theorem 2. Suppose then that s > 2. Let
the X and K (j=1, 2, -+, s) be as in the proof of Theorem 2, and let K? denote

the 1dent1ty component of K;. Since X is connected, it follows from [6, Theorem 8],
[7 p. 242] that K0 C Kk for some pair i, k (i #k). For simplicity, let us suppose
KZ c Kl C Kj . Select one orbit ¢; from each Xj; for j> 2, and let

S
-Uo
j=2

Since s > 2, G is not transitive on X, and by Lemma 1 each 0; (and hence 0) has
dimension at most n - 1.

Now G/(K, N :-- N K,) is effective on ¢ with s - 1 conjugate classes of iso-
tropy subgroups. It follows immediately from Theorem 2 that

dim [G/(Kp N =+ N Ky)] < (s - 1)(n - 1)n/2
(note that ¢ is possibly disconnected). To complete the proof, we shall show that

dim(K, N NK) = 0.
S
Clearly, ﬂ =1 Ky =e. Therefore

0 ] 0 soe —_

S
and

K, NK3 N - NK, K
z 23 < dim—2 = 0.

dim (K, N -+ NK,) = dim
° KJ N Kz 0 - N K, K9

To see that Theorem 3 is best possible, consider the effective action (mentioned
previously) of the direct sum G of s - 1 copies of SO(n) on the disjoint union of
s -1 (n - 1)-spheres. Let X be the cone over this union, and extend the action of G
to X by leaving the vertex of X fixed. Now dim X=n, dim G=(s - 1)(n - 1)n/2,
and there are s conjugate classes of isotropy subgroups, including the isotropy sub-
group G at the vertex of X. One might easily run through the proof of Theorem 3
with this example in mind.

The results corresponding to Theorems 2 and 3 when G is abelian are much
simpler to state and prove. The examples mentioned in Section'1 are best possible,
along these lines. We next turn briefly to actions of locally compact groups, where
the situation becomes more complicated. It is possible, for instance, to construct
effective actions of the n-dimensional vector group R™ on the plane, for arbitrarily
large n. (Compare this with the result of Montgomery and Zippin on effective ac-
tions of compact Lie groups on manifolds.) We do, however, have the following
result.
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THEOREM 4. Let G be a locally compact abelian group acting effectively on an
n-dimensional space X with s distinct isotropy subgroups (G excluded). Then

dim G <sn.

Proof. We may suppose that G is connected. There exists a closed cell D in G
with dim D = dim G. We proceed by induction on s. If s =1, G acts freely on X
and there exists a one-to-one continuous map

a: G - X,
If we restrict a to D, we obtain an imbedding, and therefore
dim G = dim D < dim X = n.

In general, let G* be any isotropy subgroup of G on X, and consider the action of
G* on X. Now G* acts with at most s - 1 distinct isotropy subgroups (G* ex-
cluded) and therefore, by the induction hypothesis,

dim G* < (s - 1)n.

Finally, there exists a continuous one-to-one map of G/G* onto the orbit corres-
ponding to G*. By [7, p. 239], G/G* contains a closed k-cell D;, where

k = dim G - dim G¥*.
It follows that k <n and
dim G = k + dim G* < sn.

If we drop the requirement that G be abelian, in Theorem 4, everything falls
apart. For example, there exist noncompact Lie groups of arbitrarily high dimen-
sion acting transitively and effectively on the plane [8].

3. GAPS IN THE DIMENSIONS OF COMPACT TRANSITIVE
TRANSFORMATION GROUPS

The next theorem was proved in [4; see Theorem 2] for the case where G is a
compact Lie group acting effectively (but possibly not transitively) on an n-dimen-
sional manifold X. Let us recall that a compact, connected group acting effectively
and fransitively on an n-dimensional space has dimension at most n(n + 1)/2.

THEOREM 5. Let G be a compact, connected group acting effectively and tran-
sitively on an n-dimensional space X. If the dimension of G falls into one of the
ranges

(n—k)(r;-k+1)+k(k2+1)<dimG<(n—k+1)2(n—k+2)

(k = 1’ 2’ ),

then theyve exist only three possibilities:

(i) n =4, G is isomorphic to SU(3)/Z (SU(3) denotes the special unitary gyroup
in complex 3-space, and Z is its center), and X is homeomorphic to the complex
projective plane P2(C).
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(ii) n =6, G is isomorphic to the special group G2, and X is homeomorphic to
PO(R) or S°.

(iii) n = 10, G is isomorphic to SU(6)/Z, and X is homeomorphic to P>(C).

Proof. We shall simply reduce the situation to the known result of [4]. Let F be
a 0-dimensional subgroup of G such that G/F = H is a compact Lie group. By
Theorem 1, H is transitive and almost effective on the compact n-manifold X/F.
Therefore, by [4, Theorem 2], dim H = dim G cannot fall into any of the ranges above
except when

(i) n=4, dim G = dim H = 8, and H is locally isomorphic to SU(3),
(ii) n =6, dim G = dim H = 14, and H is isomorphic to G,,
(iii) n = 10, dim G = dim H = 35, and H is locally isomorphic to SU(6).
It remains to determine the pairs (G, X) for these special cases.

By a theorem of Pontrjagin [9, Example 74, p. 285],
A®C
(1) G="%—

’

where
(a) A is a compact, connected, abelian group.
(b) C is a compact, connected, simply-connected, semisimple Lie group.
(c) N is a finite normal subgroup.

Using (1), we can easily verify that if G/F = H is semisimple, then A must be triv-
ial and G must also be a semisimple Lie group. Since in all the special cases H is
simple, G is a compact Lie group and Theorem 2 of [4] settles the question. G is
actually determined up to isomorphism type, since we have assumed the action of G
to be effective. (See the statement immediately following the proof of Theorem 2 in

[4].)

We turn now to an investigation of compact transitive transformation groups of
high dimension. By the last theorem, the only permissible dimensions of G greater
than (n - 2)(n - 1)/2 + 2, aside from the three isolated examples, are

(A) n(n+1)/2,
(B) (n-1)n/2+1,
(C) (n - 1)n/2,
D)m-2)n-1)/2+3.
We wish to obtain a characterization of these cases.

THEOREM 6. Let G be a compact connected group acting trvansitively and ef-
fectively on an n-dimensional space X. If

dim G > 8- 2)2(“ "1 5,
one of the following holds.
(i) G is a Lie group and X is a manifold.

(ii) dim G=(m - 1)n/2+ 1, n> 3, and G is locally isomovphic to Al @ spin(n),



DIMENSIONS OF COMPACT TRANSFORMATION GROUPS 441

wheve Al is a 1-dimensional solenoidal group and Spin(n) is the spinov group, the
univevsal covering group of SO(n).

(iii) n < 3, G is an abelian non-Lie n-dimensional group, and (G, X) is the free
action of G upon itself by left tvanslation.

(iv) n =5 and G is locally isomorphic to Al () SU(3) [this corresponds to
dim G=(m- 2)(n - 1)/2 + 3].

Proof. Suppose, as in the proof of Theorem 5, that

A@C
(1) G=—%)———.

By Theorem 1, there exists a 0-dimensional subgroup F of G such that G/F = H is
a compact Lie group acting transitively and almost effectively on the n-manifold
M = X/F. It is easy to verify that H has the form

)

where T' is an r-torus with r = dim A, where C is the same compact connected,
simply-connected, semisimple Lie group of (1), and where K is a finite normal sub-
group. We consider the transitive and almost effective action of H = TT @ C on the
n-manifold M. By [4, Lemma 3], M/TT is an (n - r)-manifold and C is transitive
and almost effective on M/TY. It follows that

(3) dimC < (n-r)n-r+1)/2
and
(4) dimG=dimﬁ=r+dimC§(n-r)(n—r+1)/2+r.

We use (3) and (4) to investigate the four possibilities for dim G.
(A) dim G =n(n + 1)/2. By (4),

nn+1)/2<(ma-r)n-r+1)/2+r.

The only possibilities are r =0 and r=n=1. If 0 =r = dim A, it follows from (1)
that G is a compact Lie group. If r =1 and n = 1, it is easy to see that we have
possibility (iii). Since G is now abelian, G acts freely on X, and X is homeo-
morphic to G. It is now a straightforward exercise to verify that the action is equi-
valent to left translation.

(B) dim G =(n - 1)n/2+ 1. By (4),
m-1n/2 < (n-r)n-r+1)/2+(r -1).

Now either r <1 or r=2 and n<3. If r =0, G is a compact Lie group. If r =1,
dim C = (n - 1)n/2 and C is transitive and almost effective on an (n - 1)-manifold.
It follows (for example, from [1, Theorem 5]) that C' is isomorphic to Spin(n) for

n > 3, and we have possibility (ii). Incidentally, if n < 2, then dim C <1 and

dim C = 0, since C is semisimple. It follows that dim G=dim A=r =1, n=1 and
we have possibility (iii) again for n = 1. Finally consider r =2, n < 3. Since

n - r < 1, it follows from (3) that dim C = 0. Now dim G=dim A=r =2 and n = 2,
and we have possibility (iii)
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(C) dim G = (n - 1)n/2. By (4),
m-1n/2< m-r)n-r+1)/2+r.

Either r<lorr=2, n<3,orr=3, n=3. Hr=1, dimC=(n-1)n/2-1 and
C is transitive and almost effective on an (n - 1)-manifold. It follows from Theorem
9, if we let k =1 and replace n by n - 1, that

dmC=(Mn-1n/2-1<(-2)n-1)/2+1.

Consequently, n < 3 and dim C < 2. Therefore dim C =0, n =2, and dim G =1,
which is impossible since G is transitive on X.

If r=2 and n<3, thenagain dim C =0 and (n - 1)n/2=dim G=dim A=r = 2,
which is impossible for any integral n. Finally, if r = 3 = n, we have possibility
(iii).

(D) dim G=(n-2)(n - 1)/2+ 3. By (4),

m-2)n-1)/2< (n-r)n-r+1)/2+r-3.

Now clearly r < 1. f r=1,then dim C=(n- 2)(n - 1)/2+ 2 and C is transitive
and almost effective on an (n - 1)-manifold. By Theorem 5, letting k = 1 and again
replacing n by n - 1, we have two choices. Either C is ISOl‘nOI‘pth to SU(3), which
is possibility (iv), or

dimC={(mn-2)n-1)/2+2 =(n- 1)n/2.

Consequently n =3, dim C = 3, and C is isomorphic to Spin(3). Again we have pos-
sibility (ii) for n = 3.
This completes the proof of Theorem 6. It is possible, incidentally, to classify

the pairs (G, X) that occur in (i) up to the isomorphism type of G and homeomorph-
ism type of X.

4. COMPACT, CONNECTED NON-LIE GROUPS ON MANIFOLDS

It is known [5] that a compact group G acting effectively on a connected n-mani-
fold must be finite-dimensional. Actually the proof in [5] shows that
dim G < n(n+ 1)/2. We prove the following result.

THEOREM 7. Let G be a compact, non-Lie group acting effectively on a con-
nected n-manifold M, and suppose that dim G > (n - 5)(n - 4)/2 + 2. Then either

(i) dim G=(n -4)(n - 3)/2+ 1 and G is locally isomovrphic to
Al @® spin(n - 3) (n> 6), or

(ii) n = 8 and G is locally isomovphic to Al (F) SU(3) [this corresponds to
dim G=(n - 5)(n - 4)/2 + 3].

Proof. We may suppose that G is connected. For an orbit*R, let K0 denote the
identity component of the ma.x1ma1 subgroup Ky of G that acts tr1V1ally on R.
Choose an orbit N such that G/K is of maximal dimension. We shall show that

0
KN is trivial.
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By [6, Theorem 8] and [7, p. 242], there exists an open invariant set U in M
such that NC U and K C Klql for all orbits R contained in U. Now

(1) G/KY = —GF/EBO— :
R/
Therefore
dim G/K$ > dim G/KY,
and by our assumption on N,
dim G/K3 = dim G/Ky .
It follows from (1) that

dim K3 /KD =
and since KIQI/KOR is connected,
K) = Ky

for all orbits R in U. Therefore the connected group K0 leaves the open n-mani-
fold U pointwise fixed. It follows now from [5, Theorem B] that K leaves M point-
wise fixed, and therefore KN must be trivial, and Ky is 0-dimensional.

Finally we consider the effective action of G= G/Ky on the orbit N. Since G
was assumed to be a non-Lie group, it follows by a result of Bredon [2] that

dimN < n-3.

If G/Ky is nof a Lie group, our result now follows immediately from Theorem 6.
If G/Ky is a Lie group and

dimG=(Mn-3)n-2)/2 or dimG=(n-4)(n-3)/2,

it is easy to verify, with the help of [4, Lemma 3] and Theorem 5, that G/Ky is
semisimple, and hence, that G is a semisimple Lie group, contrary to our hypothe-
sis. This same remark holds, of course, if G/KN corresponds to any of the three
special cases of Theorem 5.

On the other hand, if G/Ky is a Lie group and
dimG=(n-4)(Mmn-3)/2+1 or dim G = (n-5)(n-4)/2+3,

it is easy to show, by means of [4, Lemma 3] and Theorem 5, that G/Kyy; is locally
isomorphic either to S! ( Spin(n - 3) (n>6) or to S! @ SU(3) This completes
the proof of Theorem 7. We point out that many special-case considerations for
small n were eliminated by our lower-bound assumption on dim G.

Any improvement over Theorem 7 seems to depend entirely on improvements of
Bredon’s result [2], that is, on tighter bounds on the maximal dimension of orbits for
actions of compact non-Lie groups on manifolds. For example, it follows that a
solenoidal group cannot act effectively on a 3-manifold. However, if a solenoidal
group Al acts effectively on a 4-manifold M?%, then the product action

Al @ Som-3) on M*xst?
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provides an effective action of a compact non-Lie group of dimension

(n-4)(n-3)/2+1

on an n-manifold for all n > 6. Similarly,

Al @ su@B) on M*x P3(C)

provides such an example for

dimG=(n-5)(n-4)/2+3 (n=28).

The statement of Theorem 7 could be strengthened. In the proof we obtained an

effective action of G = G/Kyy on an orbit N of dimension at most n - 3. Since this
action is transitive, the results of Theorem 5 show that many dimensions of G
(hence of G) less than (n - 5)(n - 4)/2 + 2 are also impossible.

THEOREM 8. If G is a compact abelian non-Lie group acting effectively on an

n-manifold (n> 3), then

N =

dimG <n-3.
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